
computers

Article

Automatic Configurable Hardware Code Generation
for Software-Defined Radios†

Lekhobola Tsoeunyane * , Simon Winberg and Michael Inggs

Software Defined Radio Group, Electrical Engineering Department, University of Cape Town,
Cape Town 7701, South Africa; simon.winberg@uct.ac.za (S.W.); michael.inggs@uct.ac.za (M.I.)
* Correspondence: lekhobola@gmail.com; Tel.: +27-78-674-6344
† This paper is an extended version of our paper published in the International Conference on Field

Programmable Technologies (FPT 2017).

Received: 3 September 2018; Accepted: 17 October 2018; Published: 19 October 2018
����������
�������

Abstract: The development of software-defined radio (SDR) systems using field-programmable gate
arrays (FPGAs) compels designers to reuse pre-existing Intellectual Property (IP) cores in order
to meet time-to-market and design efficiency requirements. However, the low-level development
difficulties associated with FPGAs hinder productivity, even when the designer is experienced with
hardware design. These low-level difficulties include non-standard interfacing methods, component
communication and synchronization challenges, complicated timing constraints and processing
blocks that need to be customized through time-consuming design tweaks. In this paper, we present
a methodology for automated and behavioral integration of dedicated IP cores for rapid prototyping
of SDR applications. To maintain high performance of the SDR designs, our methodology integrates
IP cores using characteristics of the dataflow model of computation (MoC), namely the static dataflow
with access patterns (SDF-AP). We show how the dataflow is mapped onto the low-level model
of hardware by efficiently applying low-level based optimizations and using a formal analysis
technique that guarantees the correctness of the generated solutions. Furthermore, we demonstrate
the capability of our automated hardware design approach by developing eight SDR applications
in VHDL. The results show that well-optimized designs are generated and that this can improve
productivity while also conserving the hardware resources used.

Keywords: reconfigurable computing; field programmable technologies; field programmable
gate arrays; FPGAs; design automation; software-defined radio; domain-specific language;
high-level synthesis

1. Introduction

A software-defined radio (SDR) system implements some or all of its physical layer (PHY)
functionality in software [1]. This makes it more flexible than the rigid traditional radio architecture
that relies on analog hardware components to perform radio signal processing functions. Nowadays,
many SDR systems need to support a diverse range of adjustable operations and operating modes,
such as support for multiple bands and carriers, multiple standards, and enabling a variety of services
[1,2]. High-performance SDR platforms allow for the implementation of this diversity of operations
through the use of multiple types of parallel processing resources including FPGAs, DSPs, and GPPs [3].
Although ASICs are faster and more efficient, they are generally not used in these applications,
particularly in the case of experimental SDR prototyped systems, for which low-volume bespoke
solutions are often used due to their complexity and need for flexibility and customizability [4].
FPGAs have become a popular means to implement SDR systems as they strike an effective balance
between performance and flexibility, essentially trading allowing sacrifices in performance (compared

Computers 2018, 7, 53; doi:10.3390/computers7040053 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0002-2479-8366
https://orcid.org/0000-0001-5809-2372
https://orcid.org/0000-0003-2162-7710
http://dx.doi.org/10.3390/computers7040053
http://www.mdpi.com/journal/computers
http://www.mdpi.com/2073-431X/7/4/53?type=check_update&version=2


Computers 2018, 7, 53 2 of 36

to more rigid application-specific platforms) for significantly greater flexibility. The description of
these applications typically comprises a significant portion of register transfer level (RTL) design work
using either VHDL or Verilog, but working at this low-level of design abstraction tends to need a
thorough understanding of the physical characteristics of the processing resources which make this
type of work largely restricted to hardware experts or lead to the developers engaging in lengthy
learning curves to acquire the necessary low-level details of the processing resources [5].

The apparent outgrowth of hardware capacity and complexity over the hardware design
productivity is known as the hardware design-productivity gap [6]—which is to say technology
advancements have grown faster than the capabilities of tools and design methodologies to support
the complexity of these designs. While there exist alternatives for prototyping FPGA-based SDR
applications using high-level synthesis tools [3] and overlay frameworks [7], these solutions generally
emphasize flexibility and productivity, rather than the performance of the resultant hardware design.
To achieve optimal design results, prototyping SDR systems with FPGAs still forces designers to reuse
existing hardware processing blocks which are also known as Intellectual Property (IP) cores or simply
hardware blocks (HW blocks). Several of these IP cores are provided by the mainstream vendors and
are also available as open-source community contributed libraries. In the practical context of SDR, it is
often difficult and tedious to integrate these IP cores into a design, as this usually requires detailed
knowledge of the cores [8]. Further challenges that developers encounter include developing designs
that provide sufficiently high-speed data exchange, synchronization and correct implementation of
communication protocols between the components, interface synthesis to resolve protocol mismatches,
the difficulty of component composition [9]—all of these potentially lengthy development activities
usually depend on specialized hardware design skills. Furthermore, there are HLS tools that support
the automated IP core integration from high-level descriptions using the correct-by-design design
approach. While this type of HLS tools may result in hardware designs that are correct and conform to
the high-level description, they fail to formally prove that the generated hardware design faithfully
captures the high-level descriptions hence the design correctness is not always guaranteed.

In this paper, we tackle these problems by using a dataflow model of computation (MoC),
more notably the static dataflow with access patterns (SDF-AP) [10]. An SDF-AP model is employed for
computation of timing and performance properties of the hardware system thereby raising the level of
design abstraction. We aim to bridge the semantic gap between the high-level model using a dataflow
model and the low-level model of hardware which is largely described using finite-state machines
(FSMs). Our approach targets the problem domain of SDR in which the resultant solutions run on the
FPGA platform, more specifically, our contributions are as follows:

• Present the operational analysis of the SDF-AP model and provide additional semantics that
facilitate the description of SDF-AP model analyses.

• Define the computation methods for buffer size allocation and the latency under 1-periodic
scheduling [11] and throughput constraints.

• Reduce the behavioural gap between the SDF-AP model and the hardware model.
• Define four optimization techniques for low-level hardware design synthesis.
• Ensure that the generated hardware system faithfully conforms to the high-level application

descriptions using SDF-AP model.
• Evaluate our hardware implementation approach using eight different SDR applications.

This paper proceeds as follows: in Section 2, we start by reviewing the dataflow used in this work
along with the model syntax that will be used in most parts of the paper. Next, we present the analysis
of the dataflow model together with scheduling and buffer sizing methods in Section 3. We then
redefine the SDF-AP model in a form of a transition system that makes SDF-AP model easy to analyse
in Section 4, followed by a low-level hardware implementation in Section 5 and the conformance
analysis in Section 7. Experimental results, using a case study approach in which eight representative
SDR applications are developed, are presented in Section 8. Section 9 proceeds by highlighting related



Computers 2018, 7, 53 3 of 36

work we have investigated that was done by other researchers and which we use to compare our
approaches to. Finally, in Section 10, we provide our conclusions and future plans.

2. The SDF-AP Model

A dataflow program is represented as a collection of computational elements (called actors)
exchanging data objects (called tokens) through unidirectional channels (FIFOs). Execution (called
firing) of actors is governed by a set of rules called the model of computation (MoC). These rules specify
when the actor can be activated based on several tokens available on its input channels and when the
tokens can be written on the output channels. A commonly used dataflow model, called synchronous
dataflow (SDF) [12], guarantees decidability and predictability of key model properties at compile-time.
However, it does not specify how tokens are consumed and produced with respect to precise times.
This leads to a defensive and potentially ineffective design where buffer sizes allocated for channels
may be too big or too small [10]. To alleviate this problem, the Static Dataflow with Access Patterns
(SDF-AP) model was proposed by [10] and formally presented in [13,14]. SDF-AP model is a big step
towards improving the Synchronous Dataflow (SDF) model [12] by incorporating access patterns which
describe the precise clock cycles at which data production/consumption occurs, as a result SDF-AP is
considered to have moved SDF closer to the hardware. Recently, Du et al. [15] proposed a solution
named “stretchable patterns” which modify the characteristics of the access patterns of the SDF-AP
model actors resulting in a model that operates with no buffers. While this solution significantly
optimizes the generated hardware system, it is not applicable to the integration of the off-the-shelf IP
cores that are typically characterized by fixed access patterns.

An SDF-AP model G = (A, C) is described as a directed graph with a set of vertices (actors)
A interconnected to one another by a set of edges (channels) C. At each execution (firing), an actor
consumes data (represented by tokens) from one or more input channels or produces tokens onto one
or more output channels. Each actor a ∈ A is a tuple (IN, OUT, ET, I I), where IN(a) ⊆ P is a set of
input ports, OUT(a) ⊆ P is a set of output ports with IN(a) ∩OUT(a) = ∅; ET(a) ∈ N represents
execution time which is the time in clock cycles for an actor to complete one firing, and I I is the initiation
interval of an actor defined as the minimum interval between two successive firings of an actor a.
For a set of model source actors Asrc ⊆ A, IN(a) = ∅; and for a set of model sink actors Asnk ⊆ A,
OUT(a) = ∅. A channel c = (u, v, p, q, dly) ∈ C represents a first-in, first-out (FIFO) buffer from
source actor u (via source port p ∈ OUT(u)) to a destination actor v (via destination port q ∈ IN(v))
and dly is a delay and denotes the initial tokens in channel c. A port p ∈ OUT(u) is a tuple (PR, PP)
where PR(c) is the production rate (i.e., number of tokens produced on channel c) and PP(c) is the
production pattern for output port p. In addition, port q ∈ IN(v) is a pair (CR, CP) where CR(c) is
the consumption rate (i.e., number of tokens consumed from channel c) and CP(c) is the consumption
pattern for input port q. The access patterns PP = BET and CP = BET are a set of sequences of binary
numbers with length ET(a). Their function is to determine when the actor reads or writes tokens at
a particular clock cycle during firing. The i-th element of the access pattern is denoted as PPi,c (resp.
CPi,c) where i = {0...ET(u)− 1 (resp. ET(v)− 1)}. For a given clock cycle, the element with value 1
denotes a single token read (resp. write) from (resp. to) the input (resp. output) channel. The element
with value 0 represents the fact that there is no token read (resp. write) from (resp. to) the input
(resp. output) channel. The number of 1’s in PP and CP equal the value of PR and CR respectively.
The information about ET(a) and access patterns (i.e., PP, CP) is obtained from a vendor-supplied IP
core documentation or manual IP timing simulation results using the low level simulation tools. For a
set of model source channels Csrc ⊆ C, each channel must have u ∈ Asrc; and for a set of model sink
channels Csnk ⊆ C, each channel must have v ∈ Asnk.

A bounded schedule of each actor can statically be determined at compile time if one exists. Such a
schedule ensures that each actor is eventually executed in order to ensure liveness and that the model
execution is infinite using finite buffers to ensure boundedness of FIFOs. An iteration, which is a sequence
with a minimum number of firings of each actor, is used to validate the above properties. It can be



Computers 2018, 7, 53 4 of 36

solved with a system of balance equations RV(u) × PR(u) = RV(v) × CR(v) where RV(v) is the
number of firings for a source actor u and RV(v) denotes the number of firings for a destination actor
v. For a graph to be consistent, all the entries of a repetition vector (RV) must be non-zero. An example
of an SDF-AP model consisting of two actors (i.e., x and y) and one channel (i.e., c1) is shown in
Figure 1. An actor x fires three times (i.e., RV(x) = 3) per iteration and executes for three clock cycles
(i.e., ET(x) = 3). It produces two tokens at output port (p1) with access pattern [011] which can also be
represented as [(011)1] or as [(0)1(1)2]. This pattern denotes that x produces nothing on the first cycle
and produces two tokens on the last two clock cycles. Generally, the access patterns specify groups
with parenthesis and repetitions with superscript. The sub-pattern (b)n means the binary sequence b
is replicated n times (e.g., [1(01)2=10101]). In the example below, an actor y executes for five clock
cycles (i.e., ET(y) = 5) and fires twice (i.e., RV(y) = 2) per iteration. It consumes three tokens at input
port (q1) with access pattern [10101] which can also be represented as [(10101)1] or as [1(01)2=10101].
This pattern denotes the consumption of three tokens on the the first clock cycle, the the third clock
cycle and the fifth cycle respectively while nothing is consumed on the second and fourth clock cycles.

X Y
[011] [10101]

c1

Figure 1. An SDF-AP model example (ex1).

3. Analysis of SDF-AP Model

The key properties of the model are analysed at compile time. This analysis includes checking the
boundedness, the ability to avoid the deadlock, finding the schedule and computing the buffer size.
A model is bounded if it can be executed infinitely using finite FIFO buffers. Like in the SDF model,
the SDF-AP boundedness exists if there is a finite non-zero number of firings for each actor such that
executing the model the number of times as specified in the repetition vector (i.e., RV) takes it back to
its original state. The SDF-AP model is deadlock-free if each actor can fire without interruption for the
number of times specified in the repetition vector. However, the deadlock-free property for an SDF-AP
model is sufficient but not a necessary condition as often times the actor is fired before all the tokens
are available in the input FIFO buffer.

A bounded schedule which is statically determined at compile time ensures that each actor is
eventually executed (ensuring liveness) and that the execution is infinite using finite buffers (ensuring
boundedness of FIFOs). To ensure that the SDF-AP graph is free from deadlock and that it has
unbounded execution using a bounded buffer, the so-called Periodic Admissible Schedules (PASS) is used.
The PASS defines a schedule as the sequence in which the actors must fire. An admissible schedule
is the firing order that avoids a deadlock and ensures a bounded storage allocation while a periodic
schedule denotes the sequence of firing repeats after every iteration [16]. The following steps outline
how the PASS is created using the SDF-AP model in Figure 1 as an example:

• Step 1. First, we create a topology matrix (TM) of the SDF-AP graph as using Equation (1).
The number of TM rows equals the graph edges (FIFO channels) while the number TM columns
equal the graph nodes (actors). The entry (i, j) at i-th row and j-th column of the TM is positive if
the node j produces tokens into channel i. Furthermore, the entry is negative if node j consumes
tokens from channel i and the rest of the entries are filled with a value 0 to denote the absence of
the edge.

x y
TM = [2 − 3]← edge(x,y) (1)

• Step 2. The existence of PASS is checked by determining the rank of TM which must be one less
than the graph order (also known as the number model actors or graph vertices) and the proof of
this theorem is provided in [12]. The rank is the number of linearly independent vectors in TM
which in this case is 1.



Computers 2018, 7, 53 5 of 36

• Step 3. Since the rank (i.e., =1) of TM is valid in that it is one less than the order of the graph
(i.e., 2), the system has an infinite number of solutions for a firing vector RV. We determine
the simplest solution with the algorithm by Bhattacharyya et al. [17] and the results are shown
in Equation (2).

RV =

[
x
y

]
=

[
3
2

]
(2)

To ensure finite buffer allocation and infinite execution, the product of TM and RV must be zero
as shown in Equation (3).

TM× RV =
[
2 −3

]
×
[

3
2

]
=

[
0
0

]
(3)

• Step 4. Each actor in model is then fired the number of times as specified in RV. If all the firings
for each is successful, the the system is deemed deadlock-free.

The PASS schedule is followed by another schedule of a bounded SDF-AP model execution
which is referred to as a 1-periodic schedule [11]. The 1-periodic schedule is defined as σ(i, j, a) =

σ(0, 0, a) + i · T + j · µ(a) where σ(i, j, a) is the actor schedule at iteration index i ∈ N and actor instance
index j ∈ {0...RV(a)− 1}, σ(0, 0, a) is a start time (scheduling offset) of the first actor instance, iteration
period (or iteration/schedule initiation interval) T ≥ RV(a) · µ(a), and µ(a) is the actor scheduling
period (i.e., interval between successive actor instances in one iteration). The buffer computation
for SDF-AP is briefly explained in [13,14] whereby the constraint formulation is used to iteratively
explore the buffer sizes for FIFO channels to the specified throughput. Wang et al. [11] generalize
this approach and introduce an optimization technique that is based on Integer Linear Programming
(ILP) to minimize communication buffers. In this work, we present in Section 3.2, a method to
formally compute a buffer size using a 1-periodic schedule which can easily be automated in high-level
synthesis tool.

