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Abstract: The aim of this paper is to present a mobile agents model for distributed classification
of Big Data. The great challenge is to optimize the communication costs between the processing
elements (PEs) in the parallel and distributed computational models by the way to ensure the
scalability and the efficiency of this method. Additionally, the proposed distributed method integrates
a new communication mechanism to ensure HPC (High Performance Computing) of parallel
programs as distributed one, by means of cooperative mobile agents team that uses its asynchronous
communication ability to achieve that. This mobile agents team implements the distributed method
of the Fuzzy C-Means Algorithm (DFCM) and performs the Big Data classification in the distributed
system. The paper shows the proposed scheme and its assigned DFCM algorithm and presents some
experimental results that illustrate the scalability and the efficiency of this distributed method.

Keywords: Fuzzy C-Means algorithm; parallel and distributed computing; distributed classification;
MRI Big Data analysis; Multi Agent System; mobile agent

1. Introduction

Computer science technologies have introduced several intensive data application-based complex
tasks in different domains (Internet of Things (IoT), cloud computing, data mining, Big Data analysis),
etc., in order to improve HPC (High Performance Computing).

Consider the large amount of data and the complex tasks that these applications have to process.
Their scalability and efficiency depends on their abilities to manage these considerations. They also
depend on the processing environment where they are deployed. For example, in the medical domain,
performing an application for MRI (magnetic resonance imaging) image cerebral analysis-based
clustering algorithms. It involves a wide number of data to be processed by this application and that
requires great processing power to achieve HPC.

Clustering algorithms are widely used in the medical field to analyze, and diagnose and detect
abnormal regions based on MRI image classification. However, these features require using high
performance computational models that grant the efficiency and the flexibility with the most complex
clustering algorithms such as the Fuzzy C-Means Algorithm. So, how can we implement these
requirements in parallel and distributed computational model-based distributed system? Consider the
great challenge of optimizing the communication cost in distributed computational models. We will
present a cooperative computational processing model that achieves these computational requirements.
This paper is organized as follows:

e  We provide the model of parallel and distributed computing where the distributed DFCM method
is assigned to be implemented (Section 3).
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e  We demonstrate that the DFCM method implementation-based mobile agents is promising for
Big Data classification (Section 4); and by implementing single program, multiple data (SPMD)
clustering applications (Section 5) as a distributed one, we ensure HPC.

2. Background

To highlight the aim of this paper, we start with a brief overview about the parallel and distributed
computational models [1] and their ability to perform clustering tasks on a large image D(w,h) where
w represents the width of the image and & the height of the image. We suppose that this image is
split into a set of (me x ne) elementary images Dj{j =1, ..., (me x ne)}. Performing a task T based on
intensive data Dj using a single machine can be a difficulttask and unreachable. So, in the classification
case the task T needed to be performed is split into two global tasks, one executed by the host node and
the second executed by all of the slave nodes in the computing grid. The data Dj will be distributed to
the nodes in order to perform a collaborative parallel and distributed classification. However, we need
to take into account the integrated computational model that ensures the classification management
and optimizes the communication cost between the nodes.

The multi-agent system (MAS) [2] is a distributed technology system composed of a set of
distributed agents which live, and cooperate, between each other using their intelligence and skills
indifferent environments in order to overcome complex challenges. There are several interesting
proposed models and methods based on this technology such as: in [3] the authors proposed a
method that parallelizes the procedure for detection of illegal consumers of electricity which can be
improved by the use of a distributed architecture based on multi-agent systems; and in [4] the authors
proposed a new model for automatic construction of business processes based also on this technology.
Additionally, in [5], the authors proposed a platform to facilitate the provision of home-care services
based on agent three layered architecture. In the HPC domain, the authors in [6] proposed the use of
this technology to improve the management, the flexibility, and the reusability of grid-like parallel
computing architecture, and in [7] the authors presented the improvement of the time efficiency of a
medical reasoning system based on a multi-agent architecture. Thus, how can the mobile agents be
both the promising solution for distributed clustering methods and ensure HPC?

Mobile agents have interesting skills, such as autonomy, mobility, and asynchronous
communication ability. They can communicate by sending asynchronous ACL (agent communication
language) messages between each other, which significantly reduces the communication cost in the
computational model. Thus, the mobile agents grant efficient communication mechanisms for HPC.

