
computers

Article

Learning Dispatching Rules for Scheduling: A
Synergistic View Comprising Decision Trees, Tabu
Search and Simulation
Atif Shahzad 1 and Nasser Mebarki 2,*

1 Department of Industrial Engineering, Tecnologico de Monterrey, Hermosillo, Sonora Norte 83000, Mexico;
atifshahzad@itesm.mx

2 LUNAM, Université de Nantes, IRCCyN, Institut de Recherche en Communications et Cybernétique de Nantes,
UMR CNRS 6597, Nantes, France

* Correspondence: nasser.mebarki@irccyn.ec-nantes.fr; Tel.: +33-(0)2-2809-2127; Fax: +33-(0)2-2809-2101

Academic Editor: Ata Kaban
Received: 11 December 2015; Accepted: 6 February 2016; Published: 17 February 2016

Abstract: A promising approach for an effective shop scheduling that synergizes the benefits of the
combinatorial optimization, supervised learning and discrete-event simulation is presented. Though
dispatching rules are in widely used by shop scheduling practitioners, only ordinary performance
rules are known; hence, dynamic generation of dispatching rules is desired to make them more
effective in changing shop conditions. Meta-heuristics are able to perform quite well and carry
more knowledge of the problem domain, however at the cost of prohibitive computational effort in
real-time. The primary purpose of this research lies in an offline extraction of this domain knowledge
using decision trees to generate simple if-then rules that subsequently act as dispatching rules for
scheduling in an online manner. We used similarity index to identify parametric and structural
similarity in problem instances in order to implicitly support the learning algorithm for effective rule
generation and quality index for relative ranking of the dispatching decisions. Maximum lateness is
used as the scheduling objective in a job shop scheduling environment.

Keywords: shop scheduling; data mining; job shop; dispatching rules; decision trees; Tabu
search; simulation

1. Introduction

Machine scheduling is of principal concern in the planning phase as well as the operation of
manufacturing systems. It is aimed at efficiently allocating the available machines to jobs, or operations
within jobs and subsequent time phasing of these jobs on individual machines [1]. Simulation
procedures, analytical models and heuristics are among the traditional solution methodologies for the
scheduling problem that are still widely used in industry. However, an increasing complexity of the
manufacturing system necessitates a much deeper investigation of the problem domain.

Scheduling problems in the static environment have a known number of jobs and their
corresponding ready times are fixed before the actual schedule execution in contrast to the dynamic
environment problems in which jobs are continually revealed during the execution process [2].
Dynamic scheduling uses priority dispatching rule (PDR) to prioritize jobs waiting for processing
at a resource [3]. In this approach, a score is associated dynamically for each possible assignment
of a task to a particular resource. The objective is to select the task with a minimum or maximum
assigned score (as the case may be) for the chosen resource [4]. Due to their ease of implementation
and substantially reduced computational requirement, they remain a very popular technique despite
of their poor performance in the long run [5,6].

Computers 2016, 5, 3; doi:10.3390/computers5010003 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
http://www.mdpi.com/journal/computers

Computers 2016, 5, 3 2 of 16

The major drawbacks of PDRs include their performance dependence on the state of the system
and non-existence of any single rule that is superior to all the others for all possible states the system
might be in [7]. Meta-heuristics (e.g., simulated annealing, Tabu search, etc.) have an advantage
over PDRs in terms of solution quality and robustness, however, these are usually quite difficult to
implement and tune as well as computationally too complex to be used in a real-time system.

Robust and better-quality solutions provided by meta-heuristics contain useful but implicit
knowledge about the problem domain and solution space explored. Such a set of solutions represents
a wealth of scheduling knowledge to the domain that can be transformed in a usable form of decision
tree or a rule-set. In this paper, we propose an approach to exploit this scheduling knowledge in this
way. In our approach, we seek this hidden scheduling knowledge through a data mining module to
identify a rule-set by exploring the patterns in the solution set obtained by an optimization module
based on Tabu search, a very efficient meta-heuristic for Job-Shop Scheduling Problem (JSSP) [8,9].
This rule-set approximates the output of the optimization module when incorporated in a simulation
model of the system. It is subsequently used to make dispatching decisions in an online manner.

The rest of the paper is organized as follows. First, we present a concise review of the closely
related literature on the use of learning in scheduling. Subsequently, the general structure of
the proposed methodology is outlined, followed by the details of each module with its working,
significance and coordination with other modules. Section 3 provides a brief description of the
experimental setup. The results of the experiments are then presented with a comparison to standard
dispatching rules for a set of benchmark job shop scheduling problems. Finally, the paper concludes in
the light of findings with a brief note on future research directions.

2. Learning in Shop Scheduling: A Concise Review

Generally, the approach of learning in shop scheduling stems from the idea of dynamic selection
of the priority dispatching rules owing to the inability of traditional PDR-based job dispatching to
adapt for the changing conditions of the shop floor. Extending the idea of the dynamic selection using
simulation towards the dynamic modification and subsequently to the dynamic generation of new
rules using the machine learning based techniques resulted in a significant increase of research interest
in this area.

In the context of solving various types of shop scheduling problems, Inductive learning [10–12],
artificial neural-networks [13], case-based reasoning [14], support vector machines [15], reinforcement
learning [16], fuzzy logic [17], evolutionary learning, genetic programming [18], analytical network
processes [19] and artificial immune networks [20,21] ,are among the major learning based approaches
with a large number of their variants that have been employed by researchers. Table 1 lists a few of
the selected works that employed learning in scheduling. For detailed reviews on the subject, refer
to [14,22,23] and an updated review by [24].

Table 1. List of selected references for learning in shop scheduling.