Moreover, an actor is associated with the execution pattern (EP) which is a sequence of binary
elements of an access pattern (AP = {PP, CP}) on the port of actor a ∈ A where it is active
(i.e., firing state) and idle (i.e., non-firing state) for a duration of iteration latency (IL) which will
be explained in Section 3.1. The order of the EP elements is determined by a 1-periodic schedule
where the actor idleness (i.e., σ(i, j, a) = ∅) in the schedule is denoted by 0’s. The EPi,p (resp. EPi,q) is
used to access the i-th element of EP on source (resp. sink) port q (resp. p) of channel c. For example,
in Figure 2 the execution pattern of a source port is

EP∗,p = [ 0 1 1 0 0 1 1 0 0 1 1 0 0 ]

and that of the sink port is

EP∗,q = [ 0 0 0 1 0 1 0 1 1 0 1 0 1 ].

The asterisk (∗) represents the whole vector EP where the individual elements are for example
accessed as follows, the element of EP∗,p at i = 1 is EP1,p = 1 and the element of EP∗,q at i = 1 is
EP1,q = 0. Please note that the elements in bold represent locations where an actor is idle hence its
neither producing nor consuming a token. We also define a token counter (TC) as the sequence of
length IL which represents the total number of tokens that are produced (resp. consumed) (i.e., TCi,p
(resp. TCi,q)) to (resp. from) the channel up to the i-th clock cycle. The TC computation is a trivial
cumulative sum of EP and using the same example of EP vectors above, the token counters for a
channel can be determined as

TC∗,p = [ 0 1 2 2 2 3 4 4 4 5 6 6 6 ]



Computers 2018, 7, 53 6 of 36

and

TC∗,q = [ 0 0 0 1 1 2 2 3 4 4 5 5 6 ].

The elements of a TC that preceded the last element (i.e., locations with indexes less than
IL− 1 increase incrementally while the last elements (i.e., at IL − 1 = 12) of both TC’s are the
equal (i.e., EPIL−1,p = EPIL−1,q = EP12,p = EP12,q = 6) which implies the same number of tokens
produced and consumed on the channel in one iteration as determined by the system of balance
equations presented in Section 2.

3.1. Iteration Latency Computation

We define iteration latency (IL) as the time delay between the start of firing of the model root actor
ar ∈ Asrc and the end of firing of the model sink actor ae ∈ Asnk in one schedule iteration of the SDF-AP
model. IL can be determined by Algorithm 1 whereby its procedure COMPUTEITERATIONLATENCY

accepts graph G and the throughput τG as its parameters. First the temporary sum is initialized to 0,
followed by a traversal of all the channels (c ∈ C) for a model G. For each iteration, the cumulative
sum of the sink actor initial schedule (i.e., σ(0, 0, v)) based on throughput τG constraint. Finally,
the IL is computed by adding csum, the product of repetition vector for a model sink actor less by 1
((RV(ae)− 1) and model sink actor scheduling period µ(ae)), and the execution time for a model sink
actor (i.e., ET(ae)). Using the example in Figure 1, csum and µ(ae) are computed as

csum = σ(0, 0, y) = 3, µ(ae) = µ(y) = 5

and IL becomes

IL = csum + ((RV(ae)− 1)× µ(ae)) + ET(ae)− 1

= csum + ((RV(y)− 1)× µ(y)) + ET(y)− 1

= 4 + ((2− 1)× 5) + 5− 1

= 13

Algorithm 1: Compute the iteration latency (IL) for SDF-AP
Input: An SDF-AP graph G
Input: A throughput τG
Result: An iteration latency IL
1: procedure COMPUTEITERATIONLATENCY (G, τG )
2: csum← 0
3: for each channel c in C do . traverse channels
4: Find σ(0, 0, v) based on τG
5: csum← csum + σ(0, 0, v) + 1
6: end for
7: Find µ(ae) based on τG
8: IL← csum + ((RV(ae)− 1)× µ(ae)) + ET(ae)− 1
9: return IL
10: end procedure

3.2. Buffer Size Computation

To compute the minimal buffer size from a given throughput constraint, the 1-periodic schedule
is determined as in Figure 2 under the throughput constraint of 6 samples per 12 cycles (i.e., δ = 0.5)
where RV(x) = 3 and RV(y) = 2. We use rectangles to represent actor firings and the holes
inside the rectangles are access patterns. A black hole denotes a single token consumption or
production by an actor while the white whole indicates that token consumption or production does



Computers 2018, 7, 53 7 of 36

not occur. Each SDF-AP model iteration is represented by a sequence of actor firing with similar filled
colour, hence the alternating white and shaded firing sequences correspond to individual iterations.
The schedule has actor x which executes once every four clock cycles (i.e., µ(x) = 4) whereas actor y
executes once in five or more clock cycles (µ(y) ≥ 5). The initiation interval of the model execution is
12 cycles (i.e., T = 12), and the iteration latency is 13 cycles (i.e., IL = 13).

0 2 3 4 5

0 1 2 3

1 5 10 15 20 25 30

T = 12

µ(x) = 4

. . .

. . .

X

Y

IL = 13

1 6

Throughput required : 6 samples per 12 cycles. 

Resulting Buffer Size = 2 

Clock

µ(y) = 5

T = 12

Figure 2. The 1-periodic scheduling of SDF-AP for example in Figure 1.

Given a throughput constraint, a valid buffer-size for each model channel can be computed
from the 1-periodic schedule [11] model provided that the system is bounded and deadlock-free.
The throughput τ(a) of an actor a is defined as the average number of firings per unit time and
is determined using τ(a) = (RV(a) · PR(c) or CR(c))/T. It can also be defined as how often the
schedule σ executes, in this case, the throughput formula τ(σ) = 1/T is used where T is an iteration
period. The maximum throughput of the SDF-AP model is only bounded by an actor with the longest
execution time (ET) and calculated as

τmax =
RV(ae)× CR(ce)

RV(ae)× ETmax(a)
=

CR(ce)

ETmax(a)

where ae is a model sink actor (i.e., ae ∈ Asnk), ce is a model sink channel (i.e., ce ∈ Csnk) and ETmax(a)
denotes the maximum execution time of the model actor (i.e., actor a ∈ A with the longest ET(a)).
For example, the maximum throughput of SDF-AP model in Figure 1 is

CR(c1)
ET(y)

=
3
5
= 0.6

We address the problem of buffer size computation of a bounded SDF-AP model execution under
a 1-periodic schedule and a throughput constraint by implementing a buffer sizing algorithm shown in
Algorithm 2. To explain this algorithm, we use the model example in Figure 1. Generally, the algorithm
accepts the throughput constraint τG = 6

12 = 0.5 of the model and returns a set D = {(c, 2)} of
channel-buffer size pairs. First the iteration period T is determined in line 2 as

T = CEIL

(
RV(ae)× CR(ce)

τG

)
= CEIL

(
RV(y)× CR(c1)

τG

)
= CEIL

(
2× 3
0.5

)
= 12

with respect to model sink actor ae ∈ Asnk and model sink channel ce ∈ Csnk (where RV(y) = 2 and
CR(y) = 3). The algorithm continues iteratively (line 3) to find the channel buffer size of each channel
of the SDF-AP model G where there is only one channel (i.e., c1) in this example. To compute the buffer
size for each channel, the initial source actor scheduling period σ(0, 0, u) is initialized to 0 (line 4).
The source actor scheduling period µ(u) remains set (line 5) to the scheduling period µ(vp) of a sink
actor from the predecessor channel if the two conditions (lines 6 and 8) of Algorithm 2 do not hold.
The first condition ensures that µ(u) does not fall below the ET(u) while the second one applies when
the source actor of the channel (i.e., u) is also a root actor in a model (i.e., ar = u ∈ Asrc).



Computers 2018, 7, 53 8 of 36

Algorithm 2: Compute the buffer size for SDF-AP channels
Input: An SDF-AP graph G
Input: A throughput τG
Result: A set D of pairs (channel c, buffer size θ(c))
1: procedure COMPUTEBUFFERSIZE (G, τG )
2: T ← d(RV(ae)× CR(ce))÷ τGe . iteration period T
3: for each channel c in C do . traverse a set of channels C of graph G
4: σ(0, 0, u)← 0 . source actor initial schedule
5: µ(u)← µ(vp) . source scheduling period
6: if (T ÷ RV(u)) < ET(u) then
7: µ(u)← ET(u)
8: else if u ∈ Asrc then
9: µ(u)← T ÷ RV(u) . source scheduling period
10: end if
11: σ(0, 0, v)← TCCR(c),p − CR(c) + 1 . sink actor initial schedule
12: If σ(0, 0, v) < 0 then
13: σ(0, 0, v)← ET(v)− 1
14: else if σ(0, 0, v) = 1 and (σ(0, 0, v) + RV(v)) < (µ(u)× RV(u)) then
15: σ(0, 0, v)← (µ(u)× RV(u))− (CR(c)× RV(v))
16: end if
17: σ(0, 1, v)← TC(2×CR(c)),p − CR(c) + 1 . sink second schedule
18: µ(v)← σ(0, 1, v)− σ(0, 0, v) . Sink scheduling period
19: if σ(0, 1, v)) < σ(0, 0, v) or (σ(0, 1, v)− σ(0, 0, v)) < ET(v) then
20: µ(v)← ET(v) . Sink scheduling period
21: end if
22: θt,c ← an element-wise difference between (TC∗,p ∪ TCIL−1,p) and (0∪ TC∗,q)
23: D ← D ∪ (c, maximum element of set θt,c)
24: end for
25: return D
26: end procedure

Next, the algorithm determines the initial schedule of the first sink actor instance σ(0, 0, v),
calculated in line 11 as

σ(0, 0, y) = TCCR(c1),p − CR(c1) + 1 = 3− 3 + 1 = 1,

and this value remains unchanged as the conditions in lines 12 and 14 do not hold. The initial schedule
of the second sink actor instance σ(0, 1, v) is calculated in line 17 as

σ(0, 1, y) = TC(2×CR(c1)),p − CR(c1) + 1 = 5− 3 + 1 = 3,

and a sink actor scheduling period µ(v) is computed in line 18 as

µ(y) = σ(0, 1, y)− σ(0, 0, y) = 3− 1 = 2.

To allocate the buffer size θt,c in a channel c at clock cycle t ∈ {0...IL}, the number of tokens
consumed prior to t is subtracted from the sum of number of produced tokens up to t and initial delay
dly. Given TC that is computed from EP as explained in Section 3, the vector TC∗,p is extended to
length IL + 1 by appending the last element in line 17 as

TC∗,p ∪ TCIL−1,p = [ 0 1 2 2 2 3 4 4 4 5 6 6 6 6 ]

and the vector TC∗,q is extended to IL + 1 by prepending 0 in line 17 as

0∪ TC∗,q = [ 0 0 0 0 1 1 2 2 3 4 4 5 5 6 ].



Computers 2018, 7, 53 9 of 36

The element-wise difference (line 17) of the two vectors above becomes

θt,c = [ 0 1 2 2 1 2 2 2 1 1 2 1 1 0 ].

This resulting vector θt,c contains the buffer sizes at time t over one iteration period ∀t ∈ {0...IL}.
The optimal buffer size of a channel c is then determined by finding the maximum element of θt,c

which in this case is 2. Generally, the variation in buffer size between successive throughput values
largely depends on the structure of the access pattern and the average number of tokens produced
and consumed over a period of iteration latency IL. The are three possibilities regarding the buffer
size results of the FIFO channel/s as the throughput τi (0 < τi ≤ τmax|i ≤ N samples) increases;
the buffer size either remains constant, increases or decreases with the increased throughput. Given the
two throughput values τ1, τn such that τn > τ1 and their respective computed buffer sizes θ1,c, θn,c

for channel c, the buffer size values θk,c (0 < i ≤ n− 1) computed in the range τ1 ≤ τk ≤ τn are constant

if ratio of the last elements of token counters
(

i.e.,
TC(IL−1),p
TC(IL−1),q

)
at τ1 is respectively equal to the ratio of

last elements of token counters at τn, otherwise the buffer size from τ1 to τn increases or decreases.
Our reason for why there is an increase or decrease when throughput goes high is attributable to the
access patterns as well as the source and sink scheduling periods. Calculating the impact on buffering
is not a straightforward operation due to needing to know these implementation-dependent aspects
on these parameters. This aspect is out of the scope of this paper, but we do plan to take this study on
buffer size further in our future research.

Furthermore, the SDF-AP model example illustrated in Figure 1 is based on a simple acyclic
graph whose analysis, scheduling and buffer computation are straight-forward. For a model with a
cyclic graph, the same methodology for analysis, scheduling, and buffer computation can be used in
the same way as for a model in Figure 1. However, this can only be possible on condition that the
model source (u ∈ Asrc) and sink actors (v ∈ Asnk) are not a subset of cyclic sub-graphs of the model
graph. The limitation of a modeled source and sink actors that are not part of a cycle can be lifted
by connecting these actors to virtual actors with infinite FIFOs. While this limitation aspect is out
of the scope of this paper it will, however, be considered in the more complex examples that will be
presented in our future work.

4. Timed SDF-AP Semantics

The operational semantics of an SDF-AP model is defined by a labelled transition system N [13].
This transition system represents a model for SDF-AP model and its behaviour is easy to analyse and
compare with the model for hardware. A state s = (g, h) of the system is a tuple containing a vector g
that describes the number of tokens in every channel and h associates to each actor a a multi-set h(a)
of tuples of the form (η, κ) ∈ N0 × {w, r,⊥}. Each tuple (η, κ) ∈ h(a) denotes an active actor instance
where η is the number of clock cycles since the start of the execution in one iteration, and κ marks the
stage of an active actor instance within the clock cycle. The stages are divided into three namely idle
⊥, reading r and writing w. When h(a) = ∅, an actor is considered to be inactive.

A transition (s, `, s′) is denoted as s `−→ s′ where s′ is a successor state of s and ` ∈ L is an action
label which belongs to a set of labels L =

{
begin(a), end(a), tick, get(a), put(a)

}
. A transition with

label begin(a) denotes the beginning of firing of a newly added instance of actor a to a list of active
actor instances. The removal of an instance from a list of active actor instances is marked by end(a)
transition when the clock counter has reached ET(a). A transition tick denotes one time unit lapse of
the clock where the clock counter for each actor is increased by 1. The clock counter is paired with a
stage (i.e., (η, κ)) allowing an actor to undergo the respective order of stages ⊥, r, w and back to ⊥ at
the end of firing. The transition labels get(a) (resp. put(a)) correspond a reading from (resp. writing to)
input channels (resp. output channels). The preconditions for each of the labels are fully explained
in [13].



Computers 2018, 7, 53 10 of 36

A transition system for SDF-AP model in Figure 1 is shown in Figure 3 whereby the throughput
constraint is set to 6/12 = 0.5 SPC. The system starts with a begin(x) transition which adds an actor x
instance to active instances in s1. Please note that in s1 actor x is in idle stage as this is the beginning
of firing. A tick transition updates the tick count and a read stage in s2. This is followed by get(x)
transition which leads to token count that remains unchanged as the actor x is a source actor and
consumes no tokens. A put(x) transition does not produce a token because the output pattern 011
begins with 0, as a result the token count does not change. The second tick transition from s4 to s5

increments actor x clock count to 2. The get(x) transition leads to no change in token count while the
put(x) transition increases the token count to 1. An actor execution continues until it reaches end(x)
transition which takes place when the clock transition is 2 (i.e., ET(x) = 2). Note the actor y only begins
after 3 tick transitions and its put(x) transition does not change the token count as it is a sink actor,
however, when it consumes a token, its reduces the current token count in channel c1 by 1. The broken
lines between s23 between sn−7 represent the intermediate states and transitions up to the last tick
(i.e., (n− 1)th) transition. sn−1 marks an end of execution iteration and the transition that follow leads
back to s1, most notably, s0 only occurs once while the rest of the states are repeated infinitely.

