
computers

Article

Optimization of Nano-Process Deposition Parameters
Based on Gravitational Search Algorithm

Norlina Mohd Sabri 1,*, Nor Diyana Md Sin 2, Mazidah Puteh 1 and Mohamad Rusop Mahmood 2

1 Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Terengganu),
23000 Dungun, Malaysia; mazidahputeh@tganu.uitm.edu.my

2 NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA,
40450 Shah Alam, Malaysia; nordiyana86@yahoo.com (N.D.M.S.); rusop@salam.uitm.edu.my (M.R.M.)

* Correspondence: norli097@tganu.uitm.edu.my; Tel.: +60-019-7901417

Academic Editor: Laith Al-Jobouri
Received: 9 March 2016; Accepted: 31 May 2016; Published: 8 June 2016

Abstract: This research is focusing on the radio frequency (RF) magnetron sputtering process,
a physical vapor deposition technique which is widely used in thin film production. This process
requires the optimized combination of deposition parameters in order to obtain the desirable thin film.
The conventional method in the optimization of the deposition parameters had been reported to be
costly and time consuming due to its trial and error nature. Thus, gravitational search algorithm (GSA)
technique had been proposed to solve this nano-process parameters optimization problem. In this
research, the optimized parameter combination was expected to produce the desirable electrical and
optical properties of the thin film. The performance of GSA in this research was compared with that of
Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Artificial Immune System (AIS) and Ant
Colony Optimization (ACO). Based on the overall results, the GSA optimized parameter combination
had generated the best electrical and an acceptable optical properties of thin film compared to the
others. This computational experiment is expected to overcome the problem of having to conduct
repetitive laboratory experiments in obtaining the most optimized parameter combination. Based on
this initial experiment, the adaptation of GSA into this problem could offer a more efficient and
productive way of depositing quality thin film in the fabrication process.

Keywords: gravitational search algorithm; optimization; magnetron sputtering process;
deposition parameters

1. Introduction

The nano-process is a process which involves application of structures at nanometer scale or at the
atomic scale, which lies between 1 and 100 nanometers. Industries that have applied nano-processes
include aerospace, automotive, biotechnology, ceramics, chemicals, computing, defense, electronics,
metals, materials, paper, plastics, renewable energy, textiles and telecommunications [1]. This research
is focusing on the radio frequency (RF) magnetron sputtering process; a physical vapor deposition
technique which is widely used in the thin film production. This process requires the optimized
combination of deposition parameters in order to obtain the desirable thin film as the output. Thin film
is a layer of material such as titanium, zinc, copper and chromium which has a scale from a nanometer
to several micrometers in thickness. Thin film is used in the production of electronic devices such as
semiconductor, transistor, solar cell, led and sensor [2]. A more detailed explanation on RF magnetron
sputtering is discussed in the third section of this paper. The common practice in achieving the most
optimized magnetron sputtering process parameters in order to obtain the desirable thin film is done
by trial and error method. This conventional optimization process requires repetitions of the laboratory
experiments until the desirable experimental results are obtained. This method has been reported to be
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costly and time consuming due to the repetitive laboratory experiments [3]. The repetitive laboratory
works are consuming the source materials which are usually expensive and more electrical energy
from the machine usage. A longer machine time is needed to achieve the desirable experimental
results. This trial and error process could take weeks to complete, including the time taken for the thin
film measurements process afterwards. In order to reduce the time taken and costs in the fabrication
process, a computational experiment could be performed to optimize the process parameters before
any actual laboratory works are done [4,5]. The computational experiment could complement the
conventional method of process parameters optimization and is expected to reduce the number of
laboratory experiments that have to be conducted in the fabrication process.

This research is proposing gravitational search algorithm (GSA) technique in solving the RF
magnetron sputtering deposition parameters optimization problem. This algorithm has been chosen
due to its acceptable performance in solving various engineering optimization problems [6–9]. Based on
literatures, GSA has better exploration capability [10], has better capability to escape from local
optima [10], easier to implement [11] and has the ability to solve highly nonlinear optimization
problems [12]. At the moment, GSA has not yet been explored in the nano-process parameter
optimization problem. Currently, only several researches have been done in the optimization of
magnetron sputtering process parameters based on computational intelligence techniques. At the
time of writing, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are among the
techniques that have been adapted in this area. However, only certain process parameters are
involved and the parameters are different in each of the research approaches. The materials used in
the previous researches are also different and the optimizations are done for different applications.
More explanation on the techniques and process parameters that have been used in the similar research
are slotted in the Brief Reviews section. The research in this field is still limited and is still in the early
phase as computational intelligence has not been extensively and stably adapted in the nano-process
parameter optimization.