Reference Approach Learning Application

[25] Simulation/Learning GENREG Simplified flow shop

[26] Simulation/Learning LADS FMS with transportation

[27] Simulation/Learning C4.5, PDS Flow shop with machine failure

[28] Simulation/Learning Inductive Learning Flow shop, Job shop

[29] Simulation/Learning C4.5, BPNN, CBR FMS with transportation

[30] Simulation/Data Mining C4.5 Job shop

[31] GA/Learning C4.5 Job shop

[32] GA/Data Mining Attribute Oriented Induction Job shop

[33] GP C4.5 Single machine

[34] GA/Data Mining C4.5 Job shop

Computers 2016, 5, 3 3 of 16

Table 1. Cont.

Reference Approach Learning Application

[35] Simulation/Data Mining C4.5 FMS

[36] GA/Learning C4.5 Job shop

[37] Simulation/ Data Mining C4.5 Single machine

[7] GP C4.5 Single machine, Flow shop

[38] GA/Learning C4.5 Job shop

[39] GA/Learning ANN /C4.5 FMS

[40] Simulation/GA Distributed manufacturing system

[41] GP Flexible JSSP with recirculation

[42] Data Mining/ Timed petrinets C4.5 Job shop

[43] Data Mining Preference learning Job shop

[13] Simulation/ Optimization Neural networks Flow shop

3. Proposed Methodology

The framework we propose consists of four modules, namely the control module, simulation
module, optimization module and learning module. In addition, there is a set of three databases.
The objective of the proposed framework is to generate a set of rules for making dispatching decisions.
Our focus is on the job shop scheduling environment. Figure 1 illustrates the workflow of the
proposed approach.

Figure 1. Workflow of the proposed approach.

Computers 2016, 5, 3 4 of 16

Initially a set of problem instances is generated by the control module under pre-specified settings.
These problem instances are categorized by the control module on the basis of similarity index (SI) in
order to better reflect their individual contribution. Each problem instance tagged with a vector of
similarity indices is subsequently stored in an instance database.

The optimization module generates solutions in the form of sequence (π) for a subset of these
instances to start with. The collection of these job shop instances and the corresponding solutions
form the basis for the initial training dataset. In effect, it is an implicit collection of good scheduling
decisions made by the optimization module. It is required to explicitly identify each decision and
assign an index of quality to it. However, the downstream decisions significantly affect the computed
index of quality. A more relevant quality index (τδk) is obtained by taking this factor into account as
well as the processing times of the operations involved in the dispatching decision. The simulation
module generates and associates this quality index to each decision taken by the optimization module.

The entire collection of decisions along with the assigned quality indices are used as relevant
scheduling knowledge. This scheduling knowledge is kept in a scheduling database in the form of
Predictor-Value-Index (PVI) trio to be used subsequently by a learning process. As the characteristics
of each solution instance are implicitly linked with the complexity and the structure of the problem,
the matrix of similarity index is also used in the learning process. Based on this scheduling knowledge,
a decision tree is generated by the learning process.

This decision tree is then used to dispatch the jobs-awaiting service in an online manner.
The decision tree is dynamically updated, whenever necessary through a control module. The control
module transmits the knowledge of good scheduling decisions to the optimization module as well to
improve its own performance at subsequent levels. In the following subsections, the structure and
working of each module is described in detail.

3.1. Control Module

The functions of the control module include the generation of the relevant scheduling problem
instances, classification of these problem instances based upon the similarity and relative complexity
and synchronization of the scheduling decisions with all the three databases.

The generation of the problem instances is a quite simple process. It includes the controlled
random processes for generating a set of operations with positive processing times, assignment of
these operations to the jobs and assigning a due-date to each job. The problem instances are in fact
acyclic graphs with directed and undirected arcs. This is disjunctive graph representation proposed
by [44] that is able to effectively represent a Job Shop Scheduling Problem (JSSP). An example of a
disjunctive graph representation of a small size JSSP with four machines and three jobs is shown in
Figure 2. The three jobs have ready times r1, r2 and r3, respectively. The node Oik represents operation
of the ith job to be processed on machine k with a processing time of pik (labeled on edges or conjunctive
arcs). The first and the last nodes are the dummy nodes. Operations to be performed on the same
machine are connected through disjunctive arcs (dotted edges with arrows on both sides).

Figure 2. An Example of a disjunctive graph for a Job Shop Scheduling Problem (JSSP).

Computers 2016, 5, 3 5 of 16

The control module creates a matrix of similarity index values for such disjunctive graphs for
all problem instances. The similarity index value is an estimate of how much resemblance a problem
instance has, to any other problem instance. Rajendran et al. [45] provide a survey on the various
methods used in finding graph similarity. In our experiments, the computation of the similarity indices
are made on the loopy belief propagation based algorithm proposed by [46]. For this purpose, it takes
into account the structure of the sub-graphs over the entire set of nodes and normalized Euclidean
distance among these sub-graphs.

3.2. Optimization Module

The optimization module has a pivotal role in the proposed methodology. As the learning
algorithm relies on the quality of the scheduling decisions taken by the optimization module, it is very
important that the solutions provided by the optimization module are of good quality. Moreover, it
is desired that there is some means of quantifying the quality of these solutions. The working of the
optimization modules is based on the Tabu search (TS) algorithm proposed by [47]. Jain et al. [9] found
the Tabu search (TS) algorithms, in general, to be very effective for finding solutions of JSSP. This is
mainly attributed to its powerful memory function [48] in coordination with neighborhood structures
and flexible move evaluation strategies [5]. This is in disparity with what limited capability PDRs can
do due to their myopic nature.

The optimization module finds the solutions to a selected set of problem instances that are initially
referred to as efficient solutions in this methodology. This is due to the assumption that these solutions
are obtained through rigorous and intelligent moves made by the algorithm. The optimization module
works in an offline manner, however, it continuously provides more and more solutions to the problem
instances generated by the control module.

3.3. Simulation Module

Simulation module is a multi-purpose module that is tightly integrated with all other modules.
One of the key functions of the simulation module is to transform the solution provided by the
optimization module into a set of dispatching decisions. Each such decision is simply a yes/no-value
for a job A to be dispatched before some other job B. At each instant, when a decision is to be taken for
the next job to be dispatched, all the jobs competing for a particular resource are alternatively tested
(the alternate decision) as per the sequencing order provided by the optimization module.