Version October 16, 2018 submitted to Computers 10 of 36

label begin(a) denotes the beginning of firing of a newly added instance of actor a to a list of active241

actor instances. The removal of an instance from a list of active actor instances is marked by end(a)242

transition when the clock counter has reached ET(a). A transition tick denotes one time unit lapse of243

the clock where the clock counter for each actor is increased by 1. The clock counter is paired with a244

stage (i.e. (η, κ)) allowing an actor to undergo the respective order of stages ⊥, r , w and back to ⊥ at245

the end of firing. The transition labels get(a) (resp. put(a)) correspond a reading from (resp. writing246

to) input channels (resp. output channels). The preconditions for each of the labels are fully explained247

in [13].248

s0

∅
∅

0

h(x)
h(y)

g(c1)

s1

{(0,⊥)}
∅

0

s2

{(1, r)}
∅

0

s3

{(1, w)}
∅

0

s4

{(1,⊥)}
∅

0

s5

{(2, r)}
∅

0

s6

{(2, w)}
∅

0

s7

{(2,⊥)}
∅

1

s8

{(1, w)}
∅

1

s9

{(2, r)}
∅

1

s10

{(2,⊥)}
∅

2

s11

∅
∅

2

s12

∅
{(0,⊥)}

2

s13

∅
{(1, r)}

2

s14

∅
{(1, w)}

1

s15

∅
{(1, w)}

1

h(x)
h(y)

g(c1)

s16

{(0,⊥)}
{(1,⊥)}

1

h(x)
h(y)

g(c1)

s17

{(1, r)}
{(2, r)}

1

s17

{(1, w)}
{(2, r)}

1

s19

{(1,⊥)}
{(2, r)}

1

s20

{(1,⊥)}
{(2, w)}

1

s21

{(1,⊥)}
{(2,⊥)}

1

s22

{(2, r)}
{(3, r)}

1

s23

{(2, w)}
{(3, r)}

1

sn−7

{(0,⊥)}
{(4,⊥)}

1

sn−6

{(1, r)}
{(5, r)}

1

sn−5

{(1, w)}
{(5, r)}

1

sn−4

{(1,⊥)}
{(5, r)}

1

sn−3

{(1,⊥)}
{(5, w)}

1

sn−2

{(1,⊥)}
{(5,⊥)}

1

sn−1

{(1,⊥)}
∅

1

loop back
to s1

h(x)
h(y)

g(c1)

begin(x) tick get(x) put(x) tick get(x) put(x)

tick

get(x)put(x)end(x)begin(y)tickget(y)put(y)

begin(x)

tick get(x) put(x) get(y) put(y) tick get(x)

tickget(x)put(x)get(y)put(y)end(y)

Figure 3. The transition system of the SDF-AP model example in Figure 2.

A transition system for SDF-AP model in Figure 1 is shown in Figure 3 whereby the throughput249

constraint is set to 6/12 = 0.5 SPC. The system starts with a begin(x) transition which adds an actor x250

instance to active instances in s1. Note that in s1 actor x is in idle stage as this is the beginning of firing.251

A tick transition updates the tick count and a read stage in s2. This is followed by get(x) transition252

which leads to token count that remains unchanged as the actor x is a source actor and consumes no253

tokens. A put(x) transition does not produce a token because the output pattern 011 begins with 0, as a254

result the token count does not change. The second tick transition from s4 to s5 increments actor x clock255

count to 2. The get(x) transition leads to no change in token count while the put(x) transition increases256

the token count to 1. An actor execution continues until it reaches end(x) transition which takes place257

when the clock transition is 2 (i.e. ET(x) = 2). Note the actor y only begins after 3 tick transitions and258

its put(x) transition does not change the token count as it is a sink actor, however, when it consumes a259

token, its reduces the current token count in channel c1 by 1. The broken lines between s23 between260

sn−7 represent the intermediate states and transitions up to the last tick (i.e. (n− 1)th) transition. sn−1261

marks an end of execution iteration and the transition that follow leads back to s1, most notably, s0262

only occurs once while the rest of the states are repeated infinitely.263

Moreover, we constrain every channel of an SDF-AP model as a distinct closed dataflow network in264

which every sink input port is connected to a source input port [18]. This implies that the source actor265

Figure 3. The transition system of the SDF-AP model example in Figure 2.

Moreover, we constrain every channel of an SDF-AP model as a distinct closed dataflow network
in which every sink input port is connected to a source input port [18]. This implies that the source
actor only has the output ports that connect with the sink actor input ports, likewise, the sink actor
only has the input ports that connect with the source actor output ports. The notion of a closed
transition system is further used to simplify the analysis of the transition in that the get(a) (resp. put(a))
transitions of the source (resp. sink) actor can be dropped together with begin(x) and end(x) transitions.
This only leaves the tick, put and get transitions where put and get transitions define token production
and consumption by both source and sink respectively. The put and get transitions only occur when
the corresponding access pattern of the predecessor tick transition is 1 otherwise it is not shown in
the system. A succession of tick transitions with no intermediate put and get denotes idleness of both



Computers 2018, 7, 53 11 of 36

source and sink actors. Each state is labeled using a three-element vector [s, η, g(c)] where s denotes a
state number, η is the count of clock transitions during actor firing and g(c) is the current token count
in channel c. An example of a simplified version of a transition system in Figure 3 is shown in Figure 4.

Version October 16, 2018 submitted to Computers 11 of 36

only has the output ports that connect with the sink actor input ports, likewise, the sink actor only266

has the input ports that connect with the source actor output ports. The notion of a closed transition267

system is further used to simplify the analysis of the transition in that the get(a) (resp. put(a)) transitions268

of the source (resp. sink) actor can be dropped together with begin(x) and end(x) transitions. This269

only leaves the tick, put and get transitions where put and get transitions define token production and270

consumption by both source and sink respectively. The put and get transitions only occur when the271

corresponding access pattern of the predecessor tick transition is 1 otherwise it is not shown in the272

system. A succession of tick transitions with no intermediate put and get denotes idleness of both273

source and sink actors. Each state is labeled using a three-element vector [s, η, g(c)] where s denotes a274

state number, η is the count of clock transitions during actor firing and g(c) is the current token count275

in channel c. An example of a simplified version of a transition system in Figure 3 is shown in Figure 4.276

[0,0,0] [1,1,0] [2,2,0] [3,2,1] [4,3,1] [5,3,2] [6,4,2] [7,4,1]

[8,5,1][9,6,1][10,6,2][11,6,1][n− 2,12,1][n− 1,12,1]

tick tick put tick put tick get

tick

tickputgettick

get

Figure 4. The simplified transition system of the SDF-AP model example in Figure 2.

We adopt the concept of the observable behaviour [18] of the transition system. Denoted by ρ, the
observable behaviour groups a set of labels (i.e. L = {tick, put, get}) as a sequence α0α1α2... such that
αi is tick and either or none of put and get actions. The corresponding observable behaviour for the
simplified transition system in Figure 4 is shown below

ωN = tick ·
(

tick · {put} · tick · {put} · tick · {get} · tick · tick · {put, get} ... tick · {get}
)∞

where ρ∞ represent the infinite repetition of a sequence ρ.277

4. Hardware Implementation278

In this section, we present the composition of IP blocks from SDF-AP model and generation of279

hardware code that runs on the FPGA. The hardware implementation begins right after the analyses,280

validation, and scheduling of the SDF-AP model. Instead of using the traditional hardware generation281

approach which relies upon correct-by-construction methods, our approach guarantees the efficiency282

of the results which conform to the original application specifications. The design conformance is283

ensured through the formal analysis of how a generated hardware model faithfully implements its284

specification as captured in the SDF-AP model is discussed in Section 6.285

4.1. Hardware Dataflow Actors286

To implement the SDF-AP model in hardware, each SDF-AP actor becomes a block of logic which287

encapsulates its own state that cannot be shared among other blocks in the network. The block of288

logic is also known as an IP core (or hardware (HW) block) and it has handshaking communication289

ports both on the input and output interface. For each HW block to execute, it must obey all the firing290

rules of an actor as specified by the SDF-AP model. All the HW blocks are expected to be synchronous291

to a fundamental clock (clk) input port and can be reset asynchronously via a reset input port. The292

input data is received on data-in (din) input port when the value of valid-in (en) input port is set293

high. Furthermore, an output data is sent through data-out (dout) output port when the value of the294

valid-out (vld) output port is set high to denote a valid output data.295

Figure 4. The simplified transition system of the SDF-AP model example in Figure 2.

We adopt the concept of the observable behaviour [18] of the transition system. Denoted by ρ,
the observable behaviour groups a set of labels (i.e., L = {tick, put, get}) as a sequence α0α1α2... such
that αi is tick and either or none of put and get actions. The corresponding observable behaviour for the
simplified transition system in Figure 4 is shown below

ωN = tick ·
(

tick · {put} · tick · {put} · tick · {get} · tick · tick · {put, get} ... tick · {get}
)∞

where ρ∞ represent the infinite repetition of a sequence ρ.

5. Hardware Implementation

In this section, we present the composition of IP blocks from SDF-AP model and generation of
hardware code that runs on the FPGA. The hardware implementation begins right after the analyses,
validation, and scheduling of the SDF-AP model. Instead of using the traditional hardware generation
approach which relies upon correct-by-construction methods, our approach guarantees the efficiency
of the results which conform to the original application specifications. The design conformance is
ensured through the formal analysis of how a generated hardware model faithfully implements its
specification as captured in the SDF-AP model is discussed in Section 7.

5.1. Hardware Dataflow Actors

To implement the SDF-AP model in hardware, each SDF-AP actor becomes a block of logic which
encapsulates its own state that cannot be shared among other blocks in the network. The block of
logic is also known as an IP core (or hardware (HW) block) and it has handshaking communication
ports both on the input and output interface. For each HW block to execute, it must obey all the
firing rules of an actor as specified by the SDF-AP model. All the HW blocks are expected to be
synchronous to a fundamental clock (clk) input port and can be reset asynchronously via a reset input
port. The input data is received on data-in (din) input port when the value of valid-in (en) input port is
set high. Furthermore, an output data is sent through data-out (dout) output port when the value of
the valid-out (vld) output port is set high to denote a valid output data.

5.2. Hardware Dataflow Channels

The actors of the SDF-AP model use unidirectional channels to communicate tokens to each
other. The channel is mapped to a physical FIFO buffer that is typically implemented as distributed
or block RAM in FPGA. The allocated buffer size for each FIFO is determined using the Algorithm 2.
The FIFO is also regarded as a fixed HW block with the generic parameters (such as a customizable
data width and storage depth) and their values can be changed during synthesis of the VHDL code.
In addition to clk, rst, din, vld, and dout ports, the FIFO has input and output handshaking ports namely



Computers 2018, 7, 53 12 of 36

write-enable (we) input port which is set by a source HW block to enable the FIFO write operation and
the read-enable (re) input port which is set by a sink HW block to request the read of data sample from
a FIFO. There are also status ports which include the fifo-empty (em) and a fifo-full (fl). em indicates
that there are no stored data samples in the FIFO and fl asserts when the FIFO buffer is full. An empty
FIFO will not output a valid data when vld port is set high, similarly, the FIFO will not allow write
operation when we port is set high.

5.3. Hardware Design

The SDF-AP model may be closest to the hardware in contrast to other SDF-based models but
its implementation on hardware is not as trivial as it may seem. Like most dataflow models, SDF-AP
model is asynchronous and abstracts most of the hardware behaviour, therefore, making it suitable
for high-level application description. It performs analysis of timing (i.e., token consumptions and
productions) and performance (i.e., such throughput, latency and buffer sizes) properties which are
often difficult to analyse at the low-level of hardware description. However, it has no prior knowledge
of the low-level models of hardware implementation such as the finite state machines, datapath
components, multiplexers, LUTs, pipeline registers etc. In this work, we put more emphasis on the
synchronous finite-state machine (FSM) as it is the most dominant model in the generated hardware
design. It is evident that there is a huge semantic gap between a dataflow model and hardware and
this complicates the correct implementation of the hardware.

Our first step towards hardware design is by an illustration of the expected hardware design in
Figure 5 which is implemented from the SDF-AP example in Figure 1. Each HW block in Figure 5 has
the input and output ports which connect to other blocks using signals or wires. The signals in Figure 5
are of output type which makes the system compliant with a Moore machine. The ports which are not
shown in HW blocks X and Y interface with the external systems. These ports are either system input
ports or system output ports which form a top-level entity of the VHDL design as shown in Listing 1.

vld

dout

clk rst

X
en

din
Y

vld

dout

clk rst

we

din
FIFO

em fl re

Controller

clk rst

clk rst

Figure 5. The hardware design of SDF-AP (based on Figure 1).

The input signals en and din of the HW block X allow input data to be received by the system while
signals vld and dout of block Y send the data out of the system. All the blocks connect to the fundamental
system signals rst and clk. The top-level entity description is followed by the behavioural description
which composes of two the HW blocks (i.e., X and Y) using a FIFO buffer of size 2. In this example,
the HW blocks have been described in VHDL "by hand". In real-world applications, some blocks
may be acquired from a library of IP cores which are provided by mainstream commercial VLSI
vendors such Xilinx, Altera etc or the open-source development communities such OpenCores [19],
GRLIB [20,21], etc. The VHDL code in Listing 2 is an extract from the system architecture description
in Figure 5.



Computers 2018, 7, 53 13 of 36

Listing 1. A top-level entity of the hardware design in Figure 5.

Version October 16, 2018 submitted to Computers 13 of 36

1 library IEEE;
2 use ieee.std_logic_1164.all;
3 use ieee.std_logic_unsigned.all;
4 entity sdfapv0 is
5 port (
6 clk : in std_logic;
7 rst : in std_logic;
8 en : in std_logic;
9 din : in std_logic_vector(7 downto 0);

10 vld : out std_logic;
11 dout : out std_logic_vector(7 downto 0)
12 );
13 end;

Listing 1: A top-level entity of the hardware design in Figure 5

blocks may be acquired from a library of IP cores which are provided by mainstream commercial VLSI332

vendors such Xilinx, Altera etc or the open-source development communities such OpenCores [19],333

GRLIB [20,21], etc. The VHDL code in Listing 2 is an extract from the system architecture description334

in Figure 5. First, the input registers of the source block X are connected to top-level entity ports

1 architecture rtl of sdfapv0 is
2 ... -- hidden register and component declaration
3 begin
4 xInst_en_i <= en;
5 xInst_din_i <= din;
6 xInst : x port map ( ... );
7 yInst : y port map ( ... );
8 xInst_yInst_ch1 : fifo
9 generic map (DATA_WIDTH => 8, FIFO_DEPTH => 2)

10 port map ( ... );
11 xInst_yInst_ch1_we <= xInst_vld_o;
12 xInst_yInst_ch1_din <= xInst_dout_o;
13 yInst_en_i <= xInst_yInst_ch1_vld;
14 yInst_din_i <= xInst_yInst_ch1_dout;
15 ... -- process definition hidden
16 vld <= yInst_vld_o;
17 dout <= yInst_dout_o;
18 end;

Listing 2: The architecture description of the hardware design in Figure 5

335

and then followed by the instantiation of the HW blocks and FIFO channel. The interfacing of the336

HW blocks with the FIFO is a combinational assignment of output signals (lines 11-14). The process337

implements the FSM that controls the flow of data to or from the FIFO and the details of how it is built338

are presented in Section 5. The last two lines route data samples to the external environment of the339

system. The FIFO buffer stores and stalls the samples such that the strict pattern matching of SDF-AP340

can be achieved under the 1-periodic schedule and throughput constraints. This pattern matching is341

relative to specific triggering of actor firings at specific clock cycles and this is facilitated by the FIFO342

controller in Figure 5 that is realized using a VHDL process.343

The correct functional operation of the implemented hardware design in accordance with the344

schedule in Figure 2 is described by the timing diagram in Figure 6. For the sake of brevity, we exclude345

din and dout buses of the HW blocks, and instead use the status and control signals. The signals are346

labelled according to the HW blocks (i.e. X = source HW block, FF = FIFO buffer, Y = sink HW block) to347

which they belong. For example, Xvld refers to vld signal of the HW block X. From the timing diagram348

shown in Figure 6 it is clear that the Xvld and Yen signals correspond to the execution patterns of the349

source port and the sink port (i.e. EP∗,p and EP∗,q) as previously defined in Section 2. It is noteworthy350

to observe that Xvld and FFwe are similar as they connect to each other directly, hence forming a single351

signal which we call w. Similarly, the FFvld and Yen are the same as they connect to each other directly352

Listing 2. The architecture description of the hardware design in Figure 5.

