
computers

Article

A New Method of Histogram Computation for
Efficient Implementation of the HOG Algorithm †

Mariana-Eugenia Ilas 1,* ID and Constantin Ilas 2

1 Department of Electronics, Telecommunications and IT, University Politehnica Bucharest,
Bucharest 060042, Romania

2 Department of Automatics and Computer Science, University Politehnica Bucharest,
Bucharest 060042, Romania; constantin.ilas@cs.pub.ro

* Correspondence: mariana.ilas@upb.ro; Tel.: +40-21-402-4618
† This paper is an extended version of our paper published in the 9th Computer Science & Electronic

Engineering Conference (CEEC), Colchester, UK, 27–29 September 2017.

Received: 5 January 2018; Accepted: 27 February 2018; Published: 1 March 2018

Abstract: In this paper we introduce a new histogram computation method to be used within
the histogram of oriented gradients (HOG) algorithm. The new method replaces the arctangent
with the slope computation and the classical magnitude allocation based on interpolation with a
simpler algorithm. The new method allows a more efficient implementation of HOG in general,
and particularly in field-programmable gate arrays (FPGAs), by considerably reducing the area
(thus increasing the level of parallelism), while maintaining very close classification accuracy
compared to the original algorithm. Thus, the new method is attractive for many applications,
including car detection and classification.

Keywords: HOG; histogram computation; SVM; classification; efficient implementation; algorithm
optimization; arctangent; FPGA; autonomous vehicle; driver assistance systems

1. Introduction

Perception algorithms for intelligent cars have been an important research topic for more than a
decade. Significant progress has been achieved [1–6] and such algorithms are used for both autonomous
car prototypes and for commercial driver assistance systems [4–6]. As is known [7,8], a video camera
is the preferred sensor (sometimes integrated with a 2D laser [9]) due to its cost. At the same time,
the support vector machine (SVM) classifier and the histogram of oriented gradients (HOG) as feature
extractor are the most popular solution for object detection and classification [10]. Since HOG is a
computationally intensive algorithm, it has been implemented on different platforms, such as graphical
processors (GPUs) and more recently on Field-Programmable Gate Arrays (FPGAs). The latter have
superior performance in terms of cost, speed, and power consumption [11,12]. All these aspects are
essential for commercial applications in general and in particular for enabling classification systems
that can work at high vehicle speed.

We believe that optimal implementations of the HOG algorithm can only be achieved if its
parameters are properly selected [13] and if the algorithm is modified so that it fully enables an FPGA
implementation which has a reduced area, computation time, and power consumption compared with
the implementation of the classical HOG. Therefore, our main contribution presented in the paper is a
new method for histogram computation which is simpler than the original one and can be implemented
using less FPGA resources, thus allowing a higher degree of parallelism and, consequently, a higher
speed. We already introduced some algorithm simplifications [14] which we will use in this paper as
part of a new histogram computation method. The main challenge for the new method, and for all
algorithm modifications in general, is to preserve an overall classification accuracy which is similar to

Computers 2018, 7, 18; doi:10.3390/computers7010018 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0002-7915-1842
http://dx.doi.org/10.3390/computers7010018
http://www.mdpi.com/journal/computers

Computers 2018, 7, 18 2 of 16

that obtained when the classical HOG is used for feature extraction. We applied the new histogram
computation method for car classification, which is an important application area, and less covered
than others, but the method can be used for any of the numerous classification applications in which
SVM and HOG are employed.

The paper is an extended and reviewed version of [1] and is organized as follows: in Section 2,
we present some of the existing literature related to the HOG algorithm, including previous
simplifications attempts and previous HOG implementations in FPGAs; in Section 3, we briefly
review the classical HOG algorithm and the preliminary simplifications which we will use in the new
computation method; in Section 4, we will discuss the new method; and in Section 5, we will present
the results of its testing.

2. Related Work

The HOG algorithm was introduced in [15]. The authors performed a thorough analysis of how
it can be used to extract image features, for an SVM classifier, for a pedestrian detection application.
Their analysis includes the impact of different parameters on the overall classification performance.
As we showed in [13], some of their findings can be directly used for any application (this includes,
e.g., the number of bins, the type of normalization) while others, such as the cell size, the final descriptor
representation, etc., may depend on the application.

Several attempts have been made to reduce the complexity of the classification process, including
some proposals for reducing the HOG computation time.

In [16] is shown how the overall prediction time can be decreased, exploiting the fact that for
positive (car) images, the HOG, represented in 8 bins, is symmetrical. Because the dimension of the
feature vector is reduced to half, this also reduces (a little) the HOG computation time, as well as the
classifier time. The authors show a reduction of about 30% of the total computation time, but without
detailing the test conditions. In our opinion, the limitation of this method is that it can be applied only
to front/rear views of cars, for which image symmetry exists. Also, in our opinion, for large sliding
windows (compared to car size), the image and also the HOG are less symmetrical, due to the impact
of other objects in the window.

In [17] is discussed another particular approach for faster car detection. It is based on the idea of
detecting the shadow region under the cars. Again, it works when the car is seen from the front or
rear. A relatively simple threshold technique is applied to identify the shadow regions in the image.
An SVM with the HOG approach is then used to classify these regions as being (or not) car shadows.
The method seems very interesting, due to the fast processing: the HOG is extracted from relatively
few, small regions of the initial image, instead of the entire image. The authors claim a detection rate
similar to or slightly better than other methods. However, as limitations, we think that it can be applied
only in daytime, it depends on lighting conditions and relative sun position, and it is possible only
from the front or rear view.

The literature also contains reports on HOG implementations in FPGAs, especially for pedestrian
detection [18–29]. For us, it is interesting to note that they also include some previously introduced
simplifications of HOG calculation, which are mostly implementation-related simplifications, rather
than intrinsic algorithm changes. Such changes include the usage of lookup tables (LUTs) for obtaining
the square root, replacement of several multiplications by shifting operations, as well as using for
normalization the closest power-of-two number [21,22]. In [18] the authors present in detail the
implementation of HOG and SVM, for person detection, on an FPGA. One new aspect presented in
the paper is the effect of fixed-point number representation on the system precision. The conclusions
are that a fixed-point representation of 18 bits or more introduces no error (compared with the
floating-point reference implementation); for 17–12 bits, the introduced error is relatively small (less
than 2% absolute error); whereas for 11 bits it goes over 2%. The authors select 13 bits for their final
implementation. However, according also to [13], we believe that the number of bits in the fixed-point
implementation does not have to be the same for all algorithm steps. Consequently, we believe it is

Computers 2018, 7, 18 3 of 16

important to evaluate the impact of a different number of bits at each computational stage to select the
optimal combination.

In [23,24] the authors propose a very efficient implementation of the HOG and SVM algorithm,
for person detection, initially in an FPGA [23], then on an Application Specific Integrated Circuit
(ASIC) [24]. Their approach is focused on allowing maximum parallel implementation of the algorithms
in hardware. For this, several algorithm simplifications are introduced. Thus, on the HOG side,
the histogram extraction on the overlapping blocks is no longer performed. The most interesting
proposal seems to be the execution of the SVM after the HOG for each block is calculated, and not at the
end, for the entire HOG descriptor. In order to do so, the descriptor for each block is multiplied with the
SVM coefficients, and the new result is then accumulated. The authors report a massive improvement
in the speed of computation, especially on the SVM side. For the HOG itself, the improvement in speed
is about 4 times, compared with a standard implementation with little parallelism. Our simplified
method can be applied together with that presented in [23,24]. In fact, according to [24], the histogram
calculation in HOG the authors implemented in the FPGA (in [23]) still took around 58% of the
entire power consumption of the chip. To resolve the issue of the relatively high power consumption,
the authors proceeded to the ASIC implementation [24]. In fact, our simplified HOG algorithm
addresses exactly the same issue, decreasing the histogram calculation in HOG.