Simulation module is also in charge for the generation of values for a set of pre-selected attributes,
referred as predictors to be used by the learning module. This is done corresponding to each instant
at which a dispatching decision is made. It is worth-mentioning that these decision-points (the time
instants when the decision is made) are dependent on the solution provided by the optimization
module as well as the problem structure and parameters. This means that for two solutions of the
same quality with different sequencing order, one may have the same or different decisions points and
hence the values for the selected attributes accordingly. Despite this fact, a particular decision may be
same for both solutions. This is illustrated by an example of 3 ˆ 3 problem instance given in Table 2.
The schedules illustrated in Figures 3 and 4 have only a difference in sequencing order at machine 2,
i.e., job 3 and job 2 have interchanged their order. This does not change the Cmax.

Table 2. A 3 ˆ 3 problem instance.

M1, pjp1q M2, pjp2q M3, pjp3q

J1 1,2 2,6 3,4
J2 1,5 2,3 3,5
J3 1,3 2,1 3,3

Computers 2016, 5, 3 6 of 16

Figure 3. Schedule with original sequencing.

Figure 4. Schedule with an alternate sequence.

The simulation module assigns a quality index (QI) for each solution, generated by the
optimization module, based on the bound that is also computed by the simulation module using

multi-pass simulator. It is computed as QI “
f ˚

f̂
, where f ˚ and f̂ are respectively the values of the

objective function computed by the optimization module using Tabu search and the simulation module
using the best dispatching rule. This quality index is used to categorize the generated solutions for
subsequent use by the learning algorithm. Each solution is included in the learning set based upon
certain characteristics it possesses. These characteristics are the implicit relations among operations
that govern the particular sequencing order we have for an efficient solution. It is not a trivial task to
unfold these relations, however a certain set of guidelines can be attained.

The multi-pass simulator incorporated in simulation module simulates the problem instances
solved by the optimization module and finds a set of schedules using a pre-defined set of PDRs.
A schedule σb with best objective value is used as a reference schedule among this set of schedules.
The objective value is set as a bound, fb or f̂ on the solution-set for that problem instance. This bound
may be used as a characteristic for the set of the dispatching decisions, {δk} taken in the schedule σ˚,
generated by the optimization module.

By generating an alternative dispatching decision, δk—that is, by swapping the sequence of two
jobs namely i and j with processing times pi and pj, respectively, on a machine h in the schedule
σ˚, the simulation module computes and assigns a quality index τδk to each dispatching decision δk.
This is done by generating a set of active schedules, namely tσ˚

Ak
u. Hence, we have as many alternate

schedules as there are original dispatching decisions, z made in the optimal schedule. It is worth
mentioning that the computed quality index is dependent on the downstream operations. The value
of the quality index, τδk for a kth dispatching decision δk is computed as,

τδk “

„

ω1

ˆ

1´
k

z` 1

˙

`ω2

ˆ

pi ` pj

p

˙

f pσ˚, ϕq

f
`

σ˚, δk
˘ (1)

where f
`

σ˚, δk
˘

represents the value of the performance measure obtained by incorporating the
dispatching decision δk in the original schedule σ˚, and ω1 and ω2 are the weighting factors and p is
the remaining processing times for the jobs including pi and pj. Note that f pσ˚, ϕq represents the
value of the performance measure for original schedule σ˚ without incorporating any change (in short,
also represented as f pσ˚q or f ˚). This notation is used for the consistency. It is worth-mentiong here

Computers 2016, 5, 3 7 of 16

that this quality index, τδk is different from the quality index (QI), associated with the schedule. Each
dispatching decision δk has its own quality index τδk in contrast to the value of the lower bound, fb,
which is same for all dispatching decisions. For example, for the schedule shown in Figure 5 for a
problem instance (6 ˆ 6) of Table 3, if the sequence of operations for job 4 and job 3 on machine 2 is
swapped to get a new active schedule as shown in Figure 6, we can assign a quality index τδ5 to the
dispatching decision δ5 (i.e., job 3 to be processed before job 4 on machine 2) as follows:

τδ5 “

„

ω1

ˆ

1´
5
20

˙

`ω2

ˆ

3` 4
10` 37

˙

24
29

(2)

where pσ˚, ϕq “ Lmax pσ
˚q “ 24, f

`

σ˚, δk
˘

“ Lmax
`

σ˚, δk
˘

“ 29, k “ 5 and z “ 20.

Figure 5. A schedule for the problem instance of Table 3.

Table 3. A 6 ˆ 6 problem instance with due dates.

J Mi, pi di

J1 3,4 1,6 2,8 4,5 6,8 5,7 22
J2 6,4 2,1 1,10 3,1 4,2 5,3 26
J3 1,1 2,4 4,2 6,2 3,1 5,1 25
J4 1,6 2,3 4,9 3,8 5,9 6,8 23
J5 5,3 2,4 6,6 1,7 3,7 4,3 18
J6 1,4 2,1 4,2 3,10 5,4 6,5 28

Figure 6. An alternative schedule obtained by swapping a dispatching decision at machine 2
from Figure 5.

3.4. Learning Module

Learning module uses the induction process of decision trees as a learning mechanism.
The conceptual process of classification of dispatching decisions stored in the schedule database
is relatively simple when represented as a decision tree. This simplicity and the transparency is the

Computers 2016, 5, 3 8 of 16

major motivation in adopting the decision tree based learning for the proposed approach. In addition,
decision tree based learning helps to bridge the gap between the pure reactive nature of PDR and
the predictive centralized approaches that are generally prohibitive in online scheduling due to
delayed response [49]. Learning module uses C4.5 algorithm for mining the implicit information in
the dispatching decisions.