In this research, the optimized parameter combination is expected to produce the desirable
electrical and optical properties of the thin film. The objective of this research is to propose
a better, efficient and productive technique in the sputtering process parameter optimization problem.
Besides improving the conventional method, the adaptation of computational intelligence into this
problem is expected to widen the capabilities of this technique into another new application domain.

2. Problem Formulation

The objective function for this optimization problem is adapting the desirability function
by Derriger and Suich [13]. Desirability function is a statistical technique for the simultaneous
optimization of several response variables or output [14]. This function is able to address the problems
of having to combine multiple independent variables (input). Instead of having to optimize each
of the independent variables, this function could merge them into a single value of the desirable
combination of properties. There are three response types of individual desirability functions that
could be transformed into a single desirability value. They are the minimization, maximization and
“target is best” functions. For the minimization function, the estimated output is expected to be smaller
than the upper bound, while for the maximization, the value of the estimated output is expected to
be larger than the lower bound. As for “target is best” function, the estimated output is expected to
achieve the particular target value. In this research, there are six deposition parameters which have to
be optimized and evaluated based on their suitable desirability functions. The parameters are expected
whether to be minimized, maximized or evaluated based on “target is best”. In this problem, the
setting values for oxygen flow rate and working pressure are expected to be minimized, while the
argon flow rate and substrate temperature are to be maximized. The RF power and deposition time
are evaluated based on “target is best” function. The minimization, maximization and “target is best”
functions are shown in Figure 1a–c respectively.



Computers 2016, 5, 12 3 of 11

Computers 2016, 5, 12 3 of 11 

   
(a) (b) (c) 

Figure 1. Desirability functions: (a) Minimization of output; (b) Maximization of output; (c) “Target 
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Based on Figure 1, zi is the input, d is the output, T is the target, L is the lower bound and U is the 

upper bound for the deposition parameters. The constant s and t are assigned to value “1” as it is 

expected that the desirability is increased in a linear manner. Table 1 shows the settings of target, 

lower bound and upper bound for each of the deposition parameters. The lower and upper 

boundsettings are based on capability of the RF sputtering machine, while the target settings are 

based on the best previous experimental result data. Different machines would have different 

limitations for lower and upper bounds and normally different source materials would produce 

different best experimental results that could be set as the targeted values. 

Table 1. Settings for Desirability Functions. 

No Deposition Parameter Lower Bound (L) Upper Bound (U) Target (T) 

1 RF power (watt) 10 450 200 

2 Deposition time (min) 1 240 60 

3 Oxygen flow rate (sccm) 0 100 - 

4 Argon flow rate (sccm) 1 100 - 

5 Substrate temperature (°C) 25 500 - 

6 Working pressure (mTorr) 1 50 - 

Each of the desirability value of the parameters, di would be combined into a compound 

desirability value, D. This optimization is to maximize the D value, as in Equation (1): 

D = (d1 × d2 × d3 × d4 × d5 × d6)1/6 (1) 

Based on Equation (1), d1, d2, d3, d4, d5 and d6 represent RF power, deposition time, oxygen, 

argon, substrate temperature and working pressure respectively. The individual desirability values 

from the process parameters are to be combined to obtain the compound D value. In this problem, 

the D value is identified as the objective function value. The inequality constraints for each of the 
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Figure 1. Desirability functions: (a) Minimization of output; (b) Maximization of output; (c) “Target is best”.

Based on Figure 1, zi is the input, d is the output, T is the target, L is the lower bound and U is
the upper bound for the deposition parameters. The constant s and t are assigned to value “1” as it is
expected that the desirability is increased in a linear manner. Table 1 shows the settings of target, lower
bound and upper bound for each of the deposition parameters. The lower and upper boundsettings
are based on capability of the RF sputtering machine, while the target settings are based on the best
previous experimental result data. Different machines would have different limitations for lower and
upper bounds and normally different source materials would produce different best experimental
results that could be set as the targeted values.

Table 1. Settings for Desirability Functions.