In [25,26] the authors present another efficient implementation of the same suite of algorithms,
still for person detection, using an FPGA, a CPU, and a GPU in a pipeline architecture. In terms of the
HOG itself, which is performed on the FPGA, the authors replace the arctangent computation with a
suite of multiplications and comparisons. In this way they also avoid computing the division between
the two gradient projections. The same approach is used also in [27]. In our approach, one of the
simplifications we introduce addresses the same issue of the inefficient arctangent implementation on
FPGA, but we compute the gradient slope and instead of a suite of inequalities we have an automatic
bin allocation, implemented very effectively by using conventional degrees, so that the couple of
multiplications and divisions needed are replaced with shifting operations. The authors do not present
a detailed analysis of the speed gained and performance degradation due to this approach, but in [25]
they report an overall 6% increase in the miss rate compared with the original algorithm. In our case,
we detail these aspects for each of the simplifications we introduced.

In [29] the authors’ focus is, among others, to accelerate the HOG computation by using
approximations of the arithmetic operations throughout the algorithm while keeping a limited error at
each step. In this way, the final result is comparable with the original one within a controlled error
interval and the classification performance is practically identical. By contrast, our goal is to simplify
the most time-consuming blocks of the algorithm, thus achieving a superior level of parallelism
(and, hence, speed) at the cost of a relatively small performance degradation.

Compared to previous work, which mostly focuses on efficient hardware architectures and also
involves some limited HOG algorithm changes, our contribution is the proposal of a new, simpler
histogram computation method. This method was conceived so that an optimal FPGA implementation
of the HOG feature detector can be achieved. In this paper, we present results obtained for applying it in
a car classification system, which is an area less investigated than pedestrian classification. Our results
detail the performance of the new method compared with histogram computation in the original HOG.

3. Classical HOG Algorithm and Preliminary Simplifications

Before we present the new histogram computation method, we briefly review the classical HOG
algorithm and also some preliminary simplifications we already introduced [14]. This will facilitate
understanding of the new method and the reasons why we introduce it. Also, one of the simplifications
introduced before, related to the gradient magnitude allocation to the histogram, will be used as a part
in the new method.

Computers 2018, 7, 18 4 of 16

3.1. Classical HOG Algorithm

As is known [15], the main steps of the algorithm are as follows:

• Computation of x and y gradients for each image pixel;
• Based on the gradients, computation of gradient magnitude and angle (using the arctangent) for

each image pixel;
• For each cell of a specified dimension (CellSize), allocate the gradient magnitude in a predefined

bin (from a total of NBins) depending on the gradient angle. For example, if NBins = 9, each bin
will span over 20 degrees: [0, 20), [20, 40), . . . , [160, 180]. In general (for all angles which are
not exactly in the center of a bin (e.g., 10, 30, etc.)), in the classical approach, the magnitude of
the gradients is allocated proportionally to the respective bin and the adjacent one. For instance,
a gradient with an angle of 25 degrees, which is closer to the center of Bin 2, will have 75% of its
magnitude allocated to Bin 2 and 25% to Bin 1;

• In this way, for each cell is obtained a histogram of oriented gradients, with NBins, and the
magnitude of each bin is calculated by adding the interpolated gradient magnitudes of all
corresponding pixels;

• Several cells can be grouped together within a block (of BlockSize dimension) and the magnitudes
of all histograms are normalized within this block. The normalized values become part of the
final algorithm output. All possible combinations of blocks (of given BlockSize) are considered,
including overlapping ones.

As can be noticed, the most computationally intensive steps of the algorithm are, particularly for
an FPGA implementation, the arctangent, the cell histogram computation, and the block grouping and
normalization. In this paper, we address the first two computationally intensive steps.

3.2. Preliminary HOG Simplifications

Before presenting the new histogram computation method, we will briefly review some
simplifications we recently proposed [14]. These will be used in the new computation method.

The first simplification involves the bin span representation, and is based on replacing the physical
degrees used in the classical algorithm with values which will facilitate the arithmetic operations.
We will call these values conventional degrees. Thus, the 0–180◦ interval used in the classical algorithm
for creating the histogram will be replaced by the 0–144 conventional degrees interval. The benefit
of this representation is that when using NBins = 9, which was demonstrated by [15] as an optimal
choice, the bin span of 20◦ is replaced by one of 16 conventional degrees. By this change, several
multiplications and divisions will be replaced by shifting operations. As discussed in [13], this change
does not modify at all the HOG algorithm output and hence does not affect the classification accuracy.

The second simplification, presented also in [14], consists of eliminating the interpolation between
bins. For the sake of simplicity we will discuss it using physical degrees but, of course, in the actual
implementation it is worth using the conventional degrees mentioned above. According to this
simplified approach, a gradient with the angle of, e.g., 22◦ would be fully assigned to Bin 2 (within
the interval 20–40◦), instead of interpolating its magnitude between Bin 1 and Bin 2 as in the classical
algorithm. As it can be easily seen, this significantly reduces the algorithm complexity, because
it removes all the arithmetic and control operations requested by the interpolation. In [14] we
demonstrated that, from a theoretical point of view, although the HOG output will be completely
different, this change should not necessarily affect the classification algorithm accuracy. Based on the
tests performed, we showed that in reality the precision–recall curves are slightly different compared
with those of the original algorithm, in some regions being slightly better. Overall, the conclusion is
that this simplification maintains a classification accuracy which is very close to that of the original
algorithm and, due to its important positive impact on implementation complexity, it should be used
in most applications [14].

Computers 2018, 7, 18 5 of 16

In this paper, we will use these two simplifications together with a solution for replacing the
arctangent computation, thus obtaining a new histogram computation method which we will show to
be considerably more efficient to implement than the computation used in the classical HOG.

4. New Histogram Computation Method

As seen in Section 3, the classical histogram computation is based on two steps, both highly
computational intensive: first, the angle is computed for each gradient vector (using the arctangent
function and the projections of the gradient on x and y axis); then, based on angle, the magnitude of
the gradient is allocated to the respective bins. The main bin is the one containing the determined
angle of the gradient, but the magnitude is interpolated between this bin and one of its neighbors,
depending on the value of the angle compared to the center of the main bin.

Our new histogram computation method replaces both these steps with simpler ones which are
much more efficiently implemented in hardware.

4.1. Replacing the Arctangent with Slope

As mentioned above, especially in a hardware implementation, the arctangent computation is one of
the blocks requiring many resources, especially in terms of area. On our Artix-7 (XC7A200T-1SBG484C)
evaluation board, the Cordic IP used for computing the arctangent uses 386 LUTs and 353 registers
and is, in all possible configurations, at least twice the area of a divider.

To overcome this problem, a possible solution is to replace the arctangent computation with an
approximate one. As is known, there are several approximations of the arctangent proposed [30].
In general, these approximations still require multiple operations and/or several divisions.

Instead of approximating the arctangent, we propose to replace it with the slope computation.
Indeed, the role of the arctangent computation within the original algorithm is to allow the allocation
of each gradient within the right bin, based on the gradient angle determined by the arctangent.
We propose, instead of the angle, to use the slope of the gradient for this purpose. As is known,
the slope can be computed by the ratio y/x, where y and x are the gradient projections on the Cartesian
coordinates. These projections are directly obtained when the gradients are computed.