3. Parallel and Distributed Computational Model

3.1. Model Overview

The cooperative computational model where the proposed (DFCM) method is assigned to be
implemented is a parallel and distributed virtual machine based on mobile agents. This machine is
built over a distributed computing grid of size (me x ne) of mobile agents. In this grid (Figure 1), the
mobile agents are arranged on a 2D matrix (me x ne) as agent virtual processing elements (AVPEs)
according to SPMD (Single Program Multiple Data) architecture. Each AVPE (i j) is localized in row i
and column j and has an identifier AID (agent identifier) defined by AID = me x i + j. These AVPEs
emulate the PEs (processing elements) in a parallel computing grid. In this model we consider that the
asynchronous communication between the AVPEs by exchanging ACL messages have a great benefit
on reducing the communication cost involved by the PEs.
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Figure 1. A cooperative computational grid of size 4 x 4.

3.2. Cooperative Mobile Agent Virtual Element (AVPE) Model

The distributed classification is performed by the implementation of the proposed DFCM method
on a cooperative mobile agents team works model as illustrated in Figure 2. This model is composed of
the Team Leader agent and the team worker agents (AVPEs). When the DFCM program is implemented
in the model, the mobile Team Leader agent receives the MRI input image and splits it into (me x ne)
elementary images, as shown in Figure 2a. Then it deploys a set of AVPEs of size (me x ne), and
encapsulates the classification tasks and the elementary image per AVPE (Figure 2b). The AVPEs in
Figure 2c perform the distributed classification on their assigned elementary image and send the results
to their mobile Team Leader agent who, later in Figure 2d, computes the final results and assembles all
elementary segmented images in order to display the output image results of the classification.

MRI image input

Mobile Team
worker Agent

O

Moblle Team
leader Agent

1,
©

Classification Ouiputs

Figure 2. Computational model for DFCM classification overview.

4. Distributed Clustering Algorithm

4.1. Standard Fuzzy C-Means Algorithm

The well-known clustering algorithm named the fuzzy c-means (FCM) is proposed by Dunn [8]
and extended by Bezdek [9]. It is a clustering method that allows one pixel of the segmented image
to belong to two or more clusters, each one with a different membership degree between 0 and
1. The main goal of the FCM algorithm is to find the c-cluster centers (centroids) in the data set
X ={x1, x2, ..., xn} that minimizes the objective function given by the following equation:

c ¢ N

J(U, Vi, Vo, oo, Vo) = Y= > D ufid (v, x;) 1)

i=1 i=1j=1
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The membership matrix U has the properties:
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The standard FCM classification is achieved according to the following algorithm stages, which
are summarized in Figure 3.
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Figure 3. Standard fuzzy c-means classification stages.
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4.2. Distributed Fuzzy C-Means Algorithm

The distributed algorithm described in Figure 4 is implemented in the proposed model based on a
multi-agent system. The fuzzy c-means program is implemented according to SPMD architecture over
a 2D Mesh of size (me x ne). In this model each AVPE(a) ((a = 1 to NA), where NA = (me x ne) is the
number of AVPEs), is asked to perform the fuzzy c-means program using its assigned elementary image
and return its elementary results to the mobile Team Leader agent. This later computes the current
global class centers and newly distributes them. This process is repeated until the convergence of the
distributed algorithm. This DFCM program is performed according to the three global distributed
method steps:

DFCM Classification Stages

Team leader Agent Initialization

Initialization of the Mobile Team leader Agent by the input image &
values of me and ne

Grid Construction

Deployment of (me x ne) Mobile Team Worker Agents by the
Team leader Agent

@ Split the Input image into (me X ne) elementary images

Initialization of the Mobile Team worker Agents @
1
| Mobile AVPEs moving to the Agent Containers @
L 4
Fuzzy C-Means Classification
Encapsulate the classification task Encapsulate the classification task Encapsulate the classification task
and load the elementary image by the and load the elementary image by the and load the elementary image by the
Mobile AVPE 1 @ Mobile AVPE 2 @ Mobile AVPE NA @
>
2° Send the class centers to the Mobile AVPE 1...NA
|
Get the class centers from the Get the class centers from the Get the class centers from the message
message and execute the local class message and execute the local class and execute the local class
determination task by the AVPE 1 (e e determination task by the AVPE 2 (3¢) determination task by the AVPE NA :_:)
— —
Return the message with the Return the message with the Return the message with the
classification elementary results by classification elementary results by classification elementary results by
the Mobile the AVPE 1 the Mobile AVPE 2 Q_-:') the Mobile AVPE NA
—

Assembling the AVPE 1...NA elementary results and computing the
global class centers and the Objective Function J

No

No-Jden|<error
Yes

Request for the output image results to the Mobile Worker
Agent 1...NA

Send the output segmented image by Send the output segmented image by Send the output segmented image by
the Mobile AVPE 1 (;:J the Mobile AVPE 2 °o the Mobile AVPE NA
1

Assembling and displaying the segmented output image |

Figure 4. Distributed FCM algorithm organization chart.