No Deposition Parameter Lower Bound (L) Upper Bound (U) Target (T)

1 RF power (watt) 10 450 200
2 Deposition time (min) 1 240 60
3 Oxygen flow rate (sccm) 0 100 -
4 Argon flow rate (sccm) 1 100 -
5 Substrate temperature (˝C) 25 500 -
6 Working pressure (mTorr) 1 50 -

Each of the desirability value of the parameters, di would be combined into a compound
desirability value, D. This optimization is to maximize the D value, as in Equation (1):

D “ pd1ˆ d2ˆ d3ˆ d4ˆ d5ˆ d6q
1/6 (1)

Based on Equation (1), d1, d2, d3, d4, d5 and d6 represent RF power, deposition time, oxygen, argon,
substrate temperature and working pressure respectively. The individual desirability values from
the process parameters are to be combined to obtain the compound D value. In this problem, the D
value is identified as the objective function value. The inequality constraints for each of the deposition
parameters are shown in Table 2.

Table 2. Inequality constraints for deposition parameters.

No. Constraints

1 10 ď power (watt) ď 450
2 1 ď time (min) ď 240
3 0 ď oxygen (sccm) ď 100
4 1 ď argon (sccm) ď 100
5 25 ď temperature (˝C) ď 500
6 1 ď pressure (mTorr) ď 50
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3. Brief Reviews

3.1. RF Magnetron Sputtering Process

Magnetron sputtering is a physical vapor deposition (PVD) technique which is widely applied in
thin film technology. This process is used for depositing quality thin films and surface modification [15].
The process is called “sputtering” due to the atoms ejection inside the machine chamber. This is due to
the bombardment of argon ions towards the target material. The transfer of kinetic energy produces
atoms of target material that would fly towards the substrate to be coated. The characteristics of the
thin layer formed on the substrate are depending on the deposition parameters such as power, gas
flow rates, deposition time, substrate temperature and pressure. Among applications that benefited
from thin film construction is electronic devices such as semiconductor, transistor, solar cell, led and
sensor [2]. Figure 2 shows the illustration of the magnetron sputtering process.
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Figure 2. Magnetron sputtering process.

3.2. Optimization of Sputtering Process Parameters Based on Computational Intelligence Techniques

Currently, the studies on the computational methods in the RF magnetron sputtering parameter
optimization problems are still limited and are at its early stage. Therefore, this review also includes
other types of PVD processes such as roll-to-roll continuous sputtering process, direct current (DC)
magnetron sputtering and unbalanced magnetron sputtering system. Table 3 shows the sputtering
process parameters optimization based on computational intelligence techniques from the previous
5 years. The table provides information on the type of process, the applied technique, the parameters,
the material used, result and the reference. The studies in this area have tested the older techniques
such as Artificial Neural Network (ANN), Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO). In few of the studies, ANN and GA have been integrated with statistical techniques: Taguchi and
Desirability function [11,14]. The optimization problems have involved different process parameters
and different materials such as ZrN, TiN and ITO. Based on Table 3, the overall results from the previous
studies have proven that the computational intelligence techniques are better than the conventional
approach. The results have proven that these techniques are promising and effective in solving the
process parameters optimization problems.
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Table 3. Optimization of process parameters based on computational intelligence techniques.

Process Type Technique Parameters Material Result Ref.

PVD process GA,
Taguchi

(1) Gas
(2) Chamber pressure
(3) Power input

Zirconium
nitride (ZrN)

Achieve higher
coating performance. [16]

PVD
Magnetron
Sputtering

PSO
(1) Nitrogen pressure
(2) Argon pressure
(3) Turntable Speed

Titanium nitrite
(TiN)

Acceptable
performance [5]

Unbalanced
magnetron
sputtering

GA
(1) Nitrogen pressure
(2) Argon pressure
(3) TurntableSpeed

Titanium Nitride
(TiN)

Reduce the
minimum value of
coating layer grain

size feature.

[17]

Roll-to-roll
continuous
sputtering

ANN, GA,
Taguchi,

desirability
function

(1) Chamber pressure
(2) Sputtering power
(3) Nitrogen flow rate
(4) Process line speed

Not stated
Performance is better

than traditional
approach.

[13]

DC magnetron
sputtering ANN, GA

(1) Thin film thickness
(2) Annealing
temperature

Indium thin
oxide (ITO) and
Aluminium (Al)

Results were well
matched with the
measured data.

[18]

RF magnetron
sputtering ANN, GA

(1) Thin film thickness
(2) Annealing
temperature

Ga-doped zinc
oxide (ZnO:Ga)

Effective method to
predict the desired
process condition.

[19]

4. Proposed Methodology

4.1. Experimental Data

In this research, the optimization involves randomly generated 100 agents or populations which
represent the deposition parameters combinations. The ranges of the parameters to be optimized are
shown in Table 4. The material being selected is zinc oxide (ZnO), due to its availability and popularity
in the material science community [20]. In material science, ZnO has been extensively investigated
based on the characteristics of the material itself that is able to produce good results for the production
of various applications.