4.1.1. Case of y and x Strictly Positive (Angles in the First Quadrant)

To begin, we will consider the situation when both y and x are strictly positive numbers. There are
two important differences between the arctangent and the slope, if we consider them both as functions
of (y, x). On one hand, the arctangent is bounded to π/2, whereas the slope is unlimited. On the other
hand, for practically every interval, the variation of the slope is much more rapid than the variation of
the arctangent.

To deal with the first difference, we can saturate the slope to a certain value. We can select this
value to be numerically equal to π/2 (for the sake of consistency with the arctangent output, even if
for the arctangent this is measured in radians, whereas for slope it is a nondimensional value).

Therefore, we will define the limited slope (ls) as

ls =

{
y
x , if y

x < π
2

π
2 , if y

x ≥ π
2

(1)

However, in this case, the more rapid variation of the slope could lead to a reduced differentiation
of values at one of the interval limits. For instance, taking different values for (y, x), we can compare the
output of the two functions. The results are shown in Table 1, where we also included the arctangent
conversion to degrees and the corresponding conversion of ls(y, x) to the same numerical interval,
as well as the main bin containing the respective values. As it can be seen, for all ratios y/x > π/2,
the output of the ls function is saturated; hence, all values will be allocated to Bin 5. This is numerically
equivalent to considering all angles larger than 57◦ as being in the same bin. Clearly, this is an

Computers 2018, 7, 18 6 of 16

important problem, because not being able to differentiate angles larger than 57◦ is expected to have
an important impact on the classifier accuracy.

Table 1. Different slope values and the corresponding values of arctangent and ls function, together
with the resulting allocation bins.

y/x Ratio [-] Atan(y, x) [rad] ls(y, x) [-] Atan(y, x) [deg] ls × 180/π [-] Atan Bin ls Bin

0.33 0.32 0.33 18.43 19.09 1 1
0.5 0.46 0.5 26.56 28.64 2 2
1 0.78 1 45 57.3 3 3

1.57 1.00 1.57 57.52 90 3 5
2 1.1 1.57 63.43 90 4 5
3 1.25 1.57 71.56 90 4 5
4 1.32 1.57 75.96 90 4 5
7 1.43 1.57 81.86 90 5 5

10 1.47 1.57 84.28 90 5 5

There are several possibilities to deal with this problem. Our approach (chosen for compatibility
reasons) is to keep the saturation at π/2, but decrease the variation of the limited slope (ls) function so
that the saturation occurs only for larger values (e.g., for values for which the arctangent values are
larger than 80◦, which correspond to allocation into the last bin). In this case, the function ls becomes

ls =

{
y
xk , if y

xk < π
2

π
2 , if y

xk ≥ π
2

(2)

with parameter k > 1. For the y/x ratios considered above, we can see that a constant k = 4 is acceptable
as it maintains an output different than 90◦ for all angles lower than around 80◦ and saturates only if
the y/x ratio is larger than around 6. Because we consider grey images represented in 8 bits (with each
pixel within [0, 255]), when the gradients are computed, they are in the general case in the [−255, 255]
interval. However, considering only the positive gradients, they will be within [0, 255]. Because of
this, y/x ratios larger than 6 can only happen if x is smaller than approximately 42◦. On the other
hand, if x is large, using k = 4 will lead to a similar reduced differentiation, but around 0 (in the first
bin). Indeed, considering, e.g., x = 70, simple computation shows that all gradients with real angles
0–55◦ are all put in the same bin because the ls values are very small for all y < 100. Consequently,
the value of k has to be changed depending on x. In our implementations we generally considered the
following scheme for varying k:

k =


4, if x < 64
2, if 64 ≤ x
1, if x ≥ 128

< 128 (3)

One of the aspects to be investigated is if other values for k lead to better performance and also if
they depend on the training/test set.

4.1.2. General Case (Angles in All Four Quadrants)

For angles in the other three quadrants, the arctangent function provides as outputs (after
conversion to angles):

- angles within [90◦, 180◦], if y > 0, x < 0,
- negative angles within [0◦, −180◦], for y < 0.

The classical HOG algorithm can work with both signed and unsigned angles. Usually the
unsigned representation is preferable, as demonstrated in [14]; hence, the negative angles are converted

Computers 2018, 7, 18 7 of 16

to positive values by adding 180◦. Through this operation, an angle of, e.g., −10◦ is converted to
170◦. This makes perfect sense because the gradients with these two angles are on the same line
(which corresponds to an edge in the image) and the descriptor should depend on the lines/edges.
Therefore, the output of the arctangent, with this correction, will be in the interval [0◦, 180◦] when
expressed in angles. This is illustrated in Figure 1a, where gradients with negative angles (OA’ and
OB’) are represented by gradients on the same line (OA and OB) but with positive angles.

In our case, the ratio y/x depends on the signs of both y and x. Thus, for both y < 0 and x < 0,
the output of the limited slope is positive and identical with the output obtained for |y| and |x|.
This is acceptable for us because we obtain the same output for gradients on the same line, irrespective
of their placement in Quadrant I or III. Similarly, if x × y < 0, the output will be the same for both the
case when gradient is in Quadrant II and when in Quadrant IV.

Computers 2018, 7, x 7 of 15

when expressed in angles. This is illustrated in Figure 1a, where gradients with negative angles (OA’
and OB’) are represented by gradients on the same line (OA and OB) but with positive angles.

In our case, the ratio y/x depends on the signs of both y and x. Thus, for both y < 0 and x < 0, the
output of the limited slope is positive and identical with the output obtained for |y| and |x|. This is
acceptable for us because we obtain the same output for gradients on the same line, irrespective of
their placement in Quadrant I or III. Similarly, if x × y < 0, the output will be the same for both the
case when gradient is in Quadrant II and when in Quadrant IV.

(a) (b)

Figure 1. Gradient conversion to two quadrants: (a) classical histogram of oriented gradients (HOG)
approach: gradients OA’ and OB’ are converted to OA and OB, respectively, and represented by the
angles which are in the 0–180° interval; (b) new computation method: gradients OA’ and OB’ are
converted to OA and OB, respectively, and represented by the slopes s1 and s2 which are in the [−90,
90] interval.

Therefore, the simplest way is to consider the same expression for the limited slope function,
irrespective of the signs of y and x. With the corresponding limitations, the function will therefore be

ݏ݈ = ۔ۖەۖ
ۓ ݇ݔݕ , if 2ߨ− < ݇ݔݕ < 2ߨ2ߨ , if ݇ݔݕ ≥ 2ߨ−2ߨ , if ݇ݔݕ ≤ 2ߨ−

 (4)

Its output will therefore be in the interval [−π/2, π/2], or, equivalently, within [−90, 90]. This is
illustrated in Figure 1b, where gradients with negative x (OA’ and OB’) are represented with
gradients on the same line (OA, OB) but with positive x. The slopes of these gradients (s1 and s2) are
either positive or negative depending on the sign of the y-axis projection. By adding π/2, we can
transform the output interval to one which is similar to that of the classical HOG.

It is important to note that the histogram produced by the new computation method is
completely different than that produced by the classical HOG. Indeed, for the same gradients, the
slope has in general a value which is completely different than that of the angle; hence, that gradient
will be allocated to a different bin than in the case of the classical HOG. Also, the bins of the
histograms are within a different interval than for classical HOG ([−90, 90] versus [0°, 180°]). This
means that the HOG output will be completely different. However, since this type of output will be
used consistently for both training and testing, the classifier will be able to work in a similar manner.
The exact performance will be determined by tests. For example, in Figure 2a,b we present cell
histograms calculated using the arctangent function and the limited slope function, respectively. In both
cases we used the classical allocation approach based on interpolating the magnitude between adjacent
bins.