Step1. Mobile Team Leader Agent Initialization
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In this step the Team Leader agent is initialized by the input MRI image and the values of me and
ne, to define the AVPE grid size (me, ne).

Step 2.  Grid Construction

The Team leader agent splits the input image into (me x ne) elementary images and deploys
(me x ne) AVPEs. Then, each AVPE(a) is initialized and migrates to its appropriate node to perform the
classification task on its elementary image.

Step 3. Fuzzy C-Means Classification

e Each AVPE(a) encapsulates the task and load its elementary image.
e For each iteration ¢
{ 1. The Team Leader agent sends the class centers to all the AVPEs.

2. Each AVPE(a) gets the class centers from the message and executes the local class
determination task.

3. Each AVPE(a) returns its classification elementary results, which consist of the following
terms: TE1(a,i), TE2(a,i), TE3(a), and Cardinal(a,).

where:

O  TE1(a,i) contains the result of the sum of (U™ x data) computed for each class center
i. This term is computed by:

pt
TE1 (a,i) = Z ul';‘x]- ®)
j=1
O  TE2(a,i) contains the result of the sum of (U™) computed for each class center i
computed by:
pi
TE2 (a,i) = ) ull (6)
j=1

O TE3(a) contains the result of the sum of (U™ x distance?) computed for all classes.
This term is computed by:

pi ¢
TE3 (a) = Z Z wj; d(v;, x;) (7)

j=1i=1

O  Cardinal(a,i) contains the result of the sum of pixel membership for each class
center i. This term is computed by:

Cardinal (a,i) = Z ujj (8)

O  pi: Number of pixels of the elementary image of the AVPE(a).
4. The Team Leader agent performs these three sub tasks: assembling the elementary

results, computing the new class centers, and computing the objective function J;.

O  Assembling the elementary resultsThe Team Leader agent receives the
elementary results (TE1(a,i), TE2(a,i), TE3(a), Cardinal(a,i)) from each AVPE(a)
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and assembles them in order to compute the global values (GTE1(i), GTE2(i),
GTE3(i), GC(7)), respectively, by the given equations:

NA
GTEL (i) = ). TEl (a,i) 9)
a=1
NA
GTE2 (i) = ). TE2(a,i) (10)
a=1
NA
GTE3 (i) = > TE3(a) (11)
a=1
NA
GC (i) = ), Cardinal (a, ) (12)
a=1

where:

B GTE1() is the global value of TE1(a,i) over the AVPEs of the grid.

B GTE2(i) is the global value of TE2(a,i) over the AVPEs of the grid.

B GTE3(i) is the global value of TE3(a) over the AVPEs of the grid.

B GC() is the global value of Cardinal(a,i) over the AVPEs of the grid.

O  Computing the global class centersThe Team Leader agent gets the computed
global values (GTE1(i), GTE2(i)) to compute the new class centers V; by the
following equation:

~ GTEI1 (i)

vie 22 W
'T GTE2()

(13)
O  Computing the objective function J;:The Team leader agentgets the global value
of GTE3(i) to compute the objective function given by the following equation:

Jt= ch GTE3 (1) (14)
i=1

5. The Team Leader agent tests the condition of the algorithm convergence
(1Tt = J—1) | <Egn).
} // End of iteration ¢
e The Team Leader agent requests to each AVPE(a) the segmented elementary image.
e Each AVPE(a) sends the segmented elementary image result to the Team Leader agent.
e The Team Leader agent assembles the segmented elementary images and displays the
segmented output image.