The dispatching decisions made by the optimization module and transformed by the simulation
module are stored in a schedule database for a subsequent learning process. It is worth mentioning
that all the decisions including the alternate decisions generated by the simulation module are in the
same database along with the corresponding quality index. It is assumed to have a better learning
accuracy even with decisions that are not generated by the optimization module. This is because we
have a quality index with each decision that helps identifying the areas of greater significance in the
search space.

Construction of a relevant training dataset is very crucial point in the entire KDD process.
Scheduling database in the form of Predictor-Value-Index (PVI) trios form the basis for the training
dataset. This information forms a number of cluster-sets for each attribute based on their values.
From the data mining perspective in JSSP, the target concept to be learned is to determine which job
should be dispatched first within a set of jobs that are ready to be scheduled on the same machine at a
particular instant. Extracting this knowledge from the training dataset would allow us to dispatch the
next job at any given time and thereafter to create dispatching lists for any set of jobs rxk yks forms a
collection of positive training examples from a single problem instance with k dispatching decisions,
where xk “ rx1k x2k . . . xlks represnts values for the l selected predictors (Table 4) and yk P t0, 1u is
the value for the target concept for kth decision. The target concept, yk (yk :“ precedesu,v,q) is a binary
variable representing the processing order of two jobs u, v to be processed on machine q, i.e., yk “ 1
represents u Ñ v in lexical order on machine q and vice versa. For each dispatching decision, we have
a set of alternate dispatching decisions as negative examples with associated quality index values. For
a complete set of training instances, we have a collection of rxk yks as positive training examples and
associated negative examples for each instance of the training set.

Table 4. Selected Predictors.

Expression Description

nt Number of jobs in the system at any instant t.
pmax ´ ϑ Difference between maximum and average remaining processing times.

np

nt
Percentage of jobs with relatively longer processing times.

nd
nt

Percentage of jobs with relatively loose due dates.

ϑ Average remaining processing time.
ϕ Average remaining time until due-dates.
ϕ

ϑ
Relative tightness ratio.

f̂ Bound on the value of f , where f “ Lmax.

QI Quality Index of the best solution among solutions provided by PDRs, “
f˚

f̂
.

For example, consider the schedule shown in Figure 5. At t = 0, the jobs J3, J4 and J6 compete
for the machine M1. To make a dispatching decision for the position 1 on M1 and to generate the
relevant data at t = 0, three comparisons are made namely (3,1) vs. (4,1), (3,1) vs. (6,1), and (4,1) vs.
(6,1), where (3,1) signifies operation number 1 of J3 and so on. Since the optimization module selected
J6 before J4, as shown in Figure 5, the target concept has a value of 0. Similarly, 0 is returned for other
two comparisons. At t = 5, we have again three comparisons resulting value of 0 for target concept for
all of them and then at t = 10, we have four comparisons, and a comparison, for instance, (1,2) vs. (5,4)
returns a value of 1 for the target concept. The corresponding values of the predictors are computed

Computers 2016, 5, 3 9 of 16

at the time the decision is made. Hence we have as many rows as positive learning examples as the
number of comparisons made at various decision points at each machine as per the solution generated
by the optimization module.

Finally, the decision tree induced using the learning algorithm can be applied directly to the
same JSSP to validate the explored knowledge and as a predictive model to predict the target concept.
A set of scheduling problem instances chosen from the database in accordance with their similarity
indices is to be used as a test dataset for the scheduling knowledge discovered. The overall sequence
of operations obtained by these rules is translated to a schedule using a schedule generator. Thus, the
tree will, given any two jobs, predict which job should be dispatched first and can be thought of as a
new, previously unknown rule. In addition to the prediction, decision trees and decision rules reveal
insightful structural knowledge that can be used to further enhance the scheduling decisions.

Proper selection of the relevant predictors and creation of new predictors that are more pertinent
to the desired target concept has the key role in the learning process. The entire learning process
significantly suffers with the poor selection and inappropriate creation of the predictors. It is the task of
finding the most reasonable subset of predictors for a classifier to seek fewer predictors and maximum
class separability [35]. This process is also critical for the effectiveness of the subsequent model
induction by eliminating certain redundant and irrelevant predictors. Effective use of cluster-sets in
tandem with selected attribute-set helps in generating a better quality decision tree.

Both the creation of new predictors and selection of predictors (we call the both process combined
as attribute extraction) are primarily linked with the objectives of the JSSP. Tardiness based objectives
require different predictors to be taken into account while flow-time based objectives have different
requirements. For instance, deadline related statistics and counters are more suited for tardiness based
objectives [50].

There exists a strong relation among the sequencing of operations due to precedence constraints,
however, considering only two (operations of the) jobs to be processed by the same machine among
schedulable jobs (the predecessor, if any, of whom are already dispatched) at any instance for the
comparison reduces this dependency effect. Proper attribute extraction plays an important role to
reduce this dependency as well.

Arithmetic combinations of primitive predictors can also be used to generate new useful predictors.
However, a large set of predictors is not desirable, as the predictors are generally not independent
of each other, making the process computationally impractical. Several heuristics, such as backward
stepwise heuristic and forward stepwise group heuristic, have been proposed to limit the selected
subset of predictors while maintaining a certain performance level [51]. Each simulation scenario
as a static control rule and necessary predictors are collected at data collection points and saved in
corresponding file.

4. Experimental Setup

Two sets of 6 ˆ 6 similarly sized instances of a static job shop problem with different seed values
are used as training and test data. All jobs are available simultaneously at time zero. Discrete uniform
distribution between 1 and 10 is used to generate the operation processing times. The job due dates
are determined using two parameters τ and ρ, where τ determines the expected number of tardy jobs
(and hence the average tightness of the due dates) and ρ specifies the due date range. Once these
parameters have been specified, the job due dates are generated from the discrete uniform distribution
given as,

dj “ Urµ´
µρ

2
, µ`

µρ

2
s (3)

where u “ p1 ´ τq E rCmax s is the mean due date. E rCmax s denotes the expected makespan for the
problem instance and is calculated as,

E rCmax s “

ř

jεJ pj

m
(4)

Computers 2016, 5, 3 10 of 16

Note that this assumes no idle time on machines, and hence will be an optimistic estimate of Cmax.
We consider τ “ 0.3 and ρ “ 0.5 with Lmax (Maximum Lateness) used as the scheduling objective.
Table 5 lists the parameters used in the experimental setup.