Figure 1. Gradient conversion to two quadrants: (a) classical histogram of oriented gradients (HOG)
approach: gradients OA’ and OB’ are converted to OA and OB, respectively, and represented by
the angles which are in the 0–180◦ interval; (b) new computation method: gradients OA’ and OB’
are converted to OA and OB, respectively, and represented by the slopes s1 and s2 which are in the
[−90, 90] interval.

Therefore, the simplest way is to consider the same expression for the limited slope function,
irrespective of the signs of y and x. With the corresponding limitations, the function will therefore be

ls =


y
xk , if −π

2 < y
xk < π

2
π
2 , if y

xk ≥ π
2

−π
2 , if y

xk ≤ −π
2

(4)

Its output will therefore be in the interval [−π/2, π/2], or, equivalently, within [−90, 90]. This is
illustrated in Figure 1b, where gradients with negative x (OA’ and OB’) are represented with gradients
on the same line (OA, OB) but with positive x. The slopes of these gradients (s1 and s2) are either
positive or negative depending on the sign of the y-axis projection. By adding π/2, we can transform
the output interval to one which is similar to that of the classical HOG.

It is important to note that the histogram produced by the new computation method is completely
different than that produced by the classical HOG. Indeed, for the same gradients, the slope has
in general a value which is completely different than that of the angle; hence, that gradient will be
allocated to a different bin than in the case of the classical HOG. Also, the bins of the histograms are
within a different interval than for classical HOG ([−90, 90] versus [0◦, 180◦]). This means that the HOG
output will be completely different. However, since this type of output will be used consistently for
both training and testing, the classifier will be able to work in a similar manner. The exact performance
will be determined by tests. For example, in Figure 2a,b we present cell histograms calculated using
the arctangent function and the limited slope function, respectively. In both cases we used the classical
allocation approach based on interpolating the magnitude between adjacent bins.

Computers 2018, 7, 18 8 of 16
Computers 2018, 7, x 8 of 15

(a) (b)

Figure 2. Histogram of gradients: (a) Computed using the arctangent function. Each bin has a 20°
span. Bin 1 starts with 0°. Bin 5 contains angles within [80°, 100°]. (b) Computed using the limited
slope function. Each bin has a span of 20. Bin 1 starts with −90. Bin 5 contains slopes around 0.

As can be seen, the two histograms look very different. Upon closer inspection, we can see that
in the histogram based on arctangent, the most important angles correspond to 90°, 0° (Bins 1 and 9),
and angles close to 180°. For the histogram based on slope, we can see that the important bins
correspond also to small slopes, close to zero (Bins 5 and 6), and to very large slopes (Bins 1 and 9).
However, the magnitude of bins corresponding to small slopes in Figure 2b is larger than that of bins
corresponding to low angles in Figure 2a, whereas the magnitude of bins with large slopes is less
important in Figure 2b compared with in Figure 2a.

4.2. New HOG Computation Method

By using the slope-based algorithm for determining the histogram bin, and the simplified
magnitude allocation with no interpolation (see Section 3.2) a new method for histogram
computation is obtained. Additionally, the no-interpolation allocation uses 9 bins of 16 conventional
degrees each (see Section 3.2). The new approach is significantly simpler than the one in the original
HOG. This is because it replaces the arctangent with a division, eliminating all the divisions and
multiplications as well as the control code associated with the magnitude interpolation between
adjacent bins, and because it replaces divisions to 20° with shifting.

However, because the new method contains simplified algorithmic blocks compared with the
original one, it is important to determine how the classification accuracy is affected. We already
showed [14] that the no-interpolation magnitude allocation maintains good classification accuracy
when used together with the arctangent function. Since the slope introduced in the new algorithm is
significantly different than the angle determined by the arctangent, it is important to study how this
affects the magnitude allocation.

5. Results

For tests, we used a combination of static images from several databases as well as from pictures
we took in traffic (highway, rural, and in town). These can be found and downloaded at [31]. We
created two sets of training and test images. Thus, for Training Set 1 we used a combination of images
provided by [32,33] for cars and non-cars, respectively. For Test Set 1 we used pictures from [34].
Training Set 1 consisted of 1700 negative images and 500 positive ones. Test Set 1 consisted of 113
pictures with no cars and 115 pictures with cars. For Training Set 2, we used our own pictures as well
as selected pictures from [32]—in total, 848 negative images and 655 positive images. For Test Set 2,
we used our own pictures, with 182 negative images and 120 positive images. The training and the
test images had the size of 220 × 160 pixels. An example of images from each of the two sets is presented
in Figure 3.

Figure 2. Histogram of gradients: (a) Computed using the arctangent function. Each bin has a 20◦ span.
Bin 1 starts with 0◦. Bin 5 contains angles within [80◦, 100◦]. (b) Computed using the limited slope
function. Each bin has a span of 20. Bin 1 starts with −90. Bin 5 contains slopes around 0.

As can be seen, the two histograms look very different. Upon closer inspection, we can see that in
the histogram based on arctangent, the most important angles correspond to 90◦, 0◦ (Bins 1 and 9),
and angles close to 180◦. For the histogram based on slope, we can see that the important bins
correspond also to small slopes, close to zero (Bins 5 and 6), and to very large slopes (Bins 1 and 9).
However, the magnitude of bins corresponding to small slopes in Figure 2b is larger than that of bins
corresponding to low angles in Figure 2a, whereas the magnitude of bins with large slopes is less
important in Figure 2b compared with in Figure 2a.

4.2. New HOG Computation Method

By using the slope-based algorithm for determining the histogram bin, and the simplified
magnitude allocation with no interpolation (see Section 3.2) a new method for histogram computation is
obtained. Additionally, the no-interpolation allocation uses 9 bins of 16 conventional degrees each (see
Section 3.2). The new approach is significantly simpler than the one in the original HOG. This is because
it replaces the arctangent with a division, eliminating all the divisions and multiplications as well as
the control code associated with the magnitude interpolation between adjacent bins, and because it
replaces divisions to 20◦ with shifting.

However, because the new method contains simplified algorithmic blocks compared with the
original one, it is important to determine how the classification accuracy is affected. We already
showed [14] that the no-interpolation magnitude allocation maintains good classification accuracy
when used together with the arctangent function. Since the slope introduced in the new algorithm is
significantly different than the angle determined by the arctangent, it is important to study how this
affects the magnitude allocation.

5. Results

For tests, we used a combination of static images from several databases as well as from pictures
we took in traffic (highway, rural, and in town). These can be found and downloaded at [31]. We created
two sets of training and test images. Thus, for Training Set 1 we used a combination of images provided
by [32,33] for cars and non-cars, respectively. For Test Set 1 we used pictures from [34]. Training Set
1 consisted of 1700 negative images and 500 positive ones. Test Set 1 consisted of 113 pictures with
no cars and 115 pictures with cars. For Training Set 2, we used our own pictures as well as selected
pictures from [32]—in total, 848 negative images and 655 positive images. For Test Set 2, we used our
own pictures, with 182 negative images and 120 positive images. The training and the test images had
the size of 220 × 160 pixels. An example of images from each of the two sets is presented in Figure 3.

Computers 2018, 7, 18 9 of 16
Computers 2018, 7, x 9 of 15

(a) (b)

Figure 3. Example of images used for training in Set 1 (a) and Set 2 (b).

In all tests we determined and compared the precision and the recall values, the precision vs
recall curves, as well as the area under curve (AUC) for each precision–recall curve. The classifier we
used in all tests is a nonlinear SVM with an order 3 polynomial kernel. Within the SVM, the kernel
maps the feature n-dimensional space into a space where the values are more easily separable within
the two classes (cars and non-cars). Using such a kernel, the classification performance increases
compared with that of the linear SVM.