5. Distributed Environment and Results

5.1. Distributed Environment Communication Mechanisms

A distributed computing environment, as illustrated in Figure 5, presents how the proposed
method can perform the distributed programs thanks to the several mobile agent skills: mobility,
autonomy, adaptability, and asynchronous communication. To illustrate the main idea of this
contribution we present in Figure 6 an example of 2D mesh of size (4 x 4). Each AVPE in the
grid computing has an agent message queue. When the Team Leader agent sends the computing
data to their AVPEs team, the messages are stored in their queues. Thus, the AVPEs and the Team
Leader agent can perform their assigned tasks and communicate between each other without the need
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of acknowledgments. Assume that each AVPE(a) needs to check the data in its queue and manage
the computing time and the communication time. In [10], the authors implemented a distributed
c-means method DCM in a distributed environment that includes an excellent agent communication
management mechanism. This mechanism ensures asynchronous communication between the agents,
which significantly reduces the communication cost and improves HPC. Thus, this mechanism is
integrated in the proposed DFCM model to implement a scalable and efficient DFCM method.

Distributed Platform Main Container | |Host Container| |Free Container @

run() i : ; Team leader agent  Team worker agent

run i ' i
(;) = deploy Team leader agent -

| initialization
run() = ] !
deploy Team worker agents
i T
fdolvlove(} | |n|t|a||.zailon

. send initial class centers:

‘ " doClassification()
. send elementary results ==———'

cofrlpule gIEJbaI results

alt |y Jt-Jit-1)>Eth © send new clss centers_:

uu:;m@m 5 send request forimage results

send elementary output reéuits

I :
display the outputimages
= '

Figure 5. Sequence diagram for DFCM on a cooperative multi-agent model.

Parallel & Distributed Grid Computing

E AgentMessage Quene M0: Host machine 1, M2, M3: Worker machines

Figure 6. Agent asynchronous communication mechanisms in a 2D mesh (4 x 4).

5.2. Cooperative Multi-Agent Middleware

JADE (Java Agent DEvelopment) [1] is a middleware for developing the distributed multi-agent
system (MAS), which is based on JAVA. It supports the agent asynchronous communication
mechanisms by using the ACL messages according to the FIPA-ACL message specifications [1].
The cooperative DFCM model is implemented on a parallel and distributed virtual machine based on
mobile agents according to the architecture in Figure 7.

The classification of the MRI image is performed on this platform by applying this middleware.
It creates the main components of this model, which are:
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(1)  The host container: this is the second container which is started in the platform after the main
container, where the mobile team leader agent is deployed in order to perform its tasks in the grid.

(2)  The agent containers: these are the containers that are started in the platform, where the mobile
team worker agents will move to perform their tasks.

Parallel and Distributed Virtual Machine

Cooperative and Intelligent Grid Computing

...........................................................

Main Container

T 950 | Fl=@) |
i EHO| [IRalEO| |

JADE MIDDLEWARE

Figure 7. Multi-agent middleware overview.

5.3. Implementation and Results

The proposed DFCM algorithm is implemented in this model for MRI medical image analysis.
To do so, we choose two cerebral MRI images: brain MRI image (Img1) in Figure 8 and an abnormal
brain MRI image (Img?2) in Figure 9. Each image in Figure 8a is encapsulated on the team leader
agent as an input image in order to be split into elementary images, as in Figure 8b. At the end
of the classification process these images will be segmented into c output images (Figure 8c—e) that
correspond, respectively, to the grey matter, the cerebrospinal fluid, and the white matter. The same
algorithm is performed for the second image of Figure 9a to detect the abnormal region.

(a) Input Image (b) Elementary Images

\\

Classification Output Images

(c) Grey matter  (d)Cerebrospinal fluid (e)White matter

Figure 8. Classification results by the elaborated DFCM model implementation for Img1.
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Figure 9. Classification results by the elaborated DFCM Model implementation for Img2.

To illustrate the effectiveness features of the implementation of the FCM program in this model,

we present the proposed five cases studies:

)

@

®)

Dynamic convergence of this program for the MRI image (Img1) with two different class center

initializations:

(@)

(b)

(c1,¢2,¢3)=(1.1, 2.5, 3.8): in Table 1 and in Figure 10, where we see clearly the dynamic
convergence of the algorithm to the final class centers (c1, 2, c3) = (1.100, 97.667, 146.569).
The convergence is achieved after 13 iterations.

(c1, c2, c3) = (140.5, 149.5, 150.5): the algorithm converges to the same final class
centers (cl, c2, c3) = (1.100, 97.661, 146.566) after 20 iterations, as illustrated in Table 1
and Figure 11.