Table 5. Summary of parameters for experimental setup.

Parameter Value

Datasets Training Dataset, I and Test Dataset, (Í)
Problem size 6ˆ 6

Number of training instances, I 100
Number of test instances, Í 100

Release dates, rj 0
Operation processing times, pjpiq U r1, 10s

Due-dates, dj U
”

µ´
µ ρ

2
, µ`

µ ρ

2

ı

ω1, ω2 0.6, 0.4
τ, ρ 0.3, 0.5

Objective function, f Lmax

Selection of the relevant predictors has a key role in obtaining the appropriate performance
level. High dimensionality poses a challenge to learning tasks. Due to irrelevant predictors,
classification algorithms tend to over-fit training data and degrade the generalization ability [52,53].
The selected predictors have the following characteristics: the predictors are related to tardiness
based performance measures. It is preferred to define predictors in relative values instead of absolute
values. The predictors with high variation are discretized. Table 4 lists the predictors used in the
experiments. The selection of these predictors is generally on the basis of earlier research (see for
example, [35,54,55]). It is acknowledged though that a simple attribute-selection model is not capable
to generate and guarantee even near-optimal subset of predictors. A more rigorous approach for the
combinatorial attribute selection may be used at the cost of extra computational complexity (see [56]
for review and limitations of other approaches).

The predictors pmax´ ϑ and ϑ use the remaining processing time for direct comparison of two jobs,
as an average measure and relative value among all the jobs in system. It is important to note that it is
the combined effect of these predictors along-with others, which plays a role in strengthening their

relation with the target concept. For example, ϑ in relation with nt and pmax ´ ϑ affects the
np

nt
. Hence

it is not a very trivial task to identify a relationship of predictor with the target concept. The bound on
the value of the performance measure is also used as a predictor, however it is again not independent
from the other selected predictors.

For this study, we used the binning method—an unsupervised discretization method—to establish
banded categories for the predictor values. Based on the values of the mean and standard deviation
of the distribution of the specified predictor(s), we generate a field with banded categories. Figure 7
illustrates a˘3 standard deviation based discretization for a predictor to generate seven bins. However,
creating banded categories based on standard deviations may result in some bins being defined outside
the actual data range and even outside the range of possible data values, affecting the contribution of
the predictor in the learning process.

Figure 7. Standard deviation based discretization of predictors.

Computers 2016, 5, 3 11 of 16

5. Results and Discussion

The decision tree with a maximum allowed limit of 30 splits along with the cross validation is
grown using the experimental setup described with training dataset consisting of 100 instances. A set
of 49 rules with a class labeling error of 28.06% is obtained. It is observed that there is no significant
improvement in the class error by allowing more number of splits.

The rule-set is applied to the instances of the test set. Figure 8 shows the box plot of Lmax values
for the set of PDRs given in Table 6, Tabu search used in the optimization module and the rule-set
obtained by the decision tree based learning algorithm. The validation accuracy of the rule-set obtained
is found to be 60.5%. Figure 9 shows the plot of the confusion matrix for the decision tree grown.

Figure 8. Box plot of Maximum Lateness values for set of Priority Dispatching Rules (PDRs), Tabu
search (TS) and rule-set.

Table 6. Definitions of benchmark priority dispatching rules.

Rule Definition Rank Priority index

FIFO First in first out min Cjpi´1q

SI Shortest imminent processing
time min pjpiq

SPT Shortest processing time min pj

EDD Earliest due-date min dj

SLACK Slack min dj ´ t´
oj
ř

i“1
pjpiq

CR Critical Ratio min
dj ´ t

řoj

i“1 pjpiq

CRSI Critical Ratio/Shortest Imminent min
dj ´ t

řoj

i“1 pjpiq

MOD Modified operation due date min max
´

djk, t` pjk

¯

COVERT Cost over time max 1
pjpiq

¨

˚

˝

1´

´

dj ´ t´
řoj

i“l pjpiq

¯`

h1
řoj

i“l pjpiq

˛

‹

‚

`

ATC Apparent tardiness cost max 1
pjpiq

exp

¨

˝´

´

dj ´ t´ pjpiq ´
řoj

i“l`1 pjpiq

¯

h3
řoj

i“l pjpiq

˛

‚

`

MF Multi-factor max

1
pjpiq

˜

Wjpiq ´ pdj ´ t´
oj
ř

i“l
pjpiq

¸

where

Wjpiq “
np‰kq
ř

i“k

q
ř

j“1
pjpiq ´

q´1
ř

j“1
pjpiq

CEXSPT Conditionally expediting SPT -

Partition into three queues, late queue, operationally
late queue and ahead-of-schedule queue, with SI as
selection criterion within queues. Shifting of job to

other queues is not allowed.

Computers 2016, 5, 3 12 of 16

Figure 9. Confusion Matrix plot for the original grown decision tree.

It is worth mentioning that another grown decision tree employing the quality index, τδk as an
additional predictor results in a significant boost to the validation accuracy with a set of 37 rules
while all other parameters remain the same. This is illustrated in Figure 10 using the confusion matrix
plot of the decision tree. This requires computations for the quality index of each decision, which
is an expensive process. The tree we obtained by including the quality index predictor for the test
instances requires these computations a priori based on the optimal decisions made by the optimization
algorithm. However, a procedure to find an estimate for the value of the quality index would result in
better performance.

Figure 10. Confusion Matrix plot with inclusion of quality index in predictor-set.