5.1. Tests for Replacing the Arctangent with Slope

We first tested the classical HOG algorithm, replacing only the angle computation (given by the
arctangent) with the gradient slope, explained in Section 4. The tests were done on the above data
sets and we compared the precision and the recall with those of the standard algorithm using the
arctangent.

The results are presented in Table 2 below for different combinations of training and test data.
The very low recalls obtained when we combined different sets for training and test (especially in the
last case) can be explained by the very different quality of the images in the two sets, as well as by
the fact that in Set 2 only front- and rear-view car images are used, whereas Set 1 contains images
from all views, including lateral.

As can be seen, the precision is very similar between the two algorithms in most situations. The
recall is lower by 1% and 3% (absolute values), respectively, in the first two scenarios. Overall, we
can say the performance is not much affected by using the allocation in bins based on gradient slope,
instead of using the arctangent.

Table 2. Precision and recall values for classification using the original HOG and the algorithm using
gradient slope for bin allocation.

Data Sets Original HOG (Arctangent Based) New Algorithm (Slope Based)
Training Test Precision Recall AUC Precision Recall AUC

Set 1 Set 1 0.99 0.65 0.927 0.98 0.62 0.921
Set 2 Set 2 0.99 0.84 0.982 0.99 0.83 0.980
Set 1 Set 2 1 0.68 0.968 1 0.70 0.969
Set 2 Set 1 0.91 0.33 0.795 0.92 0.32 0.832

This is confirmed by the precision-recall curves. In Figure 4a,b we show this curves for the first
two situations (corresponding to first two lines in Table 2). The precision–recall curves we present
are based on the classifier score. As can be seen, the curves are very similar in both situations. For the
classifier using the HOG based on gradient slope the curves look, in the region of interest, slightly
worse for Set 1 and slightly better for Set 2 compared to that using the original HOG.

In all tests, the k constant was kept at the values defined in Formula (3) (see Section 4). Changing
it slightly does not greatly affect the performance, while larger changes decrease the precision and the
recall in all situations. Consequently, we can conclude that k as defined in Formula (3) does not depend
on the training/test data, which is a positive aspect.

Figure 3. Example of images used for training in Set 1 (a) and Set 2 (b).

In all tests we determined and compared the precision and the recall values, the precision vs recall
curves, as well as the area under curve (AUC) for each precision–recall curve. The classifier we used in
all tests is a nonlinear SVM with an order 3 polynomial kernel. Within the SVM, the kernel maps the
feature n-dimensional space into a space where the values are more easily separable within the two
classes (cars and non-cars). Using such a kernel, the classification performance increases compared
with that of the linear SVM.

5.1. Tests for Replacing the Arctangent with Slope

We first tested the classical HOG algorithm, replacing only the angle computation (given by
the arctangent) with the gradient slope, explained in Section 4. The tests were done on the above
data sets and we compared the precision and the recall with those of the standard algorithm using
the arctangent.

The results are presented in Table 2 below for different combinations of training and test data.
The very low recalls obtained when we combined different sets for training and test (especially in the
last case) can be explained by the very different quality of the images in the two sets, as well as by the
fact that in Set 2 only front- and rear-view car images are used, whereas Set 1 contains images from all
views, including lateral.

As can be seen, the precision is very similar between the two algorithms in most situations. The recall
is lower by 1% and 3% (absolute values), respectively, in the first two scenarios. Overall, we can say the
performance is not much affected by using the allocation in bins based on gradient slope, instead of
using the arctangent.

Table 2. Precision and recall values for classification using the original HOG and the algorithm using
gradient slope for bin allocation.

Data Sets Original HOG (Arctangent Based) New Algorithm (Slope Based)

Training Test Precision Recall AUC Precision Recall AUC

Set 1 Set 1 0.99 0.65 0.927 0.98 0.62 0.921
Set 2 Set 2 0.99 0.84 0.982 0.99 0.83 0.980
Set 1 Set 2 1 0.68 0.968 1 0.70 0.969
Set 2 Set 1 0.91 0.33 0.795 0.92 0.32 0.832

This is confirmed by the precision-recall curves. In Figure 4a,b we show this curves for the first
two situations (corresponding to first two lines in Table 2). The precision–recall curves we present are
based on the classifier score. As can be seen, the curves are very similar in both situations. For the
classifier using the HOG based on gradient slope the curves look, in the region of interest, slightly
worse for Set 1 and slightly better for Set 2 compared to that using the original HOG.

Computers 2018, 7, 18 10 of 16

In all tests, the k constant was kept at the values defined in Formula (3) (see Section 4). Changing
it slightly does not greatly affect the performance, while larger changes decrease the precision and
the recall in all situations. Consequently, we can conclude that k as defined in Formula (3) does not
depend on the training/test data, which is a positive aspect.Computers 2018, 7, x 10 of 15

(a) (b)

Figure 4. Precision–recall curves for car classification using the original HOG (solid line, thinner) and
the HOG using gradient slope for bin allocation (dotted line, thicker) (a) for Training Set 1, Test Set 1;
(b) for Training Set 2, Test Set 2.

Another aspect which we investigated is how the performance is influenced using the new
algorithm if we force all gradient components on axis x and respectively y to zero if they are smaller
than a threshold. In other words, we implemented if (abs(grad_x(i)) < thr) grad_x(i) = 0. The idea for
this attempt is given by [13], where we showed that if we truncate the final HOG descriptor to just a
few bits, the overall performance may increase because the descriptor becomes “sharper”. Practically,
by forcing small gradients to zero, we expect to obtain a filtering effect resulting in a sharper cell
histogram, which will then translate into a sharper final descriptor. This is because we expect to
increase the bins corresponding to either zero (if the y axis gradient is zero) or 90 (if the x axis gradient
is zero), and slightly decrease the adjacent bins. For example, the cell histogram presented in Figure
2b changes after performing such an action to the one shown in Figure 5. Indeed, compared with
Figure 2b, we can see that Bins 5 (corresponding to zero) and 1 and 9 (corresponding to +/− 90) are
larger, whereas Bins 4, 2, and 8 are smaller, so indeed, the histogram became sharper after the filtering
action.

(a) (b)

Figure 5. Histogram of gradients computed using the limited slope function, for the same cell as the
one presented in Figure 2, but after applying the filtering of gradient components, with a threshold
of 10 (a). In (b) the original histogram shown in Figure 2b is repeated here, to facilitate comparison.

We performed the same tests again, but this time including the gradient filtering as described
above for the HOG calculation using the gradient slope. We obtained the results presented in Table
3.

Figure 4. Precision–recall curves for car classification using the original HOG (solid line, thinner) and
the HOG using gradient slope for bin allocation (dotted line, thicker) (a) for Training Set 1, Test Set 1;
(b) for Training Set 2, Test Set 2.

Another aspect which we investigated is how the performance is influenced using the new
algorithm if we force all gradient components on axis x and respectively y to zero if they are smaller
than a threshold. In other words, we implemented if (abs(grad_x(i)) < thr) grad_x(i) = 0. The idea
for this attempt is given by [13], where we showed that if we truncate the final HOG descriptor
to just a few bits, the overall performance may increase because the descriptor becomes “sharper”.
Practically, by forcing small gradients to zero, we expect to obtain a filtering effect resulting in a sharper
cell histogram, which will then translate into a sharper final descriptor. This is because we expect
to increase the bins corresponding to either zero (if the y axis gradient is zero) or 90 (if the x axis
gradient is zero), and slightly decrease the adjacent bins. For example, the cell histogram presented in
Figure 2b changes after performing such an action to the one shown in Figure 5. Indeed, compared
with Figure 2b, we can see that Bins 5 (corresponding to zero) and 1 and 9 (corresponding to +/− 90)
are larger, whereas Bins 4, 2, and 8 are smaller, so indeed, the histogram became sharper after the
filtering action.