Dynamic convergence of this program for the MRI image (Img2) with two different class center

initializations:

(@)

(b)

(c1,¢c2,c3,c4,c5) =(1.5,2.2,3.8, 5.2, 8.6): in Table 2 and in Figure 12 we see clearly the
dynamic convergence of the algorithm to the final class centers (c1, 2, c3, c4, c5) = (1.742,
67.587,101.709, 238.983, 170.040) after 35 iterations.

(c1, c2, c3, c4, c5) = (140.5, 149.5, 150.5, 220.2, 250.5): where the algorithm converges to the
same final class centers (c1, 2, c3, c4, c5) = (1.764, 67.967, 101.858, 239.140, 170.560) after
26 iterations, as shown in Table 2 and Figure 13.

The DFCM classification time according to the number of agents involved in the classification for
the initial class centers (c1, 2, c3, c4, c5) = (1.5, 2.2, 3.8, 5.2, 8.6) for Img1, and (c1, c2, 3, c4, c5) =
(1.5,2.2,3.8,5.2, 8.6) for Img2. In Figure 14 we see clearly that from 16 agents the classification
time of the two images achieves minimum values of 108 ms for Img1 and of 278 ms for Img2.
Thus, it is considered as the appropriate number of agents needed to classify these images.

A detailed comparison between the FCM and the DFCM methods is made in Table 3 for each image.
Both methods converge to the same values of the class centers. We see clearly that the classification

time of the DFCM method corresponds to the FCM for one agent and by adding the number of agents
the DFCM method performs a reduced classification time which achieves its minimum values from
16 AVPEs for both images.
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(4) The DFCM classification time according to the number of nodes in the grid computing by
considering 16 AVPEs for the two images (Imgl) and (Img?2). In Figure 15, we see clearly that
for both images the classification time achieves a gain of time of about 78% using eight nodes,
compared to using just one. The corresponding classification data size for each node is illustrated
in Figure 16.

(5) The speedup S(DFCM), its relative speedup Sr(DFCM), and the efficiency of the DFCM
classification method are presented, respectively, in Figures 17 and 18, compared to the sequential
FCM method. We perform interesting maximum relative speedups of 86.760% for Img1, which
corresponds to again of 7.55, and of 82.372% for Img2, which corresponds to again of 5.67, by
using 32 AVPEs. The speedup S(DFCM) and the relative speedup Sg(DFCM) are illustrated in
Table 4 and computed, respectively, by the following equations:

T (FCM
S (DFCM) 5 = T(D;CM))NA (15)
Sg (DECM)ja = T(FEM) ~ T(DECM)np 4y (16)

T (FCM)
where:

O  T(FCM)is the classification time of the FCM method which corresponds to one agent; and
O  T(DFCM) is the classification time of the DFCM method which corresponds to the number NA
of agents.

Table 1. Different states of the distributed fuzzy c-means (DFCM) algorithm forImg1 classification
starting from different class centers initialization.

Initial Class Centers Final Class Centers
Case Number of Iteration
C1 C2 C3 C1 C2 C3
CASE 1 1.1 25 3.8 1.100 97.667  146.569 13
CASE 2 140.1 149.5 150.8 1.100 97.661  146.566 20

Table 2. Different states of the distributed fuzzy c-means (DFCM) algorithm for Img2 classification
starting from class centers initialization.

Initial Class Centers Final Class Centers
Number of Iteration
Case C1 C2 C3 C4 C5 C1 C2 C3 C4 C5
CASE 1 1.5 22 3.8 5.2 8.6 1.742 67.587 101.709 238.983 170.040 35
CASE 2 140.5 149.5 150.5 220.5 250.5 1.764 67.967 101.858 239.140 170.560 26

Table 3. FCM and DFCM method comparison for classification of two images (Imgland Img2).

FCM Method DFCM Method
Classification Classification Number of Agents Classification Classification
Time (Img1) (ms) Time (Img2) (ms) v & Time (Img1) (ms) Time (Img2) (ms)
778 1509 1 778 1509
- - 2 334 860
- - 4 200 516
- - 8 144 371
- - 16 108 278
- - 32 103 266
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Table 4. Speedup of the distributed fuzzy c-means (DFCM) method for Imgl and Img2.