Table 4. Ranges of deposition parameters to be optimized.

Deposition Parameters Ranges

RF power (watt) 50–500
Deposition time (min) 15–240

Oxygen flow rate (sccm) 0–100
Argon flow rate (sccm) 1–100

Substrate temperature (˝C) 20–500
Working pressure (mTorr) 1–50

4.2. GSA Optimization

GSA is inspired by the Newtonian law of gravity and motion [21]. Each agent is represented by
mass and is attracted to each other due to the gravitational force. Based on Equation (2), the active
mass, Mai, passive mass, Mpi and inertia mass, Mii are equals with the current mass, Mi. The mass Mi
is calculated based on Equations (3) and (4).

Mai “ Mpi “ Mii “ Mi, i “ l, 2, ...., N (2)

miptq “ fitiptq´worstptq/bestptq´worstptq (3)

Miptq “ miptq{Σj = 1, . . . , N mjptq (4)
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The algorithm controls its search accuracy based on the gravitational constant G. This is done by
initializing Go and alpha, α, at the beginning of the iteration, while time, t is increasing. Gradually G
would reduce over time due to the decrease of the exponential value [22]. Equation (5) shows how G is
calculated at iteration t:

Gptq “ G0e(-αt/T) (5)

The constant gravitational force G, is used in the evaluation of the force, F, as shown in Equation (6):

Fij
dptq “ GptqpMpiptqˆMajptq{Rijptq ` εqpxj

dptq´ xi
dptqq (6)

Fij
d(t) is the force acting on agent i from agent j at dth dimension and tth iteration. Mai and Mpi

are the active and passive gravitational masses respectively. Rij(t) is the Euclidian distance between
two agents i and j at iteration t, while ε is a small constant. xi

d and xj
d represents the positions of the ith

and jth agents in the dth dimension. The force F is determined in order to calculate the acceleration, a,
as shown in Equation (7):

ai
dptq “ Fi

dptq{Miiptq (7)

In the search space, the biggest mass will attract the smaller mass. In the end, the biggest mass
would have the slowest movement and its position represents the solution. The formulas for velocity,
v and position, x of each agent are shown by Equations (8) and (9) respectively.

vi
dpt ` 1q “ randiˆ vi

dptq ` ai
dptq (8)

xi
dpt ` 1q “ xi

dptq ` vi
dpt ` 1q (9)

The steps for implementing GSA to the process parameters optimization problem are as shown in
Figure 3.
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In order to obtain the best result, the parameters of GSA have been tuned several times. The final
parameter settings for GSA are as shown in Table 5.
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Table 5. Final parameter values for GSA.

Parameter Value

Number of agents 100
Gravitational constant, G 10

Alpha, α 15
Epsilon 0.0001

Iterations 200

5. Results and Discussion

The performance of GSA in this research was compared with that of PSO, GA, AIS and ACO.
These are the older and popular algorithms which are categorized into biological (GA and AIS) and
nature (ACO and PSO) inspired. They have been considered in the comparison mainly due to their
previous performances in solving various engineering parameter optimization problems. PSO was
selected due to its almost similar characteristics with GSA and its application in the similar type of
sputtering process [23–25], while GA was selected due to its adaptation in other type of sputtering
processes [26–28]. As for AIS and ACO, these algorithms have been adapted in various engineering
parameter optimization problems [29–32]. All of the algorithms were executed 30 times, with their
average fitness values and processing times recorded as shown in Table 6. Based on Table 6, GSA could
produce the highest mean fitness value of 0.8871, followed by GA (0.8657), PSO (0.6473), ACO (0.5553)
and AIS (0.4721). As for the mean processing times, GSA has obtained the slowest execution with
5.466 s for the 200 iterations. This is due to the exploration characteristic of GSA which calculates the
overall forces from all of the neighboring masses in the search space. This characteristic has affected
the computational time of GSA. Since the computational experiment is an offline process and has to
be conducted before the actual lab works, the time taken for algorithm’s processing time is not of
concerned for the manufacturers. However, it is important to measure the running time of the algorithm
in order to observe the computational cost taken in this particular problem. The computational time is
also a measure of performance of an algorithm.

Table 6. Analysis of fitness values and processing times.