Computers 2018, 7, x 10 of 15

(a) (b)

Figure 4. Precision–recall curves for car classification using the original HOG (solid line, thinner) and
the HOG using gradient slope for bin allocation (dotted line, thicker) (a) for Training Set 1, Test Set 1;
(b) for Training Set 2, Test Set 2.

Another aspect which we investigated is how the performance is influenced using the new
algorithm if we force all gradient components on axis x and respectively y to zero if they are smaller
than a threshold. In other words, we implemented if (abs(grad_x(i)) < thr) grad_x(i) = 0. The idea for
this attempt is given by [13], where we showed that if we truncate the final HOG descriptor to just a
few bits, the overall performance may increase because the descriptor becomes “sharper”. Practically,
by forcing small gradients to zero, we expect to obtain a filtering effect resulting in a sharper cell
histogram, which will then translate into a sharper final descriptor. This is because we expect to
increase the bins corresponding to either zero (if the y axis gradient is zero) or 90 (if the x axis gradient
is zero), and slightly decrease the adjacent bins. For example, the cell histogram presented in Figure
2b changes after performing such an action to the one shown in Figure 5. Indeed, compared with
Figure 2b, we can see that Bins 5 (corresponding to zero) and 1 and 9 (corresponding to +/− 90) are
larger, whereas Bins 4, 2, and 8 are smaller, so indeed, the histogram became sharper after the filtering
action.

(a) (b)

Figure 5. Histogram of gradients computed using the limited slope function, for the same cell as the
one presented in Figure 2, but after applying the filtering of gradient components, with a threshold
of 10 (a). In (b) the original histogram shown in Figure 2b is repeated here, to facilitate comparison.

We performed the same tests again, but this time including the gradient filtering as described
above for the HOG calculation using the gradient slope. We obtained the results presented in Table
3.

Figure 5. Histogram of gradients computed using the limited slope function, for the same cell as the
one presented in Figure 2, but after applying the filtering of gradient components, with a threshold of
10 (a). In (b) the original histogram shown in Figure 2b is repeated here, to facilitate comparison.

Computers 2018, 7, 18 11 of 16

We performed the same tests again, but this time including the gradient filtering as described
above for the HOG calculation using the gradient slope. We obtained the results presented in Table 3.

Table 3. Precision and recall values for classification using the algorithm using gradient slope for bin
allocation, with and without gradient filtering.

Data Sets New Algorithm (Slope Based, No Filtering) New Algorithm (Slope Based, with Filtering)

Training Test Precision Recall AUC Precision Recall AUC

Set 1 Set 1 0.98 0.62 0.921 1 0.69 0.919
Set 2 Set 2 0.99 0.83 0.980 1 0.83 0.972
Set 1 Set 2 1 0.70 0.969 1 0.65 0.949
Set 2 Set 1 0.92 0.32 0.832 0.97 0.42 0.881

As can be seen, the results seem to depend a lot on the test data. For tests using the data in
Set 1 (rows 1 and 4), the improvement is very high, the new results being consistently better than
those obtained for the original algorithm (see Table 2, on the same rows). However, when using test
data in Set 2 the results are either similar or worse. Consequently, the impact of gradient filtering
needs to be further studied, but it seems that for normal operating conditions (when the pictures in
the training and the test sets are similar, as in the first two rows in Table 3) gradient filtering may be
worth performing.

5.2. Tests for the New HOG Computation Method

In the following step, we tested the new HOG computation method which consists (see Section 4.2)
of the slope computation and the no-interpolation gradient magnitude allocation.

We tested the new method in the same conditions as those presented above. Practically, compared
to the tests above, we replaced the classical magnitude interpolation between adjacent bins with
the simple algorithm presented in Section 3.2 which allocates the entire gradient magnitude to the
bin determined based on the slope (without splitting the magnitude with one of the neighbor bins
depending on the exact value of the slope). The results are presented in Table 4 (no filtering applied)
and Table 5 (filtering with threshold 10 applied to the new method). As can be seen, the results in
Table 4 are very close to the results presented in Table 2. This confirms that the simplified magnitude
allocation algorithm introduces practically no errors and also shows that the new method, consisting
of the bin calculation based on slope and the simplified magnitude allocation algorithm, can be
successfully used in FPGA implementations. When filtering is performed, the results are also relatively
close to those obtained by the original algorithm (but a little worse compared to Table 3, last two
columns). This shows that filtering effect depends even more strongly on the test data when using the
no-interpolation magnitude allocation, compared with the case when the original interpolation-based
allocation is used. The decision on using (or not) filtering should be made after validating it in real test
conditions. Further investigations may be needed to better explain the conditions which need to be
satisfied in order for the filtering to improve the classification accuracy.

Table 4. Precision and recall values for classification using the original and the new HOG
computation method.

Data Sets Original Histogram Computation Method New Histogram Computation Method

Training Test Precision Recall AUC Precision Recall AUC

Set 1 Set 1 0.99 0.65 0.927 0.98 0.62 0.922
Set 2 Set 2 0.99 0.84 0.982 0.99 0.83 0.980
Set 1 Set 2 1 0.68 0.969 1 0.68 0.966
Set 2 Set 1 0.91 0.33 0.795 0.93 0.33 0.833

Computers 2018, 7, 18 12 of 16

Table 5. Precision and recall values for classification using the original and the new HOG computation
method, with filtering.

Data Sets Original Histogram Computation Method New Histogram Computation Method, with Filtering

Training Test Precision Recall AUC Precision Recall AUC

Set 1 Set 1 0.99 0.65 0.927 1 0.69 0.919
Set 2 Set 2 0.99 0.84 0.982 1 0.81 0.972
Set 1 Set 2 1 0.68 0.969 1 0.63 0.949
Set 2 Set 1 0.91 0.33 0.795 0.97 0.42 0.881

We used an Artix-7 (XC7A200T-1SBG484C) evaluation board with 33,650 logic slices, each with
4 LUTs and 8 registers, 13 Mbits of RAM, and 740 DSP slices. The implementation was performed using
the SystemVerilog language and Vivado Web-Pack tools. In Table 6 we present the areas occupied for
the HOG algorithm using each of the preliminary simplifications as well as the full new method for
histogram computation. The areas are expressed for both slice LUTs and slice registers in terms of
absolute and percentage of the area of the original HOG algorithm implementation.

Table 6. Absolute and relative number of slice lookup tables (LUTs) and registers for the simplified
versions of HOG, versus the original one.

Implemented Algorithm Slice LUTs
Abs. Value

Slice LUTs
Relative Value

Slice Registers
Abs. Value

Slice Registers
Relative Value

Original HOG (with arctangent,
bin interpolation, and 20 degree bins) 42,917 100% 27,808 100%

HOG with 16 degree bins (with arctangent,
bin interpolation, and 16 degree bins) 40,239 93.76% 23,052 82.90%

Simplified HOG (with arctangent, no bin
interpolation, 16 degree bins) 15,150 35.30% 17,002 61.14%

New histogram computation, with slope,
no interpolation, and bins of 16 units 11,075 25.81% 10,928 39.30%

As can be seen, the area of the HOG using the slope computation (instead of the arctangent)
is significantly reduced compared with the area of the original HOG, especially in terms of LUTs.
When we also introduce the simplified allocation, the area for the new histogram computation method
is further reduced, especially in the slice registers. The reduction due to slope is due not only to the
arctangent replacement, but also to the simplification of the logic for the sign correction mechanism.