Number of Asents Sr(DFCM) S(DFCM) Sr(DFCM) S(DFCM)
8 (Img1) (%) (Img1) (Img2) (%) (Img?2)

1 0 1 0 1

2 57.069 2.32 43.008 1.75
4 74.293 3.89 65.805 292
8 81.491 54 75.414 4.06
16 86.118 7.2 81.577 542
32 86.76 7.55 82.372 5.67
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Figure 10. Dynamic convergence of the class centers starting from class centers (c1, c2, c3) = (1.1, 2.5, 3.8).
(a) Class centers; and (b) Error of the objective function.
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Figure 11. Dynamic convergence of the class centers starting from class centers (c1, c2, c3) = (140.5,
149.5, 150.5). (a) Class centers; and (b) Error of the objective function.
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Figure 12. Dynamic convergence of the class centers starting from class centers (c1, c2, c3, c4, c5) = (1.5,
2.2,3.8,5.2,8.6). (a) Class centers; and (b) Error of the objective function.
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Figure 13. Dynamic convergence of the class centers starting from class centers (c1, c2, c3, c4, c5) =
(140.5, 149.5, 150.5, 220.2, 250.5). (a) Class centers, and (b) Error of the objective function.
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Figure 14. Time of DFCM classification for each MRI image depending on the number of agents with
initial class centers (cl, 2, c3) = (1.1, 2.5, 3.8) for Img1, and (c1, c2, ¢3, c4, c5) = (1.5,2.2, 3.8, 5.2, 8.6)
for Img2.
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Figure 15. DFCM Classification time depending on the number of nodes in the grid using 16 AVPEs
for Img1 with initial class centers (c1, 2, ¢3) = (1.1, 2.5, 3.8), and with initial class centers (c1, 2, c3, c4,
c5) =(1.5,2.2,3.8,5.2, 8.6) for the Img2.
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Figure 16. DFCM classification data depending on the number of nodes in the grid using 16 AVPEs
(a) for Img1; (b) for Img?2.
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Figure 17. Relative Speedup of DFCM Classification depending on the number of AVPEs and with
initial class centers (c1, 2, c3) = (1.1, 2.5, 3.8) for Img1, and (c1, c2, 3, c4, c5) = (1.5,2.2, 3.8, 5.2, 8.6)
for Img2.
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Figure 18. Efficiency of DFCM classification depending on the number of AVPEs and with initial class
centers (c1, c2, c3) = (1.1, 2.5, 3.8) for Img1, and (c1, c2, c3, ¢4, c5) = (1.5, 2.2, 3.8, 5.2, 8.6) for Img2.

6. Related Work

There are several inspiring parallel methods of the clustering algorithm on massively parallel
computational models which have demonstrated interesting clustering results. In [1], the authors
proposed a parallel FCM implementation on a parallel architecture, based on dividing the computation
among the processors for image segmentation analysis. Their proposed method presents a great
improvement of the performance and the efficiency of the image segmentation as compared to
the sequential implementation. In [11], the authors proposed a parallel FCM implementation for
clustering large datasets, which is designed to run on a parallel SPMD architecture using MPI tools.
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Their proposed implementation achieves ideal speedups as compared to an existing parallel c-means
implementation. The classification becomes the main core of wide number of researchers in different
fields: in [12], for decision tree induction, fuzzy rule-based classifiers [13,14], neural networks [15,16],
and clustering [1,17].

The different parallel methods differ from each other by the computational models which are
assigned to be implemented. Their implementations depend on the parallel computing strategies [18]
used and that present some challenges: high cost of the machines, limitation on the test and validation
of new algorithms, and they also involve a great number of computational resources that increases the
communication cost between the processors in grid computing. The proposed distributed method
within this contribution grants a scalable and efficient implementation on computational model-based
mobile agents. In [10] the authors improved the parallel c-means method [19] by the use of the
distributed one.

So, thanks to these several interesting works, the proposed DFCM method is implemented on a
scalable and efficient mobile agents model. The JADE middleware-based mobile agents model is the
easiest and the most suitable solution to implement this distributed method.

7. Conclusions

In this paper, we presented a distributed fuzzy c-means method (DFCM) and its application on
MRI image classification. This method is implemented on an SPMD model based on cooperative mobile
agents grid computing. This model implements the asynchronous communication mechanism, which
is based on exchanging ACL messages between the AVPEs. The results obtained by implementing this
program, related to the class centers convergence, the classification time, the speedup of the method,
and the efficiency, demonstrate that the proposed DFCM method can reduce the complexity of the
fuzzy clustering algorithms and, especially, the communication cost between the PEs. The mobile
agents abilities ensure the distributed performance keys that ensure HPC.
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