Technique Fitness Values of Optimized Parameter Combination Processing Times (s)

Min Mean Max σ Mean

GSA 0.8871 0.8871 0.8871 0.0000 5.466
PSO 0.354 0.6473 0.847 0.1642 0.350
GA 0.8071 0.8657 0.8701 0.0315 0.726
AIS 0.0000 0.4721 0.8489 0.3525 0.484

ACO 0.5553 0.5553 0.5553 0.0000 0.634

In order to validate the performance of the algorithms, the actual laboratory experiments were
conducted to deposit thin films based on the parameter combinations obtained from each of the
algorithm. Table 7 shows the analysis of results on the electrical and optical properties of thin films
deposited based on the optimized parameter from GSA, PSO, GA, AIS and ACO. Conductivity is
one of the analyses for electrical properties, which measures the electrical current that flows through
a material. Meanwhile, band gap is the analysis for optical property, which measures the capability
of light to carry electrical energy through the material. Band gap is also referred to as the energy
difference between the top of the valence band and the bottom of the conduction band in insulators
and semiconductors.
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Table 7. Actual laboratory experimental results.

- Actual Laboratory Experiment Results

GSA PSO GA AIS ACO

Most optimized
parameter combination

(200, 60, 0,
45, 500, 7)

(200, 60, 5,
45, 400, 7)

(200, 59, 0,
45, 485, 7)

(200, 60, 5,
45, 500, 7)

(50, 60, 5,
45, 200, 7)

Fitness value 0.8871 0.847 0.8701 0.8489 0.5553

Conductivity (Sm´1) 13.2 5.46 7.68 5.78 0.00128

Optical band gap energy (eV) 3.28 3.12 3.24 3.31 3.24

Based on Table 7, the highest conductivity is achieved by GSA with 13.2 Sm´1, followed by
GA with 7.68 Sm´1 and AIS with 5.78 Sm´1. The highest optical band gap energy is 3.31 eV, which
is achieved by AIS. GSA, GA and ACO have obtained acceptable results of 3.28 eV and 3.24 eV
respectively for the optical band gaps. Based on the overall results, the thin film that has been
deposited based on GSA optimized parameter combination has generated the best electrical property
and acceptable result of optical property among others. In thin film fabrication, the specific values of
these electrical and optical properties are required by the manufacturers based on the end product
or the electronic components they are intended for. The electronic components could be sensors,
transistors, capacitors, LED, solar cells and other semiconductor devices. Based on Table 7, it could be
concluded that the result of the electrical property is highly influenced by the RF power and substrate
temperature parameters.

Figure 4 shows the convergence graph of GSA, PSO, GA, AIS and ACO which is based on the
average fitness values over iterations. Based on Figure 4, GSA, GA and ACO have reached their
optimum and have produced stable results earlier than PSO and AIS in these 200 iterations. However,
GSA and GA have generated higher fitness values compared to ACO. As for PSO and AIS, these
algorithms require more time to search for the best solutions in this particular problem. This can be
seen by the fluctuations of fitness values before they finally reached the optimum values. Based on
literatures, GSA could generate better and faster result compared to PSO and GA [22,27]. In GSA,
the heavier masses create slower motions of agents in the search space, which could lead to a more
precise local search. These bigger masses cause higher attractions of agents which contribute to faster
searching for the best result [21]. This could be seen in Figure 4, as GSA is able to reach higher fitness
value and has demonstrated a faster search for the best result compared to other algorithms.
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6. Conclusions

This research has adapted computational intelligence in the parameter optimization problem of RF
magnetron sputtering process. The adaptation of computational intelligence is expected to improvise
the conventional method of trial and error practice in the parameter optimization problem. In this
research, GSA has been proposed to solve the problem due to its acceptable performance in solving
various engineering optimization problems. In this research, compared to PSO, GA, AIS and ACO,
GSA is able to generate better fitness value of the process parameter combination. Based on the analysis
of results from the characterization of the thin films, GSA has been able to propose the optimized
parameter combination in order to produce the best electrical property and an acceptable optical
property. This computational experiment is expected to overcome the problem of having to conduct
repetitive laboratory experiments in order to obtain the most optimized parameter combination for
the thin film deposition. From the manufacturer’s perspective, the ability to optimize the process
parameters before the machine usage would save a lot of researchers’ time, the product’s material,
machine’s maintenance costs and could reduce rejected output results. Thus, the adaptation of GSA
into this problem could offer a more efficient and productive way of depositing quality thin film in the
fabrication process. Future work could test GSA with diverse sets of data to test its robustness and
accuracy. Enhancement on the algorithm’s original concept is also encouraged in order to improve its
execution time.
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