Since our FPGA has 134,600 LUTs and 269,200 registers, the data in Table 6 show that one
can implement three original HOG blocks in parallel, while for the new histogram computation,
the parallelism increases to 11. Consequently, the speed increases also by 3.67 times.

In terms of classification accuracy variation, we present in Table 7 the percentage of the recall
deterioration compared to the original algorithm (the precision is very little affected by all simplifications).

Table 7. Relative number of slice LUTs and registers for the simplified versions of HOG, versus the
original one.

Implemented Algorithm Slice LUTs

Original HOG (with arctangent, bin interpolation, and 20 degree bins) -
HOG with 16 degree bins (with arctangent, bin interpolation, and 16 degree bins) 0%
Simplified HOG (with arctangent, no bin interpolation, 16 degree bins) −1 to +1% 1

New histogram computation, with slope, no interpolation, and bins of 16 units −3 to −1%
New histogram computation, with slope, no interpolation, and bins of 16 units,
with filtering, on similar training and test data −3 to +4% 1

1 Recall may actually be increased.

Computers 2018, 7, 18 13 of 16

As can be seen, the decrease in the recall for the new histogram computation is always less than
or equal to 3%. As shown in Table 4, the recall deterioration can be as little as 1% depending on the
quality of training and test data sets and the number of different angles of car views. We believe that
due to the very large reduction of area, the new method will have many applications.

5.3. Tests for Different Classifiers

All tests presented above have been done using an SVM classifier with an order 3 polynomial
kernel. In order to see how the classification performance varies with different kernels, for the original
as well as the modified computation method we performed the same tests as above, changing the
kernel. We considered polynomial kernels of different orders, radial basis function RBF (Gaussian)
kernel, and a linear kernel. In all cases, the performance for both computation methods changed
similarly so that the difference in performance remained in general in the same interval as that
presented in Table 7. The performance increased a little for higher polynomial orders and decreased
for all other kernels. An interesting case is when the linear kernel is used. This reduces the complexity
of the classifier not only for training but also for testing; therefore, it is worth investigating.

The results are presented in Table 8. As can be seen, the decrease in recall and also in the AUC,
compared to the results presented in Table 4, is important for both the original HOG and the new
method. Consequently, the linear classifier is not very attractive despite its relative simplicity.

Table 8. Precision and recall values for classification using the original and the new HOG computation
method, using a linear SVM classifier.

Data Sets Original Histogram Computation Method New Histogram Computation Method

Training Test Precision Recall AUC Precision Recall AUC

Set 1 Set 1 0.95 0.68 0.889 0.97 0.64 0.898
Set 2 Set 2 0.97 0.81 0.950 0.95 0.81 0.940
Set 1 Set 2 1 0.51 0.870 0.97 0.52 0.880
Set 2 Set 1 0.89 0.30 0.741 0.92 0.36 0.800

6. Discussions

In this paper we investigated how histogram computation can be made more efficient, especially
when implemented within an FPGA. For this, we first showed how the arctangent can be replaced by
the computation of a gradient slope. This requires one division in practice and occupies a smaller area
than the arctangent. The classification accuracy is very minorly affected by this change. Furthermore,
if gradient filtering is introduced, the performance is improved in some situations. These situations
depend on the testing data and do not depend on the training ones.

Then, we also replaced the classical interpolation-based magnitude allocation with a simplified one
with no interpolation. In this way, a new histogram computation method is obtained. Compared with
the original method, it is significantly simpler because it replaces the arctangent with the slope
computation and because it eliminates all the divisions and multiplications as well as the control
code associated with the magnitude interpolation between adjacent bins. Its significantly smaller area
allows a higher level of parallelism and a lower total cost. The no-interpolation mechanism does not
introduce significant errors, so the overall accuracy of the new method is very close to that of the
original one.

Finally, we tested both methods for different kernels of the SVM classifier. We found that for
both methods, the polynomial kernel leads to best performance and, in general, the higher the order
of the polynomial, the higher the performance; however, for orders above 3 the improvement is not
important. For the linear classifier, which is the simplest, the decrease in performance is significant for
both methods.

Computers 2018, 7, 18 14 of 16

7. Conclusions

The new method for histogram computation introduced and validated in this paper is significantly
less complex than the one in the original HOG. Because of this, it can be implemented in a much
smaller area in FPGAs (around 4 times smaller), thus allowing a significant increase in parallelism,
and, hence, in speed. The accuracy of the new method is only minorly decreased (less than 3% in
absolute value) compared with that of the original one, showing that it can be successfully used in
most FPGA-based HOG implementations. Because of the important reduction in speed, it may be also
used as a block in more complex descriptors which include HOG plus extra information, such as [22].
The resulting system will have reduced computation time compared to [22], but also a higher accuracy
than our current implementation.

Acknowledgments: This work has been partially funded by University “Politehnica” of Bucharest, through the
“Excellence Research Grants” Program, UPB–GEX. Project title “The optimization and real-time implementation
of artificial intelligence algorithms used in autonomous car applications, to classify moving objects”, Contract
104/26.09.2016 (EL.07.16.13).

Author Contributions: M.-E.I. developed the new slope-based allocation algorithm, the new histogram
computation method, performed the algorithms simulations as well as the FPGA implementation and FPGA area
calculations. C.I. added a more detailed explanation of the slope-based allocation algorithm, included the area
under curve (AUC) criteria for precision-recall comparison, performed the algorithm tests for different classifiers
and extended the related work paragraph, covering several other papers.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ilas, M.E. New Histogram Computation Adapted for FPGA Implementation of HOG Algorithm—For Car
Detection Applications. In Proceedings of the 9th Computer Science & Electronic Engineering Conference
(CEEC), Colchester, UK, 27–29 September 2017.

2. Luettel, T.; Himmelshach, M.; Wuensche, H.-J. Autonomous Ground Vehicles—Concepts and a path to the
future. Proc. IEEE 2012, 1831–1839. [CrossRef]

3. Lozano-Perez, T. Autonomous Robot Vehicles; Cox, I.J., Wilfong, G.T., Eds.; Springer Science & Business Media:
Berlin, Germany, 2012.

4. Rouff, C.; Hinchey, M. Experience from the DARPA Urban Challenge; Springer: London, UK, 2012; ISBN 978-0-
85729771-6.

5. Frazzoli, E.; Munther, D.A.; Feron, E. Real-time motion planning for agile autonomous vehicles. J. Guid.
Control Dyn. 2012, 25, 116–129. [CrossRef]

6. Ilas, C. Electronic sensing technologies for autonomous ground vehicles: A review. In Proceedings of the
8th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania,
23–25 May 2013; pp. 1–6.

7. Ilas, C. Perception in Autonomous Ground Vehicles—A Review. In Proceedings of the ECAI Conference,
Pitesti, Romania, 27–29 June 2013; pp. 1–6.

8. Ilas, C.; Mocanu, I.; Ilas, M. Advances in Environment Sensing and Perception Technologies and Algorithms
for Autonomous Ground Vehicles. In Autonomous Vehicles; Bizon, N., Dascalescu, L., Tabatabaei, N.M., Eds.;
Nova Science Inc.: New York, NY, USA, 2014; Chapter 4; pp. 113–146, ISBN 971-1-63321-326-5.

9. Lin, B.Z.; Chien-Chou, L. Pedestrian detection by fusing 3D points and color images. In Proceedings of the
IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), Okayama, Japan,
26–29 June 2016; pp. 1–5.