A comparison of the two confusion matrix plots reveals that the original decision tree was unable
to effectively predict the class with label 0, i.e., the operation not selected as the first operation resulting

Computers 2016, 5, 3 13 of 16

in the specificity value to be 3.9 %. This value is significantly increased to 77.3% with the inclusion of
τδk in the predictor-set.

6. Conclusions

A synergy of optimization, simulation and learning is used to better address the problem of shop
scheduling. The cooperative interaction of these areas is desired in scheduling due to the proven
effectiveness of each of them separately. Optimization provides with efficient schedules but the
computational complexity prohibits its use in an online manner. Dispatching rules are quick but
lack robustness and adaptability. Simulation enables making a comparison of the effectiveness of
dispatching rules, analyzing behavior of scheduling strategies and understanding the problem domain.
Learning makes use of the implicit knowledge contained in the problem domain and efficient solution
domain to approximate the behavior of efficient solution domain identified by the optimization.

A detailed description of the arrangement and functionality of different modules of the proposed
methodology is provided. For a set of similar-size instances of job shop scheduling problem, the
results on the maximum lateness using the proposed methodology are presented. In most of the
real-world sized JSSPs, the optimal solutions are not obtainable or implementable due to the complex
dynamic nature of the problem. However, through this approach several alternative solutions could be
proposed that are not only sufficiently efficient but as easy to implement as the traditional dispatching
rules are. However the underlying assumption for an effective implementation of the methodology
is that the optimization process is able to capture the inherent problem structure in regards with the
scheduling objectives. A natural extension of the proposed methodology in this context would be to
reuse this knowledge in order to effectively solve the problem instances of matching similarity index.

By making use of alternative dispatching decisions, we associated a quality index to each
dispatching decision. This value estimates the significance of a particular dispatching decision.
In combination with a group of similar decisions arising from different or similar problem instances,
learning algorithm is able to build a density map of the dispatching decision. This helps in analyzing
the efficient schedules in comparison with relatively less efficient schedules.

One of the objectives of the proposed approach is to capture the effect of disjunctive constraints on
the dispatching decision during the different phases of the schedule generation. This is partially
achieved by fairly improved prediction accuracy, however it lacks the implementation scheme
for the test instances. Moreover, an improved metric for the quality index may be devised for
superior performance.

It is not unusual to have a different set of selected predictors in regards with scheduling objective.
In fact, it is a key factor for the successful implementation of the proposed framework. Predictor
selection for different objectives and their combinations has to be rigorously explored to obtain compact
and efficient rule set.

Author Contributions: Nasser Mebarki (N.M.) and Atif Shahzad (A.S.) conceived the idea to synergize the
simulation, optimization and learning for applications in scheduling. A.S. designed the overall framework,
performed the experiments, coded the algorithms, analyzed the data and wrote the paper. N.M, in his advisory
role, guided the work to make it a worthy contribution to the scientific community. N.M reviewed the contents
and made valuable improvements to the manuscript and provided helpful suggestions to make it easier for
readers to understand the methodology.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shaw, M.J.; Park, S.; Raman, N. Intelligent Scheduling with Machine Learning Capabilities: The Induction of
Scheduling Knowledge. IIE Trans. 1992, 24, 156–168. [CrossRef]

2. Sidney, J.B. Sequencing and scheduling-an introduction to the mathematics of the job-shop, by Simon French,
Wiley, 1982, 245 pp. Networks 1983, 13, 310–311. [CrossRef]

http://dx.doi.org/10.1080/07408179208964213
http://dx.doi.org/10.1002/net.3230130218

Computers 2016, 5, 3 14 of 16

3. Vieira, G.E.; Herrmann, J.W.; Lin, E. Rescheduling manufacturing systems: A Framework of Strategies,
Policies, and Methods. J. Sched. 2003, 6, 39–62. [CrossRef]

4. Montana, D. A comparison of combinatorial optimization and dispatch rules for online scheduling.
Mag. West. Hist. 2005, 353–362.

5. Jain, A.S.; Rangaswamy, B.; Meeran, S. New and “stronger” job-shop neighbourhoods: A Focus on the
Method of Nowicki and Smutnicki (1996). J. Heuristics 2000, 6, 457–480. [CrossRef]

6. Pierreval, H.; Mebarki, N. Dynamic scheduling selection of dispatching rules for manufacturing system.
Int. J. Prod. Res. 1997, 35, 1575–1591. [CrossRef]

7. Geiger, C.D.; Uzsoy, R.; Aytuǧ, H. Rapid modeling and discovery of priority dispatching rules:
An Autonomous Learning Approach. J. Sched. 2006, 9, 7–34. [CrossRef]

8. Zhang, C.; Li, P.; Guan, Z.; Rao, Y. A tabu search algorithm with a new neighborhood structure for the job
shop scheduling problem. Comput. Oper. Res. 2007, 34, 3229–3242. [CrossRef]

9. Jain, A.S.; Meeran, S. A State-of-the-Art Review of Job-Shop Scheduling Techniques; Technical report; Department
of Applied Physics, Electronic and Mechanical Engineering, University of Dundee: Dundee, UK, 1998;
pp. 1–48.

10. Choi, H.S.; Kim, J.S.; Lee, D.H. Real-time scheduling for reentrant hybrid flow shops: A Decision Tree Based
Mechanism and its Application to a TFT-LCD Line. Expert Syst. Appl. 2011, 38, 3514–3521. [CrossRef]

11. Wang, W.; Liu, W. A Hybrid Backpropagation Network-based Scheduling Knowledge Acquisition Algorithm.
In Proceedings of the 2006 International Conference on Computational Intelligence and Security, Guangzhou,
China, 3–6 November 2006; pp. 151–154.