Version October 16, 2018 submitted to Computers 13 of 36

1 library IEEE;
2 use ieee.std_logic_1164.all;
3 use ieee.std_logic_unsigned.all;
4 entity sdfapv0 is
5 port (
6 clk : in std_logic;
7 rst : in std_logic;
8 en : in std_logic;
9 din : in std_logic_vector(7 downto 0);

10 vld : out std_logic;
11 dout : out std_logic_vector(7 downto 0)
12 );
13 end;

Listing 1: A top-level entity of the hardware design in Figure 5

blocks may be acquired from a library of IP cores which are provided by mainstream commercial VLSI332

vendors such Xilinx, Altera etc or the open-source development communities such OpenCores [19],333

GRLIB [20,21], etc. The VHDL code in Listing 2 is an extract from the system architecture description334

in Figure 5. First, the input registers of the source block X are connected to top-level entity ports

1 architecture rtl of sdfapv0 is
2 ... -- hidden register and component declaration
3 begin
4 xInst_en_i <= en;
5 xInst_din_i <= din;
6 xInst : x port map ( ... );
7 yInst : y port map ( ... );
8 xInst_yInst_ch1 : fifo
9 generic map (DATA_WIDTH => 8, FIFO_DEPTH => 2)

10 port map ( ... );
11 xInst_yInst_ch1_we <= xInst_vld_o;
12 xInst_yInst_ch1_din <= xInst_dout_o;
13 yInst_en_i <= xInst_yInst_ch1_vld;
14 yInst_din_i <= xInst_yInst_ch1_dout;
15 ... -- process definition hidden
16 vld <= yInst_vld_o;
17 dout <= yInst_dout_o;
18 end;

Listing 2: The architecture description of the hardware design in Figure 5

335

and then followed by the instantiation of the HW blocks and FIFO channel. The interfacing of the336

HW blocks with the FIFO is a combinational assignment of output signals (lines 11-14). The process337

implements the FSM that controls the flow of data to or from the FIFO and the details of how it is built338

are presented in Section 5. The last two lines route data samples to the external environment of the339

system. The FIFO buffer stores and stalls the samples such that the strict pattern matching of SDF-AP340

can be achieved under the 1-periodic schedule and throughput constraints. This pattern matching is341

relative to specific triggering of actor firings at specific clock cycles and this is facilitated by the FIFO342

controller in Figure 5 that is realized using a VHDL process.343

The correct functional operation of the implemented hardware design in accordance with the344

schedule in Figure 2 is described by the timing diagram in Figure 6. For the sake of brevity, we exclude345

din and dout buses of the HW blocks, and instead use the status and control signals. The signals are346

labelled according to the HW blocks (i.e. X = source HW block, FF = FIFO buffer, Y = sink HW block) to347

which they belong. For example, Xvld refers to vld signal of the HW block X. From the timing diagram348

shown in Figure 6 it is clear that the Xvld and Yen signals correspond to the execution patterns of the349

source port and the sink port (i.e. EP∗,p and EP∗,q) as previously defined in Section 2. It is noteworthy350

to observe that Xvld and FFwe are similar as they connect to each other directly, hence forming a single351

signal which we call w. Similarly, the FFvld and Yen are the same as they connect to each other directly352

First, the input registers of the source block X are connected to top-level entity ports and then
followed by the instantiation of the HW blocks and FIFO channel. The interfacing of the HW blocks
with the FIFO is a combinational assignment of output signals (lines 11–14). The process implements the
FSM that controls the flow of data to or from the FIFO and the details of how it is built are presented in
Section 6. The last two lines route data samples to the external environment of the system. The FIFO
buffer stores and stalls the samples such that the strict pattern matching of SDF-AP can be achieved
under the 1-periodic schedule and throughput constraints. This pattern matching is relative to specific
triggering of actor firings at specific clock cycles and this is facilitated by the FIFO controller in Figure 5
that is realized using a VHDL process.

The correct functional operation of the implemented hardware design in accordance with the
schedule in Figure 2 is described by the timing diagram in Figure 6. For the sake of brevity, we exclude
din and dout buses of the HW blocks, and instead use the status and control signals. The signals are



Computers 2018, 7, 53 14 of 36

labelled according to the HW blocks (i.e., X = source HW block, FF = FIFO buffer, Y = sink HW block) to
which they belong. For example, Xvld refers to vld signal of the HW block X. From the timing diagram
shown in Figure 6 it is clear that the Xvld and Yen signals correspond to the execution patterns of the
source port and the sink port (i.e., EP∗,p and EP∗,q) as previously defined in Section 3. It is noteworthy
to observe that Xvld and FFwe are similar as they connect to each other directly, hence forming a single
signal which we call w. Similarly, the FFvld and Yen are the same as they connect to each other directly
and they are both a 180◦ phase shifted versions of FFre. We call the direct connection of FFvld and Yen

ports the output signal e.

Version October 16, 2018 submitted to Computers 14 of 36

and they are both a 180◦ phase shifted versions of FFre. We call the direct connection of FFvld and Yen353

ports the output signal e.354

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

clk

Xvld

FFwe

FFem

FFfl

FFre

FFvld

Yen

Figure 6. Timing diagram of a source actor, the FIFO channel and a sink actor (based on Figure 5).

5. Hardware Model Using Finite State Machines355

We model the low-level of hardware design abstraction as finite-state machines (FSMs) that are356

based on a Moore machine. An FSM is a 6-tuple M = (I, O, S, s0, δ, λ) where I and O represent the finite357

input and output space respectively (i.e. boolean input/output signals of M). S is a set of finite states358

where s0 ∈ S is the initial state; δ : S× I → S is the next state (transition) function and λ : S× I → O is359

the output function. An FSM M is a Moore machine if the all the output signals depend on the present360

state and not the values of its inputs, hence the output function becomes λ : S→ O = {0, 1}. This type361

of FSM is also said to be closed [18] due to the fact that the set of its input signals is empty (i.e. I = ∅).362

On the other hand, M is open if I 6= ∅.363

A set of behaviours as defined by a closed FSM M are of the form s0
a0/b0−−−→ s1

a1/b1−−−→ s2
a2/b2−−−→ · · ·364

where si ∈ S denotes the current state, ai ∈ I is the current state input assignment, si+1 = δ(ai, bi)365

is the next state, bi = λ(si, ai) ∈ O is the the current state output assignment. The states occur at366

synchronous clock cycle i and the observable behaviour of M is defined as (a0, b0)(a1, b1)(a2, b2) · ·· [18].367

Clearly, the closed FSM defines a set of behaviours in a form of s0
b0−→ s1

b1−→ s2
b2−→ · · · and the closed368

observable behaviour becomes (b0)(b1)(b2) · ··.369

5.1. FSM Composition370

The composition of FSMs leads to a single FSM with a set of states which is the product of the371

set of states of FSMs of the HW blocks in the system. For a closed FSM which we use in this work,372

each composite state has output signals with propagation that is instantaneous. The transition from373

the present state to the next takes place on every rising edge of the system clock. An example of a374

composite FSM M = MX ×MFF ×MY is shown in Figure 7b. Figure 7a is the black-box representation375

of M which is composed of the source HW block FSM (i.e. MX), FIFO buffer FSM (i.e. MFF) and a sink376

HW block FSM (i.e. MY). Since M is a Moore machine, it only has outputs signals namely write-enable377

w, data-valid v and read-enable r as defined in Section 4.3. The upper half of each state labels the state378

si where i = {0...N − 1} and N is the total number of states. The lower half of each state is either a379

single-dimensional or a two-dimensional vector of the output signals w, r, and v. A format wrv is used380

to represent a single-dimensional vector and a two-dimensional vector of a single state is represented381

in a form of [wirivi w1r1v1 w2r2v2 ... wN−1rN−1vN−1] that has a sequential order. This two-dimensional382

vector is therefore associated with a state that has a loop transition and the vector length equals the383

Figure 6. Timing diagram of a source actor, the FIFO channel and a sink actor (based on Figure 5).

6. Hardware Model Using Finite State Machines

We model the low-level of hardware design abstraction as finite-state machines (FSMs) that are
based on a Moore machine. An FSM is a 6-tuple M = (I, O, S, s0, δ, λ) where I and O represent the finite
input and output space respectively (i.e., boolean input/output signals of M). S is a set of finite states
where s0 ∈ S is the initial state; δ : S× I → S is the next state (transition) function and λ : S× I → O is
the output function. An FSM M is a Moore machine if the all the output signals depend on the present
state and not the values of its inputs, hence the output function becomes λ : S→ O = {0, 1}. This type
of FSM is also said to be closed [18] due to the fact that the set of its input signals is empty (i.e., I = ∅).
On the other hand, M is open if I 6= ∅.

A set of behaviours as defined by a closed FSM M are of the form s0
a0/b0−−−→ s1

a1/b1−−−→ s2
a2/b2−−−→ · · ·

where si ∈ S denotes the current state, ai ∈ I is the current state input assignment, si+1 = δ(ai, bi)

is the next state, bi = λ(si, ai) ∈ O is the the current state output assignment. The states occur at
synchronous clock cycle i and the observable behaviour of M is defined as (a0, b0)(a1, b1)(a2, b2) · ·· [18].

Clearly, the closed FSM defines a set of behaviours in a form of s0
b0−→ s1

b1−→ s2
b2−→ · · · and the closed

observable behaviour becomes (b0)(b1)(b2) · ··.

6.1. FSM Composition

The composition of FSMs leads to a single FSM with a set of states which is the product of the
set of states of FSMs of the HW blocks in the system. For a closed FSM which we use in this work,
each composite state has output signals with propagation that is instantaneous. The transition from
the present state to the next takes place on every rising edge of the system clock. An example of a
composite FSM M = MX ×MFF ×MY is shown in Figure 7b. Figure 7a is the black-box representation
of M which is composed of the source HW block FSM (i.e., MX), FIFO buffer FSM (i.e., MFF) and a sink
HW block FSM (i.e., MY). Since M is a Moore machine, it only has outputs signals namely write-enable
w, data-valid v and read-enable r as defined in Section 5.3. The upper half of each state labels the state
si where i = {0...N − 1} and N is the total number of states. The lower half of each state is either a
single-dimensional or a two-dimensional vector of the output signals w, r, and v. A format wrv is used



Computers 2018, 7, 53 15 of 36

to represent a single-dimensional vector and a two-dimensional vector of a single state is represented
in a form of [wirivi w1r1v1 w2r2v2 ... wN−1rN−1vN−1] that has a sequential order. This two-dimensional
vector is therefore associated with a state that has a loop transition and the vector length equals the
number of times iterated by the loop transition in synchronous to the system clock. The values of
all the three output signals are obtained using the 1-periodic schedule as explained in Section 5.3.
Generally, for every valid execution schedule that leads to a finite buffer size such as the one in Figure 2,
the composite FSM can be correctly constructed by matching the source actor execution pattern EP∗, p
to the output signal w, and the sink actor execution pattern EP∗, q to the output signal v. Please note
that the output signal r is the −180◦ phase-shifted version of output signal v.

Version October 16, 2018 submitted to Computers 15 of 36

number of times iterated by the loop transition in synchronous to the system clock. The values of all the384

three output signals are obtained using the 1-periodic schedule as explained in Section 4.3. Generally,385

for every valid execution schedule that leads to a finite buffer size such as the one in Figure 2, the386

composite FSM can be correctly constructed by matching the source actor execution pattern EP∗, p to387

the output signal w, and the sink actor execution pattern EP∗, q to the output signal v. Note that the388

output signal r is the −180◦ phase-shifted version of output signal v.389

MX MFF MY

w

v

r

(a) Composite FSM structure using three FSMs:
MX , MFF and MY .

s0

[000]

s1

100

s2

110

s3

001

s4

010

s5

101

s6

110

s7

011

s8

001

s9

110

s10

101

s11

010

s12

001

v = 1

v = 0

(b) Behavior of a Composite FSM M = MX ×MFF ×MY

Figure 7. The composite FSM M is constructed using FSMs MX , MFF and MY by using the computed
1-periodic schedule in Figure 2. The vectors in lower half of each state represent the respective output
signals w, r and v in that state.

The FSM M example in Figure 7b has features which are key to understanding execution properties390

of a generated hardware system. First, it is important to note that the order of transitions in M is391

sequential where each transition is synchronous to a fundamental system clock. The initial finite392

sequence of states and transitions is called the startup phase, and followed by this is another sequence393

which repeats infinitely and is referred to as a periodic phase. The output signals of the states in the394

startup phase are in the form of a two-dimensional vector where all their values are set to 0 (i.e.395

w = r = v = 0). In our example, there is only one state (i.e. s0) and one transition in this phase. The396

periodic phase has 12 states and transitions starting from s1 to s12.397

The iteration period T is determined by counting the number of transitions in the period phase of
FSM M phase in Figure 7b. Furthermore, the number of data samples produced (resp. consumed) to
(resp. from) the output (resp. input) channel correspond to number of output signal w (resp. v) where
their values is set high (i.e. w = v = 1 ). The produced samples are always equal to the consumed
samples and in our example we obtain 12. The throughput is determined by dividing the count of
one of the output signals (i.e. w or v or r where its value is set to 1) by number of transitions in the
periodic phase where in our example we obtain the throughput value of 6/12 = 0.5 measured in
samples per cycle (SPC). The iteration latency (IL) is the sum of all the the transitions in the startup
phase and periodic phase and in the example of Figure 7 IL is 13. An observable behaviour of the
closed M therefore becomes

ωM = (w̄r̄v̄)
(
(wr̄v̄)(wrv̄)(w̄r̄v)(w̄rv̄)(wr̄v)(wrv̄)(w̄rv)(w̄r̄v)(wrv̄)(wr̄v)(w̄rv̄)w̄r̄v)

)∞

= (000)
(
(100)(110)(001)(010)(101)(110)(011)(001)(110)(101)(010)(001)

)∞

Figure 7. The composite FSM M is constructed using FSMs MX , MFF and MY by using the computed
1-periodic schedule in Figure 2. The vectors in lower half of each state represent the respective output
signals w, r and v in that state.

The FSM M example in Figure 7b has features which are key to understanding execution properties
of a generated hardware system. First, it is important to note that the order of transitions in M is
sequential where each transition is synchronous to a fundamental system clock. The initial finite
sequence of states and transitions is called the startup phase, and followed by this is another sequence
which repeats infinitely and is referred to as a periodic phase. The output signals of the states in
the startup phase are in the form of a two-dimensional vector where all their values are set to 0
(i.e., w = r = v = 0). In our example, there is only one state (i.e., s0) and one transition in this phase.
The periodic phase has 12 states and transitions starting from s1 to s12.