10. Sivaraman, S.; Trivedi, M.M. Looking at vehicles on the road: A survey of vision-based vehicle detection,
tracking, and behavior analysis. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1773–1795. [CrossRef]

11. Ma, X.; Walid Najjar, A.; Roy-Chowdhury, A.K. Evaluation and acceleration of high-throughput fixed-point
object detection on FPGAs. IEEE Trans. Circ. Syst. Video Technol. 2015, 25, 1051–1062.

12. Tasson, D.; Montagnini, A.; Marzotto, R.; Farenzena, M.; Cristani, M. FPGA-based pedestrian detection under
strong distortions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Boston, MA, USA, 7–12 June 2015; pp. 65–70.

http://dx.doi.org/10.1109/JPROC.2012.2189803
http://dx.doi.org/10.2514/2.4856
http://dx.doi.org/10.1109/TITS.2013.2266661

Computers 2018, 7, 18 15 of 16

13. Ilas, M.E. Parameter Selection for Efficient HOG-based car detection. In Proceedings of the IEEE 26th
International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 19–21 June 2017.

14. Ilas, M.E. HOG Algorithm Simplification and Its Impact on FPGA Implementation—With Applications in
Car Detection. Proceedings of 9th IEEE Conference on Electronics, Computers and Artificial Intelligence,
Targoviste, Romania, 29 June–1 July 2017.

15. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005;
Volume 1.

16. Lee, SH.; Bang, K.H.; Jung, K. An efficient selection of HOG feature for SVM classification of vehicle.
In Proceedings of the IEEE International Symposium on Consumer Electronics (ISCE), Madrid, Spain,
24–26 June 2015; pp. 1–2.

17. Li, X.; Guo, X. A HOG feature and SVM based method for forward vehicle detection with single camera.
In Proceedings of the 5th International Conference on Intelligent Human-Machine Systems and Cybernetics
(IHMSC), Hangzhou, China, 26–27 August 2013; Volume 1, pp. 263–266.

18. Hsiao, P.Y.; Lin, S.Y.; Huang, S.S. An FPGA based human detection system with embedded platform.
Microelectron. Eng. 2015, 138, 42–46. [CrossRef]

19. Benenson, R.; Mathias, C.; Timofte, R.; Van Gool, L. Pedestrian detection at 100 frames per second.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA,
16–21 June 2012; pp. 2903–2910.

20. Hsiao, P.Y.; Lin, S.Y.; Chen, C.Y. A Real-Time FPGA Based Human Detector. In Proceedings of the International
Symposium on Computer, Consumer and Control (IS3C), Xi’an, China, 4–6 July 2016; pp. 1014–1017.

21. Hemmati, M.; Biglari-Abhari, M.; Berber, S.; Niar, S. HOG feature extractor hardware accelerator for real-time
pedestrian detection. In Proceedings of the 17th Euromicro Conference on Digital System Design (DSD),
Verona, Italy, 27–29 August 2014; pp. 543–550.

22. Kim, J.; Baek, J.; Kim, E. A Novel On-Road Vehicle Detection Method Using π-HOG. IEEE Trans. Intell.
Transp. Syst. 2015, 16, 3414–3429. [CrossRef]

23. Mizuno, K.; Terachi, Y.; Takagi, K.; Izumi, S.; Kawaguchi, H.; Yoshimoto, M. Architectural study of HOG
feature extraction processor for real-time object detection. In Proceedings of the 2012 IEEE Workshop on
Signal Processing Systems (SiPS), Quebec City, QC, Canada, 17–19 October 2012; pp. 197–202.

24. Mizuno, K.; Terachi, Y.; Takagi, K.; Izumi, S.; Kawaguchi, H.; Yoshimoto, M. A sub-100 mw dual-core HOG
accelerator VLSI for parallel feature extraction processing for HDTV resolution video. IEICE Trans. Electron.
2013, 96, 433–443. [CrossRef]

25. Bauer, S.; Köhler, S.; Doll, K.; Brunsmann, U. FPGA-GPU architecture for kernel SVM pedestrian detection.
In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), San Francisco, CA, USA, 13–18 June 2010; pp. 61–68.

26. Bauer, S.; Brunsmann, U.; Schlotterbeck-Macht, S. FPGA implementation of a HOG-based pedestrian
recognition system. In Proceedings of the MPC-Workshop, Karlsruhe, Germany, 6 May 2009; pp. 49–58.

27. Hahnle, M.; Saxen, F.; Hisung, M.; Brunsmann, U.; Doll, K. FPGA-based real-time pedestrian detection on
high-resolution images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Portland, OR, USA, 23–28 June 2013; pp. 629–635.

28. Chen, P.Y.; Huang, C.C.; Lien, C.Y.; Tsai, Y.H. An efficient hardware implementation of HOG feature
extraction for human detection. IEEE Trans. Intell. Transp. Syst. 2014, 15, 656–662. [CrossRef]

29. Wang, J.F.; Choy, C.S.; Chao, T.L.; Kit, K.C.; Pun, K.P.; Ouyang, W.L.; Wang, X.G. HOG arithmetic for speedy
hardware realization. In Proceedings of the 2014 IEEE Asia Pacific Conference on Circuits and Systems
(APCCAS), Ishigaki, Japan, 17–20 November 2014; pp. 61–64.

30. Rajan, S.; Wang, S.; Inkol, R.; Joyal, A. Efficient approximations for the arctangent function. IEEE Signal
Process. Mag. 2006, 23, 108–111. [CrossRef]

31. Static Images. Available online: https://drive.google.com/drive/folders/0B7EEW4NFU3YdTUpsRXBNSm1JNEE?
usp=sharing (accessed on 28 February 2018).

32. Krause, J.; Stark, M.; Deng, J.; Li, F. 3D object representations for fine-grained categorization. Proceedings
of IEEE International Conference on Computer Vision Workshops, Sydney, Australia, 2–8 December 2013;
pp. 554–561.

http://dx.doi.org/10.1016/j.mee.2015.01.018
http://dx.doi.org/10.1109/TITS.2015.2465296
http://dx.doi.org/10.1587/transele.E96.C.433
http://dx.doi.org/10.1109/TITS.2013.2284666
http://dx.doi.org/10.1109/MSP.2006.1628884
https://drive.google.com/drive/folders/0B7EEW4NFU3YdTUpsRXBNSm1JNEE?usp=sharing
https://drive.google.com/drive/folders/0B7EEW4NFU3YdTUpsRXBNSm1JNEE?usp=sharing

Computers 2018, 7, 18 16 of 16

33. Opelt, A.; Pinz, A.; Fussenegger, M.; Auer, P. Generic object recognition with boosting. IEEE Trans. Pattern
Anal. Mach. Intell. 2006, 28, 416–431. [CrossRef] [PubMed]

34. Carbonetto, P.; Dorkó, G.; Schmid, C.; Kück, H.; De Freitas, N. Learning to recognize objects with little
supervision. Int. J. Comp. Vis. 2008, 77, 219–237. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPAMI.2006.54
http://www.ncbi.nlm.nih.gov/pubmed/16526427
http://dx.doi.org/10.1007/s11263-007-0067-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Classical HOG Algorithm and Preliminary Simplifications
	Classical HOG Algorithm
	Preliminary HOG Simplifications

	New Histogram Computation Method
	Replacing the Arctangent with Slope
	Case of y and x Strictly Positive (Angles in the First Quadrant)
	General Case (Angles in All Four Quadrants)

	New HOG Computation Method

	Results
	Tests for Replacing the Arctangent with Slope
	Tests for the New HOG Computation Method
	Tests for Different Classifiers

	Discussions
	Conclusions
	References