12. Shahzad, A.; Mebarki, N. Data mining based job dispatching using hybrid simulation-optimization approach
for shop scheduling problem. Eng. Appl. Artif. Intell. 2012, 25, 1173–1181. [CrossRef]

13. Mouelhi-Chibani, W.; Pierreval, H. Training a neural network to select dispatching rules in real time.
Comput. Ind. Eng. 2010, 58, 249–256. [CrossRef]

14. Priore, P.; de la Fuente, D.; Gomez, A.; Puente, J. A review of machine learning in dynamic scheduling of
flexible manufacturing systems. AI EDAM 2001, 15, 251–263. [CrossRef]

15. Shiue, Y.-R. Data-mining-based dynamic dispatching rule selection mechanism for shop floor control systems
using a support vector machine approach. Int. J. Prod. Res. 2009, 47, 3669–3690. [CrossRef]

16. Wang, Y.-C.; Usher, J.M. Application of reinforcement learning for agent-based production scheduling.
Eng. Appl. Artif. Intell. 2005, 18, 73–82. [CrossRef]

17. Lee, K.K. Fuzzy rule generation for adaptive scheduling in a dynamic manufacturing environment.
Appl. Soft Comput. 2008, 8, 1295–1304. [CrossRef]

18. Nguyen, S.; Zhang, M.; Johnston, M.; Tan, K.C. Learning iterative dispatching rules for job shop scheduling
with genetic programming. Int. J. Adv. Manuf. Technol. 2013, 67, 85–100. [CrossRef]

19. Yazgan, H.R. Selection of dispatching rules with fuzzy ANP approach. Int. J. Adv. Manuf. Technol. 2010, 52,
651–667. [CrossRef]

20. Coello, C.; Rivera, D.; Cortés, N. Use of an artificial immune system for job shop scheduling.
Artif. Immune Syst. 2003, 2787, 1–10.

21. Muhamad, A.; Deris, S. An artificial immune system for solving production scheduling problems: A Review.
Artif. Intell. Rev. 2013, 39, 97–108. [CrossRef]

22. Aytug, H.; Bhattacharyya, S.; Koehler, G.J.; Snowdon, J.L. Review of machine learning in scheduling.
IEEE Trans. Eng. Manag. 1994, 41, 165–171. [CrossRef]

23. Choudhary, A.K.; Harding, J.A.; Tiwari, M.K. Data mining in manufacturing: A Review Based on the Kind
of Knowledge. J. Intell. Manuf. 2009, 20, 501–521. [CrossRef]

24. Priore, P.; Gómez, A.; Pino, R.; Rosillo, R. Dynamic scheduling of manufacturing systems using machine
learning: An Updated Review. Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM 2014, 28, 83–97. [CrossRef]

25. Pierreval, H.; Ralambondrainy, H. Generation of Knowledge About the Control of a Flow-Shop Using Simulation
and a Learning Algorithm; INRIA Research Report No. 897; INRIA: Rocquencourt, France, 1998.

26. Nakasuka, S.; Yoshida, T. New Framework for Dynamic Scheduling of Production Systems. In International
Workshop on Industrial Applications of Machine Intelligence and Vision; IEEE: Tokyo, Japan, 1989; pp. 253–258.

27. Piramuthu, S.; Raman, N.; Shaw, M.J. Learning-Based Scheduling in a Flexible Manufacturing Flow Line.
IEEE Trans. Eng. Manag. 1994, 41, 172–182. [CrossRef]

http://dx.doi.org/10.1023/A:1022235519958
http://dx.doi.org/10.1023/A:1009617209268
http://dx.doi.org/10.1080/002075497195137
http://dx.doi.org/10.1007/s10951-006-5591-8
http://dx.doi.org/10.1016/j.cor.2005.12.002
http://dx.doi.org/10.1016/j.eswa.2010.08.139
http://dx.doi.org/10.1016/j.engappai.2012.04.001
http://dx.doi.org/10.1016/j.cie.2009.03.008
http://dx.doi.org/10.1017/S0890060401153059
http://dx.doi.org/10.1080/00207540701846236
http://dx.doi.org/10.1016/j.engappai.2004.08.018
http://dx.doi.org/10.1016/j.asoc.2007.11.005
http://dx.doi.org/10.1007/s00170-013-4756-9
http://dx.doi.org/10.1007/s00170-010-2739-7
http://dx.doi.org/10.1007/s10462-011-9259-1
http://dx.doi.org/10.1109/17.293383
http://dx.doi.org/10.1007/s10845-008-0145-x
http://dx.doi.org/10.1017/S0890060413000516
http://dx.doi.org/10.1109/17.293384

Computers 2016, 5, 3 15 of 16

28. Priore, P.; de la Fuente, D.; Gomez, A.; Puente, J. Dynamic Scheduling of Manufacturing Systems with
Machine Learning. Int. J. Found. Comput. Sci. 2001, 12, 751–762. [CrossRef]

29. Priore, P.; de la Fuente, D.; Puente, J.; Parreno, J. A comparison of machine-learning algorithms for dynamic
scheduling of flexible manufacturing systems. Eng. Appl. Artif. Intell. 2006, 19, 247–255. [CrossRef]

30. Metan, G.; Sabuncuoglu, I.; Pierreval, H. Real time selection of scheduling rules and knowledge extraction
via dynamically controlled data mining. Int. J. Prod. Res. 2010, 48, 6909–6938. [CrossRef]

31. Lee, C.-Y.; Piramuthu, S.; Tsai, Y.-K. Job shop scheduling with a genetic algorithm and machine learning.
Int. J. Prod. Res. 1997, 35, 1171–1191. [CrossRef]

32. Koonce, D.; Tsa, C.-C. Using data mining to find patterns in genetic algorithm solutions to a job shop
schedule. Comput. Ind. Eng. 2000, 38, 361–374. [CrossRef]

33. Dimopoulos, C.; Zalzala, A.M.S. Investigating the use of genetic programming for a classic one-machine
scheduling problem. Adv. Eng. Softw. 2001, 32, 489–498. [CrossRef]

34. Harrath, Y.; Chebel-Morello, B.; Zerhouni, N. A genetic algorithm and data mining based meta-heuristic for
job shop scheduling problem. IEEE Int. Conf. Syst. Man Cybern. 2002, 7, 6.