The iteration period T is determined by counting the number of transitions in the period phase of
FSM M phase in Figure 7b. Furthermore, the number of data samples produced (resp. consumed) to
(resp. from) the output (resp. input) channel correspond to number of output signal w (resp. v) where
their values is set high (i.e., w = v = 1). The produced samples are always equal to the consumed
samples and in our example we obtain 12. The throughput is determined by dividing the count of
one of the output signals (i.e., w or v or r where its value is set to 1) by number of transitions in the
periodic phase where in our example we obtain the throughput value of 6/12 = 0.5 measured in
samples per cycle (SPC). The iteration latency (IL) is the sum of all the the transitions in the startup
phase and periodic phase and in the example of Figure 7 IL is 13. An observable behaviour of the
closed M therefore becomes

ωM = (w̄r̄v̄)
(
(wr̄v̄)(wrv̄)(w̄r̄v)(w̄rv̄)(wr̄v)(wrv̄)(w̄rv)(w̄r̄v)(wrv̄)(wr̄v)(w̄rv̄)w̄r̄v)

)∞

= (000)
(
(100)(110)(001)(010)(101)(110)(011)(001)(110)(101)(010)(001)

)∞

where ()∞ denotes the periodic phase of M.



Computers 2018, 7, 53 16 of 36

The FSM M in Figure 7 implements the control logic that enables the sink HW block to read data
from the FIFO. Since the buffer holds data for a finite period of time until the sink block is ready
to read it, the controller determines the exact clock times when this should happen as specified in
the consumption execution pattern (EP∗,q). Writing data to the FIFO block does not require the FSM
control logic as the allocated buffer size of the FIFO buffer is sufficient to store the received data from
source HW block. Therefore a direct asynchronous connection of Xvld to FFwe is sufficient to write the
data samples into a FIFO buffer. Implementing a controller involves a sequential description of the
FSM M inside the process in VHDL as shown in Listing 3.

Listing 3. The process implementation of the FSM M for hardware design in Figure 5.

Version October 16, 2018 submitted to Computers 16 of 36

where ()∞ denotes the periodic phase of M.398

The FSM M in Figure 7 implements the control logic that enables the sink HW block to read data399

from the FIFO. Since the buffer holds data for a finite period of time until the sink block is ready400

to read it, the controller determines the exact clock times when this should happen as specified in401

the consumption execution pattern (EP∗,q). Writing data to the FIFO block does not require the FSM402

control logic as the allocated buffer size of the FIFO buffer is sufficient to store the received data from403

source HW block. Therefore a direct asynchronous connection of Xvld to FFwe is sufficient to write the404

data samples into a FIFO buffer. Implementing a controller involves a sequential description of the405

FSM M inside the process in VHDL as shown in Listing 3. As mentioned above, a startup phase only

1 xInst_yInst_ch1_proc : process(rst, clk)
2 begin
3 if rst = '1' then
4 ... --reset process registers
5 elsif clk'EVENT and clk = '1' then
6 ... -- hidden code
7 case xInst_yInst_ch1_state is
8 when b"0000" =>
9 xInst_yInst_ch1_re <= '0';

10 xInst_yInst_ch1_state <= b"0000";
11 if xInst_vld_o = '1' then
12 xInst_yInst_ch1_re <= '1';
13 xInst_yInst_ch1_state <= b"0010";
14 end if;
15 when b"0001" =>
16 xInst_yInst_ch1_re <= '1';
17 xInst_yInst_ch1_state <= b"0010";
18 when b"0010" =>
19 xInst_yInst_ch1_re <= '0';
20 xInst_yInst_ch1_state <= b"0011";
21 when b"0011" =>
22 xInst_yInst_ch1_re <= '1';
23 xInst_yInst_ch1_state <= b"0100";
24 when b"0100" =>
25 xInst_yInst_ch1_re <= '0';
26 xInst_yInst_ch1_state <= b"0101";
27 when b"0101" =>

28 xInst_yInst_ch1_re <= '1';
29 xInst_yInst_ch1_state <= b"0110";
30 when b"0110" =>
31 xInst_yInst_ch1_re <= '1';
32 xInst_yInst_ch1_state <= b"0111";
33 when b"0111" =>
34 xInst_yInst_ch1_re <= '0';
35 xInst_yInst_ch1_state <= b"1000";
36 when b"1000" =>
37 xInst_yInst_ch1_re <= '1';
38 xInst_yInst_ch1_state <= b"1001";
39 when b"1001" =>
40 xInst_yInst_ch1_re <= '0';
41 xInst_yInst_ch1_state <= b"1010";
42 when b"1010" =>
43 xInst_yInst_ch1_re <= '1';
44 xInst_yInst_ch1_state <= b"1011";
45 when b"1011" =>
46 xInst_yInst_ch1_re <= '0';
47 xInst_yInst_ch1_state <= b"1100";
48 when b"1100" =>
49 xInst_yInst_ch1_re <= '0';
50 xInst_yInst_ch1_state <= b"0001";
51 when others => null;
52 end case;
53 end if;
54 end process;

Listing 3: The process implementation of the FSM M for hardware design in Figure 5.

406

consists of the first state (i.e. s0) of M which corresponds to the state “0000” in VHDL. A transition407

from the startup phase to the periodic phase takes place when the HW block X produces the first408

sample. This is detected by M when the value of the output signal Xvld is set high thereby moving the409

M to the second state where the periodic phase starts. The register state (i.e. xInst_yInst_ch1_state in410

VHDL) keeps track of the next state of FSM M.411

5.2. FSM Optimizations412

In very large and complex systems, the composition of states often has an exponential growth413

of the size of the system state space leading to a problem known as state explosion. The drawback of414

this problem is a significant waste of hardware resources which eventually lead to hardware system415

failure. For example, in Xilinx ISE, this common error “ERROR: Portability:3 - This Xilinx application416

has run out of memory or has encountered a memory conflict...” is reported after FPGA synthesis failure as417

a result of FSMs that are too big. In order to avoid this problem, we exploit some characteristics of418

the FSM M in order to reduce too many state variables while also optimizing for significant cut-down419

of utilized hardware resources. Below we propose four types of optimizations with results trade-off420

between resource utilization and performance that can be used by the designer to explore the best421

solution space that meets the application requirements.422

As mentioned above, a startup phase only consists of the first state (i.e., s0) of M which corresponds
to the state “0000” in VHDL. A transition from the startup phase to the periodic phase takes place when
the HW block X produces the first sample. This is detected by M when the value of the output signal
Xvld is set high thereby moving the M to the second state where the periodic phase starts. The register
state (i.e., xInst_yInst_ch1_state in VHDL) keeps track of the next state of FSM M.

6.2. FSM Optimizations

In very large and complex systems, the composition of states often has an exponential growth of
the size of the system state space leading to a problem known as state explosion. The drawback of this
problem is a significant waste of hardware resources which eventually lead to hardware system failure.
For example, in Xilinx ISE, this common error “ERROR: Portability:3 - This Xilinx application has run out
of memory or has encountered a memory conflict...” is reported after FPGA synthesis failure as a result of
FSMs that are too big. To avoid this problem, we exploit some characteristics of the FSM M in order
to reduce too many state variables while also optimizing for significant cut-down of used hardware
resources. Below we propose four types of optimizations with results trade-off between resource use
and performance that can be used by the designer to explore the best solution space that meets the
application requirements.



Computers 2018, 7, 53 17 of 36

6.2.1. First Optimization

The first optimization (opt1) aims to reduce the number of FSM states by exploiting what we refer
to as gaps and the periodicity of the schedule in Figure 2. A gap occurs where there are stalls in the
execution of a sink actor, more specifically, this refers to where the output signal v = 0 and there is no
sink actor schedule (i.e., σ(i, j, v) = ∅). The gap can be of the three types namely a startup gap (SG),
a firing gap (FG) and an iteration gap (IG). The SG occurs during the startup phase of the system and
is computed as SG = σ(0, 0, v) where σ(0, 0, v) is the initial schedule of the sink actor. For example,
in Figure 2 the SG = 3 and this occurs from clock cycle 1 to 3. FG is the time delay between two
consecutive sink actor firings in one iteration and is determined as FG = µ(v)− ET(v) where µ(v) is
the sink actor scheduling period and ET(v) represents the execution time of the sink actor. FG is 0 in
Figure 2 as µ(v) is equal to ET(v). Moreover, IG refers to the time delay between two consecutive sink
schedule iterations and can be computed using FG = T − (µ(v)× (RV(v)− 1)) + ET(v) where T is
the schedule period and RV(v) is the repetition vector of the sink actor. In Figure 2, IG is 2 and this
occurs at clock cycles 14 and 15. All the three gaps SG, FG and IG use respective counters sgc, f gc and
igc to create a timing delay.

Another feature of the schedule to exploit is the periodicity of the output signal r. The periodic
sequence of r has the length that is equivalent to ET(v) and is repeated RV(v) times per iteration.
Instead of creating ET(v) × RV(v) states needed where the sink actor does not stall (i.e., where it
executes), we reduce this the number of states to ET(v) states by using a counter jc for sink actor
firings in a schedule iteration. jc is incremented at the end of each firing, therefore, enabling firing
states (i.e., where there are no gaps) to be iterated RV(v) times. The five types of states which are used
to implement the optimized version of the FSM Mopt1 in this section are tabulated in Table 1. s0 is the
initial state, ssg is the state type that is used for startup gap, sk realizes periodic firing sequences as
defined using a 1-periodic schedule, s f g state type is used for firing gap and lastly the sig implements
the iteration gap. Please note that s0 and ssg occur in the startup phase while sk, s f g and ssg constitute
the periodic phase of the FSM. Each state type is associated with four properties namely time delay,
multiplicity, whether it has a loop transition or not and the condition for the next state transition.
The time delay specifies the number of clock ticks it takes for the present state of the particular state
type to execute before the transition to the next state. To describe the types of vectors (i.e., single or
two-dimensional vectors containing values of the output signals) corresponding to states per state
type, the multiplicity that takes three forms is used. 1..1 specifies a one-dimensional vector of exactly
one-clock delay. [0..∗] denotes a two-dimensional vector of output signals which may either be zero or
many in a single state type. The last multiplicity of the form [1..∗] specifies a two-dimensional vector
of output signals with at least one value.

Table 1. Types of states used for iterative optimization.

State Type Time Delay Multiplicity Has Transition Loop? Condition for Next State Transition

s0 (i|CPi,c = 1) + 1 [1..*] Yes v = 1
ssg SG [0..*] Yes sgc = SG
sk ET(v)× RV(v) 1..1 No jc < RT(v) or jc = RV(v)
s f g FG [0..*] Yes f gc = FG
sig IG [0..*] Yes igc = GC

Figure 8 shows a generalized and optimized FSM Mopt1 which optimizes FSM M example in
Figure 7. The optimized version Mopt1 begins with the state type s0 where the output signals r and v of
its sub-states are deasserted. In our example, the loop transition occurs once when v = 0 resulting in a
two-dimensional vector (i.e., [000]). When v = 1, the FSM changes the state type to ssg which creates a
time delay of SG clock cycles. The sub-states of this state type have the output signals r and v all set to
0. In the example, SG = 0 therefore the FSM does not have ssg and it will transition directly from s0 to
sk state type. The sk has ET(v) sub-states (i.e., denoted in a dotted transition line between sk and set−1



Computers 2018, 7, 53 18 of 36

where k = {0...ET(v)− 1}) which repeat RV(v) times. The last sub-state set−1 of state type sk can use
one of the two transitions, the first one leads to state type s f g that creates time delay of FG and the
second transition directs the FSM to sig where it delays execution for IG clock cycles. In our example,
the sk type undergoes ET(y)× RV(y) = 5× 2 = 10 sub-states without any firing gaps (i.e., FP = 0)
while only experiencing time delays created by iteration gaps (i.e., IG = 2).

Version October 16, 2018 submitted to Computers 18 of 36

where k = {0...ET(v)− 1}) which repeat RV(v) times. The last sub-state set−1 of state type sk can use464

one of the two transitions, the first one leads to state type s f g that creates time delay of FG and the465

second transition directs the FSM to sig where it delays execution for IG clock cycles. In our example,466

the sk type undergoes ET(y)× RV(y) = 5× 2 = 10 sub-states without any firing gaps (i.e. FP = 0)467

while only experiencing time delays created by iteration gaps (i.e. IG = 2).468

s0

[1..∗]
ssg

[0..∗]
sk

1..1

set−1

1..1

s f g

[0..∗]

sig

[0..∗]

v = 1

v = 0

sgc = SG

sgc < SG
jc < RV(v)

jc = RV(v)
fgc = FG

fgc < FG

igc = IG

igc < IG

Figure 8. The generic optimized composite FSM Mopt1 as constructed using FSMs MX , MFF and MY

by using the computed 1-periodic schedule in Figure 2. Each node is the state type which may consists
of sub-states which are defined by a sequence of one or two-dimensional vectors in lower half of the
state type.

When described in hardware as shown in the VHDL process in Listing 4, the optimized FSM469

Mopt1 is reduced to seven states in comparison to a classical FSM M in Figure 7. The startup phase470

only has a single state (i.e “000”) followed by the periodic phase with the six states where the first four471

states are of type ssk (i.e. “001”, “010”, “011”, “100”, “101”). The count register xInst_yInst_ch1_jc which472

is initially set to zero, increments until it reaches RV(y) = 2 where it moves the FSM from ssk state473

type to sig state type. The iteration gap is realized in state type sig (i.e. “110”) with the count register474

xInst_yInst_ch1_igc that has a threshold of 2.

1 xInst_yInst_ch1_proc : process(rst, clk)
2 begin
3 if rst = '1' then
4 ... --reset process registers
5 elsif clk'EVENT and clk = '1' then
6 ... -- hidden code
7 case xInst_yInst_ch1_state is
8 when b"000" =>
9 xInst_yInst_ch1_re <= '0';

10 xInst_yInst_ch1_state <= b"000";
11 if xInst_vld_o = '1' then
12 xInst_yInst_ch1_re <= '1';
13 xInst_yInst_ch1_state <= b"010";
14 end if;
15 when b"001" =>
16 xInst_yInst_ch1_re <= '1';
17 xInst_yInst_ch1_state <= b"010";
18 when b"010" =>
19 xInst_yInst_ch1_re <= '0';
20 xInst_yInst_ch1_state <= b"011";
21 when b"011" =>
22 xInst_yInst_ch1_re <= '1';
23 xInst_yInst_ch1_state <= b"100";
24 when b"100" =>

25 xInst_yInst_ch1_re <= '0';
26 xInst_yInst_ch1_state <= b"101";
27 when b"101" =>
28 xInst_yInst_ch1_re <= '1';
29 xInst_yInst_ch1_state <= b"001";
30 xInst_yInst_ch1_jc <=

xInst_yInst_ch1_jc + 1;↪→
31 if xInst_yInst_ch1_jc = 1 then
32 xInst_yInst_ch1_jc <= 0;
33 xInst_yInst_ch1_state <= b"110";
34 end if;
35 when b"110" =>
36 xInst_yInst_ch1_re <= '0';
37 xInst_yInst_ch1_state <= b"110";
38 xInst_yInst_ch1_igc <=

xInst_yInst_ch1_igc + 1;↪→
39 if xInst_yInst_ch1_igc = 1 then
40 xInst_yInst_ch1_igc <= 0;
41 xInst_yInst_ch1_state <= b"001";
42 end if;
43 when others => null;
44 end case;
45 end if;
46 end process;

Listing 4: The process implementation of the second optimization FSM Mopt1 for hardware design in
Figure 5.

Figure 8. The generic optimized composite FSM Mopt1 as constructed using FSMs MX , MFF and MY

by using the computed 1-periodic schedule in Figure 2. Each node is the state type which may consists
of sub-states which are defined by a sequence of one or two-dimensional vectors in lower half of the
state type.

When described in hardware as shown in the VHDL process in Listing 4, the optimized FSM
Mopt1 is reduced to seven states in comparison to a classical FSM M in Figure 7. The startup phase
only has a single state (i.e., “000”) followed by the periodic phase with the six states where the first
four states are of type ssk (i.e., “001”, “010”, “011”, “100”, “101”). The count register xInst_yInst_ch1_jc
which is initially set to zero, increments until it reaches RV(y) = 2 where it moves the FSM from ssk
state type to sig state type. The iteration gap is realized in state type sig (i.e., “110”) with the count
register xInst_yInst_ch1_igc that has a threshold of 2.

Listing 4. The process implementation of the second optimization FSM Mopt1 for hardware design in Figure 5.

Version October 16, 2018 submitted to Computers 18 of 36

where k = {0...ET(v)− 1}) which repeat RV(v) times. The last sub-state set−1 of state type sk can use464

one of the two transitions, the first one leads to state type s f g that creates time delay of FG and the465

second transition directs the FSM to sig where it delays execution for IG clock cycles. In our example,466

the sk type undergoes ET(y)× RV(y) = 5× 2 = 10 sub-states without any firing gaps (i.e. FP = 0)467

while only experiencing time delays created by iteration gaps (i.e. IG = 2).468

s0

[1..∗]
ssg

[0..∗]
sk

1..1

set−1

1..1

s f g

[0..∗]

sig

[0..∗]

v = 1

v = 0

sgc = SG

sgc < SG
jc < RV(v)

jc = RV(v)
fgc = FG

fgc < FG

igc = IG

igc < IG

Figure 8. The generic optimized composite FSM Mopt1 as constructed using FSMs MX , MFF and MY

by using the computed 1-periodic schedule in Figure 2. Each node is the state type which may consists
of sub-states which are defined by a sequence of one or two-dimensional vectors in lower half of the
state type.

When described in hardware as shown in the VHDL process in Listing 4, the optimized FSM469

Mopt1 is reduced to seven states in comparison to a classical FSM M in Figure 7. The startup phase470

only has a single state (i.e “000”) followed by the periodic phase with the six states where the first four471

states are of type ssk (i.e. “001”, “010”, “011”, “100”, “101”). The count register xInst_yInst_ch1_jc which472

is initially set to zero, increments until it reaches RV(y) = 2 where it moves the FSM from ssk state473

type to sig state type. The iteration gap is realized in state type sig (i.e. “110”) with the count register474

xInst_yInst_ch1_igc that has a threshold of 2.

1 xInst_yInst_ch1_proc : process(rst, clk)
2 begin
3 if rst = '1' then
4 ... --reset process registers
5 elsif clk'EVENT and clk = '1' then
6 ... -- hidden code
7 case xInst_yInst_ch1_state is
8 when b"000" =>
9 xInst_yInst_ch1_re <= '0';

10 xInst_yInst_ch1_state <= b"000";
11 if xInst_vld_o = '1' then
12 xInst_yInst_ch1_re <= '1';
13 xInst_yInst_ch1_state <= b"010";
14 end if;
15 when b"001" =>
16 xInst_yInst_ch1_re <= '1';
17 xInst_yInst_ch1_state <= b"010";
18 when b"010" =>
19 xInst_yInst_ch1_re <= '0';
20 xInst_yInst_ch1_state <= b"011";
21 when b"011" =>
22 xInst_yInst_ch1_re <= '1';
23 xInst_yInst_ch1_state <= b"100";
24 when b"100" =>

25 xInst_yInst_ch1_re <= '0';
26 xInst_yInst_ch1_state <= b"101";
27 when b"101" =>
28 xInst_yInst_ch1_re <= '1';
29 xInst_yInst_ch1_state <= b"001";
30 xInst_yInst_ch1_jc <=

xInst_yInst_ch1_jc + 1;↪→
31 if xInst_yInst_ch1_jc = 1 then
32 xInst_yInst_ch1_jc <= 0;
33 xInst_yInst_ch1_state <= b"110";
34 end if;
35 when b"110" =>
36 xInst_yInst_ch1_re <= '0';
37 xInst_yInst_ch1_state <= b"110";
38 xInst_yInst_ch1_igc <=

xInst_yInst_ch1_igc + 1;↪→
39 if xInst_yInst_ch1_igc = 1 then
40 xInst_yInst_ch1_igc <= 0;
41 xInst_yInst_ch1_state <= b"001";
42 end if;
43 when others => null;
44 end case;
45 end if;
46 end process;

Listing 4: The process implementation of the second optimization FSM Mopt1 for hardware design in
Figure 5.



Computers 2018, 7, 53 19 of 36

6.2.2. Second Optimization

The first optimization technique in Section 6.2.1 works effectively in systems where access patterns
are short by exploiting the gaps and periodicity of the SDF-AP schedule. However, most real-world
applications are often characterized by very long access patterns, this implies multiple sub-states of
state type sk which lead to a state explosion problem. The second optimization (opt2) alleviates this
problem by grouping all the chained sub-states of sk into one state. The corresponding hardware
implementation involves the LUT of the consumption pattern (CP(c)) which is indexed with a digital
counter where each element of the LUT is assigned to the read-enable output signal r in the same state
type but at different clock cycles. As depicted in Figure 9, the optimized FSM Mopt2 has a state type
sk that now uses multiplicity of [1..∗] and that has loop transition to enable the traversing of ET(v)
elements of a CP(c). Two counters are used to control data access on the FIFO. The first counter ic
counts the number of states in a single firing period of ET(v) after which the transition from sk state
type to s f g state type takes place. The second counter jc counts the total number of sub-states passed
by the sk state type in one schedule iteration. When its threshold (i.e., jc = ET(v)× RV(v)) is reached,
an Mopt2 moves from sk state type to sig state type.

Version October 16, 2018 submitted to Computers 19 of 36

5.2.2. Second Optimization475

The first optimization technique in Section 5.2.1 works effectively in systems where access patterns476

are short by exploiting the gaps and periodicity of the SDF-AP schedule. However, most real-world477

applications are often characterized by very long access patterns, this implies multiple sub-states of478

state type sk which lead to a state explosion problem. The second optimization (opt2) alleviates this479

problem by grouping all the chained sub-states of sk into one state. The corresponding hardware480

implementation involves the LUT of the consumption pattern (CP(c)) which is indexed with a digital481

counter where each element of the LUT is assigned to the read-enable output signal r in the same state482

type but at different clock cycles. As depicted in Figure 9, the optimized FSM Mopt2 has a state type483

sk that now uses multiplicity of [1..∗] and that has loop transition to enable the traversing of ET(v)484

elements of a CP(c). Two counters are used to control data access on the FIFO. The first counter ic485

counts the number of states in a single firing period of ET(v) after which the transition from sk state486

type to s f g state type takes place. The second counter jc counts the total number of sub-states passed487

by the sk state type in one schedule iteration. When its threshold (i.e. jc = ET(v)× RV(v)) is reached,488

an Mopt2 moves from sk state type to sig state type.489

s0

[1..∗]
ssg

[0..∗]
sk

[1..∗]

s f g

[0..∗]

sig

[0..∗]

v = 1

v = 0

sgc = SG

sgc < SG ic < ET(v)

fgc = FG

fgc = FG

jc = ET(v)×RV(v)

jc < ET(v)

igc = IG

igc < IG

Figure 9. The generic optimized composite FSM Mopt2 as constructed using FSMs MX , MFF and MY

by using the computed 1-periodic schedule in Figure 2. Each node is the state type which may consists
of sub-states which are defined by a sequence of one or two-dimensional vectors in lower half of the
state type.

Converting an optimized FSM Mopt2 (shown in Figure 9) into hardware design results in VHDL490

process code that is shown in Listing 5. In comparison to the Mopt1 VHDL process in Section 5.2.1,491

the number of states for the Mopt2 are reduced from seven to three. This reduction is facilitated by492

the xInst_yInst_ch1_cp CP(y) that maps a reversed CP(y) (i.e. “10101") in LUT using a big-endian493

style. At the transition from a periodic phase (i.e. comprises a single sub-state “00") to the periodic494

phase (i.e. comprises two states “01" and “10"), the least significant bit (LSB) of xInst_yInst_ch1_cp is495

assigned to read-enable signal xInst_yInst_ch1_re together with the activation of the ic, jc counters.496

The second state (i.e “01") creates the sk state type of the FSM with the aid of the two count registers497

namely xInst_yInst_ch1_ic and xInst_yInst_ch1_jc. The indexing of individual bits of LUT is made498

possible by using the register xInst_yInst_ch1_ic which counts from 0 to ET(y)− 1 = 5− 1 = 4 where499

the actor firing terminates. Another count register xInst_yInst_ch1_jc detects the end of iteration500

when the threshold of (ET(y)× RV(y))− 1 = (5× 2)− 1 = 10− 1 = 9 is reached. The second state501

Figure 9. The generic optimized composite FSM Mopt2 as constructed using FSMs MX , MFF and MY

by using the computed 1-periodic schedule in Figure 2. Each node is the state type which may consists
of sub-states which are defined by a sequence of one or two-dimensional vectors in lower half of the
state type.

Converting an optimized FSM Mopt2 (shown in Figure 9) into hardware design results in VHDL
process code that is shown in Listing 5. In comparison to the Mopt1 VHDL process in Section 6.2.1,
the number of states for the Mopt2 are reduced from seven to three. This reduction is facilitated by
the xInst_yInst_ch1_cp CP(y) that maps a reversed CP(y) (i.e., “10101”) in LUT using a big-endian
style. At the transition from a periodic phase (i.e., comprises a single sub-state “00”) to the periodic
phase (i.e., comprises two states “01” and “10”), the least significant bit (LSB) of xInst_yInst_ch1_cp is
assigned to read-enable signal xInst_yInst_ch1_re together with the activation of the ic, jc counters.
The second state (i.e., “01”) creates the sk state type of the FSM with the aid of the two count registers
namely xInst_yInst_ch1_ic and xInst_yInst_ch1_jc. The indexing of individual bits of LUT is made
possible by using the register xInst_yInst_ch1_ic which counts from 0 to ET(y)− 1 = 5− 1 = 4 where
the actor firing terminates. Another count register xInst_yInst_ch1_jc detects the end of iteration
when the threshold of (ET(y)× RV(y))− 1 = (5× 2)− 1 = 10− 1 = 9 is reached. The second state
transitions to the iteration gap state (i.e., “10”) which introduces a time delay of (IG = 2) at the end of
every iteration.



Computers 2018, 7, 53 20 of 36

Listing 5. The process implementation of the second optimization FSM Mopt2 for hardware design in Figure 5.
Version October 16, 2018 submitted to Computers 20 of 36

1 ... -- hidden architecture code
2 constant xInst_yInst_ch1_cp : std_logic_vector(4

downto 0) := b"10101";↪→
3 ... -- hidden code
4 xInst_yInst_ch1_proc : process(rst, clk)
5 begin
6 if rst = '1' then
7 --reset process registers
8 elsif clk'EVENT and clk = '1' then
9 -- hidden code

10 case xInst_yInst_ch1_state is
11 when b"00" =>
12 xInst_yInst_ch1_re <= '0';
13 xInst_yInst_ch1_state <= b"00";
14 if xInst_vld_o = '1' then
15 xInst_yInst_ch1_re <=

xInst_yInst_ch1_cp(xInst_yInst_ch1_ic);↪→
16 xInst_yInst_ch1_ic <=

xInst_yInst_ch1_ic + 1;↪→
17 xInst_yInst_ch1_jc <=

xInst_yInst_ch1_jc + 1;↪→
18 xInst_yInst_ch1_state <= b"01";
19 end if;
20 when b"01" =>
21 xInst_yInst_ch1_state <= b"01";
22 xInst_yInst_ch1_ic <=

xInst_yInst_ch1_ic + 1;↪→

23 xInst_yInst_ch1_re <=
xInst_yInst_ch1_cp(xInst_yInst_ch1_ic);↪→

24 if xInst_yInst_ch1_ic = 4 then
25 xInst_yInst_ch1_ic <= 0;
26 xInst_yInst_ch1_state <= b"01";
27 end if;
28 xInst_yInst_ch1_jc <=

xInst_yInst_ch1_jc + 1;↪→
29 if xInst_yInst_ch1_jc = 9 then
30 xInst_yInst_ch1_jc <= 0;
31 xInst_yInst_ch1_state <= b"10";
32 end if;
33 when b"10" =>
34 xInst_yInst_ch1_re <= '0';
35 xInst_yInst_ch1_state <= b"10";
36 xInst_yInst_ch1_igc <=

xInst_yInst_ch1_igc + 1;↪→
37 if xInst_yInst_ch1_igc = 1 then
38 xInst_yInst_ch1_igc <= 0;
39 xInst_yInst_ch1_state <= b"01";
40 end if;
41 when others => null;
42 end case;
43 end if;
44 end process;

Listing 5: The process implementation of the second optimization FSM Mopt2 for hardware design in
Figure 5.

transitions to the iteration gap state (i.e. “10") which introduces a time delay of (IG = 2) at the end of502

every iteration.503

5.2.3. Third and Fourth Optimizations504

Implementing FIFO buffers along with their controllers have both the advantages and505

disadvantages in the designed hardware. The advantages are that the buffers break long paths,506

enable pipeline, avoid deadlocks and allow throughput-constraint scheduling to be achieved via507

pipeline stalls. The disadvantages are that they result in a waste of both memory and logic resources on508

the FPGA with increased latency. On the contrary, the buffer-free designs are fast and conservative in509

utilizing hardware resources, however, they often lead to combinational data-paths that limit the clock510

speed [22]. To strike the balance of buffer-based and buffer-free datapaths, we optimize the hardware511

design further by removing buffers where the buffer size is 1 while the logic controllers remain512

unchanged. The buffers are simply replaced by registers along with the assertion of v whenever the513

single data sample is available on the input port. The third (opt3) and fourth (opt4) optimizations in this514

section are buffer-free versions of the first optimization opt1 in Section 5.2.1 and second optimization515

opt2 in Section 5.2.2 respectively.516

6. Conformance Analysis517

In this section, we present a formal analysis of the proposed hardware implementation method in518

Section 4 proving that it faithfully produces correct systems according to specifications using SDF-AP519

model. Our approach has similarities to conformance analysis technique proposed in [18] which520

targets generic dataflow models, however, ours is different in that it focuses only on SDF-AP model.521

It is noteworthy that this conformance analysis is based on the correct behavior of the predefined IP522

cores and the correctness of their extracted access patterns as required by the SDF-AP model. We aim523

to bridge the gap between model for a dataflow (represented as a closed transition system) in Section 3524

and a model for hardware (represented as a closed finite-state machine in Section 5). Due to semantic525

6.2.3. Third and Fourth Optimizations

Implementing FIFO buffers along with their controllers have both the advantages and
disadvantages in the designed hardware. The advantages are that the buffers break long paths,
enable pipeline, avoid deadlocks and allow throughput-constraint scheduling to be achieved via
pipeline stalls. The disadvantages are that they result in a waste of both memory and logic resources
on the FPGA with increased latency. On the contrary, the buffer-free designs are fast and conservative
in using hardware resources, however, they often lead to combinational data-paths that limit the clock
speed [22]. To strike the balance of buffer-based and buffer-free datapaths, we optimize the hardware
design further by removing buffers where the buffer size is 1 while the logic controllers remain
unchanged. The buffers are simply replaced by registers along with the assertion of v whenever the
single data sample is available on the input port. The third (opt3) and fourth (opt4) optimizations in this
section are buffer-free versions of the first optimization opt1 in Section 6.2.1 and second optimization
opt2 in Section 6.2.2 respectively.

7. Conformance Analysis

In this section, we present a formal analysis of the proposed hardware implementation method in
Section 5 proving that it faithfully produces correct systems according to specifications using SDF-AP
model. Our approach has similarities to conformance analysis technique proposed in [18] which
targets generic dataflow models, however, ours is different in that it focuses only on SDF-AP model.
It is noteworthy that this conformance analysis is based on the correct behavior of the predefined IP
cores and the correctness of their extracted access patterns as required by the SDF-AP model. We aim
to bridge the gap between model for a dataflow (represented as a closed transition system) in Section 4
and a model for hardware (represented as a closed finite-state machine in Section 6). Due to semantic
differences of both models, we identify execution properties which should remain unchanged during
conversion from a dataflow model to the hardware model. These properties are statically determined
by the SDF-AP model at compile time and include a buffer size, throughput and latency and they all
expected to be correctly converted into a hardware model.