35. Kwak, C.; Yih, Y. Data-mining approach to production control in the computer-integrated testing cell.
IEEE Trans. Robot. Autom. 2004, 20, 107–116. [CrossRef]

36. Huyet, A.L.; Paris, J.L. Synergy between evolutionary optimization and induction graphs learning for
simulated manufacturing systems. Int. J. Prod. Res. 2004, 42, 4295–4313. [CrossRef]

37. Li, X.; Olafsson, S. Discovering dispatching rules using data mining. J. Sched. 2005, 8, 515–527. [CrossRef]
38. Huyet, A.L. Optimization and analysis aid via data-mining for simulated production systems. Eur. J. Oper. Res.

2006, 173, 827–838. [CrossRef]
39. Shiue, Y.-R.; Guh, R.-S. Learning-based multi-pass adaptive scheduling for a dynamic manufacturing cell

environment. Robot. Comput. Manuf. 2006, 22, 203–216. [CrossRef]
40. Chiu, C.; Yih, Y. A Learning-Based Methodology for Dynamic Scheduling in Distributed Manufacturing

Systems. Int. J. Prod. Res. 1995, 33, 3217–3232. [CrossRef]
41. NhuBinh, H.; Tay, J.C. Evolving Dispatching Rules for solving the Flexible Job-Shop Problem. 2005 IEEE

Congr. Evol. Comput. 2005, 3, 2848–2855.
42. Wang, C.L.; Rong, G.; Weng, W.; Feng, Y.P. Mining scheduling knowledge for job shop scheduling problem.

IFAC Pap. OnLine 2015, 48, 835–840. [CrossRef]
43. Ingimundardottir, H.; Runarsson, T.P. Generating Training Data for Supervised Learning Linear Composite

Dispatch Rules for Scheduling. In Learning and Intelligent Optimization 6683; Coello, C.C., Ed.; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 263–277.

44. Roy, B.; Vincke, P. Multicriteria analysis: Survey and New Directions. Eur. J. Oper. Res. 1981, 8, 207–218.
[CrossRef]

45. Rajendran, K.; Kevrekidis, I.G. Analysis of data in the form of graphs. 2013, arXiv:1306.3524.
46. Koutra, D.; Parikh, A.; Ramdas, A.; Xiang, J. Algorithms for Graph Similarity and Subgraph Matching; Technical

Report of Carnegie-Mellon-University; Carnegie-Mellon-University: Pittsburgh, PA, USA, 2011.
47. Schuster, C.J. A fast tabu search algorithm for the no-wait job shop problem. Manag. Sci. 2003, 42, 797–813.
48. Zhang, G.; Gao, L.; Shi, Y. A Genetic Algorithm and Tabu Search for Multi Objective Flexible Job Shop

Scheduling Problems. 2010 Int. Conf. Comput. Control Ind. Eng. 2010, 1, 251–254.
49. Cardin, O.; Trentesaux, D.; Thomas, A.; Castagna, P.; Berger, T.; Bril, H. Coupling predictive scheduling and

reactive control in manufacturing: State of the Art and Future Challenges. J. Int. Manuf. 2015. [CrossRef]
50. Kemppainen, K. Priority Scheduling Revisited—Dominant Rules, Open Protocols, and Integrated Order

Management; Helsinki School of Economics: Helsinki, Finland, 2005.
51. Tang, J.; Alelyani, S.; Liu, H. Feature Selection for Classification: A Review. In Data Classification: Algorithms

and Applications; CRC Press: Boca Raton, FL, USA, 2014; pp. 37–64.
52. Shiue, Y.-R.; Guh, R.-S. The optimization of attribute selection in decision tree-based production control

systems. Int. J. Adv. Manuf. Technol. 2005, 28, 737–746. [CrossRef]
53. Guyon, I.; Elisseefi, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3,

1157–1182.
54. Cho, H.; Wysk, R.A. A robust adaptive scheduler for an intelligent workstation controller. Int. J. Prod. Res.

1993, 31, 771–789. [CrossRef]

http://dx.doi.org/10.1142/S0129054101000849
http://dx.doi.org/10.1016/j.engappai.2005.09.009
http://dx.doi.org/10.1080/00207540903307581
http://dx.doi.org/10.1080/002075497195605
http://dx.doi.org/10.1016/S0360-8352(00)00050-4
http://dx.doi.org/10.1016/S0965-9978(00)00109-5
http://dx.doi.org/10.1109/TRA.2003.819595
http://dx.doi.org/10.1080/00207540410001708489
http://dx.doi.org/10.1007/s10951-005-4781-0
http://dx.doi.org/10.1016/j.ejor.2005.07.026
http://dx.doi.org/10.1016/j.rcim.2005.03.004
http://dx.doi.org/10.1080/00207549508904870
http://dx.doi.org/10.1016/j.ifacol.2015.06.181
http://dx.doi.org/10.1016/0377-2217(81)90168-5
http://dx.doi.org/10.1007/s10845-015-1139-0
http://dx.doi.org/10.1007/s00170-004-2430-y
http://dx.doi.org/10.1080/00207549308956756

Computers 2016, 5, 3 16 of 16

55. Chen, C.C.; Yih, Y. Indentifying attributes for knowledge-based development in dynamic scheduling
environments. Int. J. Prod. Res. 1996, 34, 1739–1755. [CrossRef]

56. Siedlecki, W.; Sklansky, J. A note on genetic algorithms for large-scale feature selection. Pattern Recognit. Lett.
1989, 10, 335–347. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/00207549608904994
http://dx.doi.org/10.1016/0167-8655(89)90037-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Learning in Shop Scheduling: A Concise Review
	Proposed Methodology
	Control Module
	Optimization Module
	Simulation Module
	Learning Module

	Experimental Setup
	Results and Discussion
	Conclusions