The buffer size as computed in Section 3.2, is allocated to channels by the SDF-AP model and it
matches the physical memory size of the corresponding hardware. Given sufficient memory resources
on the target FPGA, the infinite buffer size ensures the non-overflow buffers and a deadlock-free



Computers 2018, 7, 53 21 of 36

hardware system. Computing the throughput using both the dataflow and hardware model is
performed with respect to the sink actor. For the SDF-AP model, the transition model is used
to compute throughput by counting the number of gets per number of ticks in a periodic phase.
For example, using Figure 4, the number of gets is 6 while the tick count is 12 resulting in throughput
6

12 . For the FSM, the throughput is determined by counting the number of states with asserted valid
output signal value (i.e., v = 1) per total number of transitions in a periodic phase. For example,
in Figure 7, the number states with v = 1 are 6 and the number of transitions is 12, as a result the
throughput becomes 6

12 . Furthermore, the latency of a transitions system is obtained by counting
all the tick transitions and the latency of the FSM equals the number of all transitions. For example,
the number of ticks of a transition system in Figure 4 is 13, likewise, the transition count for FSM in
Figure 7 is 13.

While the access patterns may arguably move the SDF-AP model closer to a hardware by
describing at which clock cycles the tokens are produced and consumed, the behaviour of an SDF-AP
model is asynchronous making it difficult to directly compare with a synchronous FSM. On the other
hand, it is not easy to observe where token productions and consumptions take place by merely looking
at the state transitions. One common approach to defining conformance is using containment of set of
behaviours of the two disparate models. We would simply apply this principle in our setting as in [18]
by proposing FSM model N conforms to dataflow model ωM if the set of behaviours of N is a subset of
the set of behaviours of M. However, due to the deterministic behaviour of the SDF-AP model (under
a 1-periodic schedule and throughput constraints), there is exactly one observable behaviour for FSM
M (i.e., ωM) and exactly one observable behaviour for a dataflow model N (i.e., ωN). This leads to
our conformance formulation Ω which maps an observable behaviour of FSM ωM to an observable
behaviour of a dataflow model ωN as

Ω : ωM 7→ ωN = ρ0 · ρ1 · ρ1 · ··

where ρi = tick · αi and αi := {` ∈ {put, get}} and the mapping ψ : {put, get} 7→ {w, v} | w = 1, v = 1
maps the dataflow actions ` = {put, get} to respective FSM output signals output signals O = {w, v}
where their values are set to 1 (i.e., therefore resulting in ψ = {put 7→ w, get 7→ v}).

For example, consider the FSM observable behaviour as defined in Section 6.1

ωM = (w̄r̄v̄)
(
(wr̄v̄)(wrv̄)(w̄r̄v)(w̄rv̄)(wr̄v)(wrv̄)(w̄rv)(w̄r̄v)(wrv̄)(wr̄v)(w̄rv̄)w̄r̄v)

)∞
.

This ωM is mapped using Ω to

Ω(ωM) = tick ·
(

tick · {put} · tick · {put} · tick · {get} · tick · tick · {put, get} ... tick · {get}
)∞

which is equivalent to dataflow network observable behaviour ωN that is defined in Section 4.

8. Experimental Results

To automate hardware generation methods discussed in this work, we developed a compiler
framework as depicted in Figure 10 that serves as a low-level intermediate representation (IR) to
generate efficient hardware from a domain-specific language (DSL) for SDR. The framework leverages
Scala’s functional language constructs for embedding DSLs. The first step in compilation flow is a
light-weight intermediate language that accepts the descriptions of applications that are translated
into an SDF-AP model. We discuss further details of the DSL implementation in our future work.
The compiler then proceeds by employing scala-graph (i.e., graph library for Scala) [23] library to
implement and validate the SDF-AP model. Before HDL generation starts, the SDF-AP model
undergoes analysis and scheduling which are a key to validating the system and in determining
the system properties; these properties include buffer size, latency and component compatibility



Computers 2018, 7, 53 22 of 36

from given throughput constraint. The HDL generator then generates the VHDL from the SDF-AP
model using the vMagic library [24]. vMagic used by our framework to read the VHDL code for
existing IP cores, to stitch cores together in VHDL, and to write out the final top-level design in VHDL.
Moreover, the optimizations are applied during code generation to enable efficient hardware design
results. After code generation, the framework invokes the compilation functions of the Xilinx ISE 14.7
tool-chain. These compilation functions include synthesis, build, map, place & route and finally the
binary file creation to target the Xilinx Spartan-6 xc6slx150t FPGA device that we use in our testing.

IR Compiler 

Framework
Analyses, Scheduling, 

Buffer & Latency 

Computation

HDL Generator

IP core library

vMagic (HDL Reader)

vMagic (HDL Writer)

Compilation

(Xilinx ISE tools)

Bitstream File Creation

Optimizations

Scala-based Intermediate 

Representation Language

SDF-AP Model

Spartan-6 

FPGA

Figure 10. The proposed compiler framework.

8.1. A Case Study

In this section, we present a case study on the design and implementation of eight typical
SDR applications using our Scala-based compiler framework. These applications comprise the two
Orthogonal Frequency Division Multiplexing transmitters (OFDM-TX) which are both based on a
modified IEEE 802.11a standard [25] and IEEE 802.22 standard [26] respectively and the two receivers
(OFDM-RX) which are also based on IEEE 802.11a standard and IEEE 802.22 standard respectively.
Additionally, the multiple input multiple output (MIMO) system is implemented in combination
with OFDM which is based on IEEE 802.11a standard, for which the complete system is referred
to as MIMO-OFDM in our results [27]. The MIMO-OFDM system is composed of two typical SDR
subsystems namely the MIMO-OFDM transmitter (MIMO-OFDM) and receiver (MIMO-OFDM RX)
where each of these have four output ports and four input ports respectively. The last two applications
derive from a Digital Down Converter (DDC) whereby the first one implements Frequency Modulation
(FM) (i.e., the FM-DDC design) and the second one realizes a Global System for Mobile communication
(GSM) design (i.e., GSM-DDC). All these applications are specified as a SDF-AP model using Scala in
our framework. The IP cores that compose the applications are largely described by hand in VHDL
and the corresponding access patterns for each IP core are determined through low-level simulations
using the Xilinx ISim Simulator. In some cases, where the third-party IP cores are incorporated
into the implementation, we made use of the data-sheets documentation of these cores to determine
appropriate access patterns for their use.

The eight SDR applications, namely OFDM TX (IEEE 802.11a), OFDM RX (IEEE 802.11a), OFDM
TX (IEEE 802.22), OFDM RX (IEEE 802.22), MIMO-OFDM TX (IEEE 802.11a), MIMO-OFDM RX
(IEEE 802.11a), GSM DDC and FM DDC are depicted in Figure 11 and the SDF-AP properties of
each application are summarized in Table 2. These properties include the number of Actors, the total



Computers 2018, 7, 53 23 of 36

number of FIFO channels and the number of FIFO channels which are allocated the buffer size of 1.
The applications are briefly described below:

1. OFDM TX (IEEE 802.11a): As shown in Figure 11a, the IEEE 802.11a standard transmitter receives
a frame of 48 real-valued data samples which are sent by the source block at the rate of one
sample on every cycle of 48 successive clock cycles using the output pattern [1]. The Quadrature
Amplitude Modulation (16-QAM) block (Mod) uses pattern [010] to receive the frame where a
single data sample is consumed on every second cycle. The Mod modulates the 48 data samples
from the source block into 48 I/Q samples in a frequency domain and outputs them on every
third clock cycle using the pattern [001]. This is followed by a zeropad insert (ZP-I) that appends
16 zeros to the 48 samples which are consumed with pattern [(1)48(0)17], whereafter the ZP-I
produces 64 samples with pattern [0(1)64]. The 64-sample frame serves as an input to the 64-point
Inverse Fast Fourier Transform (IFFT) block which receives samples with pattern [(1)64(0)64]

(i.e., 64 samples are consumed in the first 64 cycles of ET=128). The IFFT transforms the 64 samples
from the frequency domain to the time domain and sends out the output samples with pattern
[(0)64(1)64] (i.e., 64 samples are produced in the last 64 cycles of ET=128). The IFFT is followed by
a cyclic prefix insert (CP-I) block which prepends the cyclic prefix (last 16 IFFT samples) to the 64
IFFT samples received with pattern [(1)64(0)65]. The 80 samples are then produced by the CP-I
using pattern [(0)49(1)80], followed by the sink block which receives the 80-sample frame at the
rate of one sample per cycle using input access pattern of [1].

2. OFDM RX (IEEE 802.11a): The IEEE 802.11a standard receiver system is shown in Figure 11b as
designed using our framework. The source block sends 80-sample OFDM frame to a cyclic prefix
removal (CP-R) which receives the samples with pattern [(1)800]. For each 80-sample OFDM
frame, the CP-R removes the 16-samples of a cyclic prefix to produce 64 samples using pattern
[(0)17(1)64]. These 64 samples are consumed by the 64-point Fast Fourier Transform (FFT) block
using pattern [(1)64(0)64]. The FFT transforms the samples from the time-domain back to 64
frequency domain samples which are output with pattern [(0)64(1)64]. The zeropad removal
(ZP-R) accepts 64 FFT samples with pattern [(1)640], and then detaches the last 16 zero-samples
from the FFT samples to produce 48 data samples with pattern [0(1)48(0)16]. This is followed by
a 16-QAM demodulation (Demod) which demodulates the incoming 48 frequency-domain I/Q
samples (on input port with pattern [010]) back to real-valued 48 samples (sent via the output
port with pattern [001]) before feeding them into a sink block.

3. OFDM TX (IEEE 802.22): As shown in Figure 11c, the IEEE 802.22 standard transmitter system is
similar to the IEEE 802.11a transmitter in Figure 11a with only few exceptions. These exceptions
include the Mod block which modulates 1200 samples from the source block, the ZP-I (uses
input pattern [(1)1200(0)849] and output pattern [0(1)2048]) which appends 848 zero-samples to
the modulated samples for input into a 2048-point IFFT (uses input pattern [(1)2048(0)2048] and
output pattern [(0)2048(1)2048]), and the addition of a 512-sample cyclic prefix to the IFFT output
samples by the CP-I (uses input pattern [(1)2048(0)2049] and output pattern [(0)1537(1)2560]) which
results in a 2560-sample OFDM frame.

Table 2. The execution properties of different SDR applications.

Application Number of Actors Number of FIFO Channels Number of FIFO Channels with Buffer Size = 1

OFDM TX (IEEE 802.11a) 6 15 7
OFDM RX (IEEE 802.11a) 6 15 5
OFDM TX (IEEE 802.22) 6 15 7
OFDM RX (IEEE 802.22) 6 15 5

MIMO-OFDM TX (IEEE 802.11a) 22 59 28
MIMO-OFDM RX (IEEE 802.11a) 22 59 16

GSM DDC 11 23 10
FM DDC 13 27 10



Computers 2018, 7, 53 24 of 36

Source Mod ZP-I iFFT CP-I Sink

[1] [010] [001] [(1)
48
(0)

17
] [(1)

64
(0)

64
][0(1)

64
] [(0)

64
(1)

64
]

[(1)
64
(0)

65
]

[(0)
49
(1)

80
] [1]

(a) OFDM Transmitter (IEEE 802.11a)

Source CP-R FFT ZP-R Demod Sink

[1]

[(1)
64
(0)

64
]

[(1)
64
0] [0(1)

48
(0)

16
] [010] [1][(1)

80
0] [(0)

17
(1)

64
] [(0)

64
(1)

64
] [001]

(b) OFDM Receiver (IEEE 802.11a)

Source Mod ZP-I iFFT CP-I Sink

[1] [010] [001]

[(1)
1200
(0)

849
] [(1)

2048
(0)

2048
]

[0(1)
2048
] [(0)

2048
(1)

2048
]

[(1)
2048
(0)

2049
]

[(0)
1537
(1)

2560
] [1]

(c) OFDM Transmitter (IEEE 802.22)

Source CP-R FFT ZP-R Demod Sink

[1]

[(1)
2048
(0)

2048
] [(1)

2048
0]

[0(1)
1200
(0)

848
]

[010]

[1][(1)
2560
0] [(0)

513
(1)

2048
] [(0)

2048
(1)

2048
] [001]

(d) OFDM Receiver (IEEE 802.22)

Mod ZP-I iFFT CP-I Sink

[010] [001] [(1)
48
(0)

17
] [(1)

64
(0)

64
][0(1)

64
] [(0)

64
(1)

64
]

[(1)
64
(0)

65
]

[(0)
49
(1)

80
] [1]

Mod ZP-I iFFT CP-I Sink

[010] [001] [(1)
48
(0)

17
] [(1)

64
(0)

64
][0(1)

64
] [(0)

64
(1)

64
]

[(1)
64
(0)

65
]

[(0)
49
(1)

80
] [1]

Mod ZP-I iFFT CP-I Sink

[010] [001] [(1)
48
(0)

17
] [(1)

64
(0)

64
][0(1)

64
] [(0)

64
(1)

64
]

[(1)
64
(0)

65
]

[(0)
49
(1)

80
] [1]

Mod ZP-I iFFT CP-I Sink

[010] [001] [(1)
48
(0)

17
] [(1)

64
(0)

64
][0(1)

64
] [(0)

64
(1)

64
]

[(1)
64
(0)

65
]

[(0)
49
(1)

80
] [1]

S/PSource

[1] [(11110)
48
]

[(00001)
48
]

[(00001)
48
]

[(00001)
48
]

[(00001)
48
]

(e) MIMO-OFDM Transmitter (IEEE 802.11a)

Sink

[1]

Source CP-R FFT ZP-R Demod

[1]

[(1)
64
(0)

64
]

[(1)
64
0] [0(1)

48
(0)

16
] [010][(1)

80
0] [(0)

17
(1)

64
] [(0)

64
(1)

64
] [001]

Source CP-R FFT ZP-R Demod

[1]

[(1)
64
(0)

64
]

[(1)
64
0] [0(1)

48
(0)

16
] [010][(1)

80
0] [(0)

17
(1)

64
] [(0)

64
(1)

64
] [001]

Source CP-R FFT ZP-R Demod

[1]

[(1)
64
(0)

64
]

[(1)
64
0] [0(1)

48
(0)

16
] [010][(1)

80
0] [(0)

17
(1)

64
] [(0)

64
(1)

64
] [001]

Source CP-R FFT ZP-R Demod

[1]

[(1)
64
(0)

64
]

[(1)
64
0] [0(1)

48
(0)

16
] [010][(1)

80
0] [(0)

17
(1)

64
] [(0)

64
(1)

64
] [001]

P/S

[(10000)
48
]

[(10000)
48
]

[(10000)
48
]

[(10000)
48
]

[(01111)
48
]

(f) MIMO-OFDM Receiver (IEEE 802.11a)

Source

Mixer CIC CFIR PFIR Sink

[00001]

[10]
[01] [(1)

256
] [1][(0)

255
1] [1]

NCO

[1] [1] [1]

[00001]

(g) GSM Digital Down Converter

Source

Mixer CIC1 CFIR1 CIC2 CFIR2

[00001]

[10]
[01] [(1)

128
] [1][(0)

127
1] [1]

NCO

[1]

[00001]

Sink

[(1)
4
] [(0)

3
1] [1] [1]

(h) FM Digital Down Converter

Figure 11. SDR applications used in a case study.

4. OFDM RX (IEEE 802.22): The IEEE 802.22 standard receiver system is shown in Figure 11d
and is similar to IEEE 802.11a receiver in Figure 11b except that it has different configurations
for the blocks. In the EEE 802.22 receiver configuration, the CP-R (has input pattern [(1)25600]
and output pattern [(0)513(1)2048]) removes 512 samples of a cyclic prefix from the 2560-sample
OFDM resulting in 2048 samples which are input to the 2048-point FFT block (uses input pattern
[(1)2048(0)2048] and output pattern [(0)2048(1)2048]). The 848 zeros of the FFT output are removed



Computers 2018, 7, 53 25 of 36

by the ZP-R to produce 1200 samples where ZP-R uses the input pattern [(1)20480] and the output
pattern [0(1)1200(0)848].

5. MIMO-OFDM TX (IEEE 802.11a): The MIMO-OFDM TX system is shown in Figure 11e and
the building blocks for its four transmit paths operate in a similar manner as the corresponding
blocks for the IEEE 802.11a transmitter in Figure 11a. The only new block in this system is
a serial-to-parallel (S/P) block which converts the 192-sample serial stream into four parallel
48-sample streams for the transmit paths. This S/P uses the access pattern [(11110)48] on its input
port (i.e., consumes four samples every five cycles) and on each of its four output ports it produces
data samples with pattern [(00001)48] (i.e., produces one data sample on every fifth clock cycle).

6. MIMO-OFDM RX (IEEE 802.11a): The MIMO-OFDM RX system is illustrated in Figure 11f
and the blocks for each of the four receive paths operate in the same way as the corresponding
blocks for IEEE 802.11a standard receiver in Figure 11b. The only exception is the newly added
parallel-to-serial (P/S) block which serializes the four parallel 48-sample data streams to a single
stream of 192 samples. On each port of the four input ports, the P/S consumes the data samples
with the access pattern [(10000)48] (i.e., one data sample is consumed every fifth cycle starting
from the first cycle) and it uses pattern [(01111)48] on its output port (i.e., produces four samples
every five cycles).

7. GSM DDC: The GSM DDC as shown in Figure 11 accepts a high sample-rate (69.33 MSPS)
bandpass signal from the source block which produces one sample every five cycles using pattern
[00001]. The data produced by the numerically controlled oscillator (NCO) with pattern [00001]
is mixed with a bandpass data to produce a low sample-rate (270.83 KSPS) data stream. Please
note that the mixing process is performed by a digital mixer block with the input access pattern
[10] and the output access pattern [01]. The cascaded integrator comb (CIC) block performs
a decimation of factor 256 by receiving the 256 samples with pattern [(1)256] (i.e., consumes
256 samples at the rate of one data sample on every cycle of ET = 256) and produces one sample
every 256 cycles using pattern [(0)2551]. The rest of the blocks use pattern [1] for both input and
output ports. Lastly, the compensation of the CIC signal is performed by a compensating FIR filter
(CFIR) which is followed by a programmable FIR filter (PFIR) that finalizes the filtering process.

8. FM DDC: The FM DDC in Figure 11h accepts the high sample-rate (81.92 MSPS) bandpass signal
and produces a low sample-rate (160 KSPS) signal. The decimation factor of 512 is facilitated
by the two CIC filters (CIC1 = input patttern [(1)128] and output pattern [(0)1271], and CIC2 =
input patttern [(1)4] and output pattern [(0)31]) with respective decimation factors of 128 and 4.
Each CIC filter is followed by a compensating filter (i.e., CFIR1 and CFIR2 respectively) which
improves the corresponding CIC output signal.

Each of the eight SDR applications is associated with ten design variants (range: V1–V10)
which are generated under ten throughput constraints which are 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, 90% and 100% of the maximum throughput for each application as shown in Table 3.
For each application, the throughput is relative to a sink actor where the maximum throughput τmax is
determined as described in Section 3.2. The results of different throughput constraints may be similar,
in which case the All column (range: T1–T8) of Table 3 is used to to group all the design variants for
each application. We have represented the throughput to be measured in samples per cycle (SPC).
SPC can clearly be translated into the more standard samples per second (SPS) units by multiplying
the value by the clock frequency. However, we chose to use SPC as this is a more FPGA independent
measure – for instance, an FPGA that can support a higher clock rate will correspondingly achieve a
higher throughput. A real example is using the maximum throughput value of IEEE 802.11a TX which
is 0.007752 SPC together with D/A converter (i.e., 16-bit I/Q sink actor) driven by the FPGA at the
clock speed that meets standard transmission data rate of 54 Mbps. By choosing the D/A clock speed
of 218 MHz, the practical data rate can be computed as 0.007752 SPC × 218 MHz × (2×16-bit I/Q
sample) = 54.078 Mbps that equals the standard data rate.



Computers 2018, 7, 53 26 of 36

Table 3. The throughput constraints for SDR applications.

Application All Design Variants

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

OFDM TX (IEEE 802.11a) T1 0.000775 (10%) 0.001550 (20%) 0.0023260 (30%) 0.003101 (40%) 0.003876 (50%) 0.004651 (60%) 0.005426 (70%) 0.006202 (80%) 0.006977 (90%) 0.007752 (100%)

OFDM RX (IEEE 802.11a) T2 0.000781 (10%) 0.001563 (20%) 0.002344 (30%) 0.003125 (40%) 0.003906 (50%) 0.004688 (60%) 0.005469 (70%) 0.006250 (80%) 0.007031 (90%) 0.007813 (100%)

OFDM TX (IEEE 802.22) T3 0.000024 (10%) 0.000049 (20%) 0.000073 (30%) 0.000098 (40%) 0.000122 (50%) 0.000146 (60%) 0.000171 (70%) 0.000195 (80%) 0.000220 (90%) 0.000244 (100%)

OFDM RX (IEEE 802.22) T4 0.000024 (10%) 0.000049 (20%) 0.000073 (30%) 0.000098 (40%) 0.000122 (50%) 0.000146 (60%) 0.000171 (70%) 0.000195 (80%) 0.000220 (90%) 0.000244 (100%)

MIMO-OFDM TX (IEEE 802.11a) T5 0.000417 (10%) 0.000833 (20%) 0.001250 (30%) 0.001667 (40%) 0.002083 (50%) 0.002500 (60%) 0.002917 (70%) 0.003333 (80%) 0.003750 (90%) 0.004167 (100%)

MIMO-OFDM RX (IEEE 802.11a) T6 0.000417 (10%) 0.000833 (20%) 0.001250 (30%) 0.001667 (40%) 0.002083 (50%) 0.002500 (60%) 0.002917 (70%) 0.003333 (80%) 0.003750 (90%) 0.004167 (100%)

GSM DDC T7 0.000391 (10%) 0.000781 (20%) 0.001172 (30%) 0.001563 (40%) 0.001953 (50%) 0.002344 (60%) 0.002734 (70%) 0.003125 (80%) 0.003516 (90%) 0.003906 (100%)

FM DDC T8 0.000781 (10%) 0.001563 (20%) 0.002344 (30%) 0.003125 (40%) 0.003906 (50%) 0.004688 (60%) 0.005469 (70%) 0.006250 (80%) 0.007031 (90%) 0.007812 (100%)



Computers 2018, 7, 53 27 of 36

The system properties of the design variants as per application which is computed during SDF-AP
analysis include the buffer size and latency as depicted in Figure 12. The computed buffer size is the
sum of the allocated buffer sizes for all FIFO channels in each application and this sum corresponds
with a single throughput constraint as shown in Figure 12a. For the most part, the total buffer size
allocated to the FIFO channels of each application remains constant and relatively decreases with
the increased throughput. For example, OFDM-TX and OFDM-RX of IEEE 802.11a have the highest
throughput constraint values which result in the smallest buffer sizes. Similarly, the OFDM-TX and
OFDM-RX of IEEE 802.22 have the lowest throughput constraint values which lead to the largest buffer
size allocation. The reason for the increase of computed buffer size under low throughput constraint is
explained in Section 3.2. Furthermore, the latency results are obtained as shown in Figure 12b. For all
SDR applications, the latency decreases exponentially with increasing throughput.

7000

7200

7400

7600

7800

8000

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
Design Variant

0

500

1000

1500

2000

2500

Bu
ffe

r S
ize

OFDM TX (IEEE 802.11a)
OFDM RX (IEEE 802.11a)
OFDM TX (IEEE 802.22)

OFDM RX (IEEE 802.22)
MIMO-OFDM TX (IEEE 802.11a)
MIMO-OFDM RX (IEEE 802.11a)

GSM DDC
FM DDC

(a) Buffer size

50000
100000
150000
200000
250000
300000

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
Design Variant

0

100

200

300

400

500

La
te
nc

y 
(cy

cl
es
×
1
0
3
)

OFDM TX (IEEE 802.11a)
OFDM RX (IEEE 802.11a)
OFDM TX (IEEE 802.22)

OFDM RX (IEEE 802.22)
MIMO-OFDM TX (IEEE 802.11a)
MIMO-OFDM RX (IEEE 802.11a)

GSM DDC
FM DDC

(b) Latency

Figure 12. The results of SDF-AP analysis for the SDR applications showing the computed buffer size
and latency of each application.

The generated VHDL code exhibits several characteristics which include the number of FSM
states, the number of code lines and the total length of time it takes to translate the SDF-AP model
into VHDL code and build the code with the ISE tool-flow. Figure 13 depicts the results of the total
number of FSM states for each SDR application using the non-optimized approach as explained in
Section 6.1 and comparing it with the optimized versions opt1, opt2 and opt3/opt4 which are discussed
in Sections 6.2.1–6.2.3 respectively. The number of FSM states (measured in millions of FSM states)
for non-optimized applications as shown in Figure 13a is too large to be correctly implemented on
the target FPGA. Although it seemingly decreases exponentially with increasing throughput values,
it is still considered sub-optimal. The significant number of FSM states are undesirable in the SDR
applications as they lead to state explosion problem and in our case, all the non-optimized SDR
applications could not synthesize successfully using the ISE tool-flow. A workaround to the above
problems is applying the four optimizations to the applications which result in the reduced number
of FSM states (measured in thousands of FSM states) in Figure 13b. It is important to note that the
optimized versions exhibit the same results under all throughput constraints, therefore each point in
the graph serves to summarize all the design variants by using the range of T1–T8. For each application,
opt1 and opt3 have the same number of states and also opt2 and opt4 have similar number of states.
The fewest number of FSM states are obtained when optimizations opt2 and opt4 are applied which
reduce the non-optimized number of states by the factor of 1,081,776 while the optimizations opt1 and
opt3 reduce the non-optimized number of states by the factor of 10,916.



Computers 2018, 7, 53 28 of 36

200

400

600

800

1000

1200

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
Design Variant

0

5

10

15

20

Nu
m

be
r o

f F
SM

 S
ta

te
s (
×

1
0
6
)

OFDM TX (IEEE 802.11a)
OFDM RX (IEEE 802.11a)
OFDM TX (IEEE 802.22)

OFDM RX (IEEE 802.22)
MIMO-OFDM TX (IEEE 802.11a)
MIMO-OFDM RX (IEEE 802.11a)

GSM DDC
FM DDC

(a) Non-optimized

T1 T2 T3 T4 T5 T6 T7 T8
SDR Application

0

5

10

15

20

25

Nu
m
be

r o
f F

SM
 S
ta
te
s (
×

1
0
3
)

Opt1 & Opt3 Opt2 & Opt4

(b) Optimized

Figure 13. The total number of FSM states for each SDR application.

The simplicity and readability of most of the HLS generated VHDL code is relatively low making
it difficult to read and sometimes almost impossible to understand in comparison to good hand-written
code. Our generator results in VHDL code that is concise, often using only a few lines of code as a
result of applying the design optimizations. We have also ensured that our HLS generated VHDL
is well-structured and indented and that the interconnections are generally kept simple and concise
where possible, all of which helps to make the code more readable.

Figure 14 shows the total number of VHDL code lines for every SDR application when the
application is not optimized and when the optimizations are applied. The results showing the code
length of the non-optimized approach are depicted in Figure 14a. The resulting number of code lines
is very huge (measured in millions of code lines) due to a large number of FSM states as discussed
previously in Figure 13a. This number of code lines is drastically reduced (measured in thousands of
code lines) when the optimizations are applied to the applications in Figure 14b. The results of the
number of code lines are constant under different design variants hence the generic range (T1–T8) is
used. The number of code lines differs with the application and the optimization type used. Opt4 yields
the fewest number of code lines by reducing the non-optimized number of code lines by a factor of
164,425. This is followed by opt2 which shortens the code length by the factor of 142,084 and finally
optimizations opt1 and opt3 which reduce the number of code lines by factors of 10,252 and 9542
respectively. Generally, the number of code lines is directly proportional to the number of FSM states
shown in Figure 13.

One of the benefits of using our design approach is to reduce developer time and improve designer
productivity. Our compiler framework allows benchmarking of the execution time that elapses from
the design description using SDF-AP model to the FPGA bitstream creation. This time combines the
SDF-AP analysis, VHDL generation and the RTL synthesis using the ISE. The time lapse is measured
in hours (h) and the obtained results for each SDR application are shown in Figure 15. For each
application, the time lapse refers to the total time period taken to generate VHDL and RTL using all
the four optimizations techniques. The amount of time taken by the compiler framework to perform
SDF-AP analysis and to generate VHDL code is shown in Figure 15a. In addition, the total time taken
by the ISE synthesize RTL is shown in Figure 15b. The biggest designs namely the OFDM-TX and
OFDM-RX of IEEE 802.22 take respective 117 and 53 h to generate while the smallest designs namely
the OFDM-TX and OFDM-RX of IEEE 802.11a take respective 2.59 and 2.58 h to generate. To compute
the buffer size of the SDF-AP channels, arrays are required to keep the model access patterns. For the
applications with long access patterns, the on-heap memory of Java Virtual Machine (JVM) does not



Computers 2018, 7, 53 29 of 36

handle caching of gigabytes of data. A workaround to this problem is using the off-heap memory
which enables storing data outside the heap in the OS memory part. Because there is no JVM involved,
the off-heap introduces the overhead of serializing and deserializing the long arrays to corresponding
objects. There is an additional cost of dealing with native memory which does not exist in on-heap
memory leads to the delayed analysis of SDF-AP model when the application access patterns are long
as show in Figure 15a.

1000

2000

3000

4000

5000

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
Design Variant

0

20

40

60

80

Nu
m
be
r o

f V
HD

L 
Co

de
 L
in
es
 (
×

1
0
6
)

OFDM TX (IEEE 802.11a)
OFDM RX (IEEE 802.11a)
OFDM TX (IEEE 802.22)

OFDM RX (IEEE 802.22)
MIMO-OFDM TX (IEEE 802.11a)
MIMO-OFDM RX (IEEE 802.11a)

GSM DDC
FM DDC

(a) Non-optimized

T1 T2 T3 T4 T5 T6 T7 T8
SDR Application

0

20

40

60

80

100

Nu
m
be
r o

f V
HD

L 
Co

de
 L
in
es
 (
×

10
3
)

Opt1 Opt2 Opt3 Opt4

(b) Optimized

Figure 14. The total number of VHDL code lines for each SDR application.

12.5
13.0
13.5
14.0
14.5
15.0
15.5

T1 T2 T3 T4 T5 T6 T7 T8
SDR Application

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

El
ap
se
d 
Ti
m
e 
[m

in
s]

SDF-AP Analyses
VHDL Generation

(a) SDF-AP Analyses & VHDL Generation

T1 T2 T3 T4 T5 T6 T7 T8
SDR Application

0

20

40

60

80

100

120

RT
L 
Sy

nt
he

sis
 E
la
ps
ed

 T
im

e 
[h
rs
]

(b) RTL Synthesis using ISE

Figure 15. The total time elapsed for SDF-AP analyses, VHDL code generation and RTL synthesis for
each SDR application.

8.2. Area and Performance Benchmarks

We perform the benchmarks of the optimized versions of SDR applications by targeting the Xilinx
Spartan-6 xc6slx150t FPGA device. The non-optimized solutions are excluded as they are all not
synthesizable on the FPGA. The FPGA area use comprises the number of Registers, LUTs and occupied
Slices. The total number of individual resources which are available on the FPGA are as follows,
Registers = 184,304, LUTs = 92,152 and Slices = 23,038. It needs to be noted that the percentage of used
registers and LUTs in our results are in terms of those available in the occupied slices (i.e., not in terms
of the total available registers and LUTs on the device). The total average resource usage for each
application using optimizations opt1, opt2, opt3 and opt4 is shown in Figure 16 as a the percentage of



Computers 2018, 7, 53 30 of 36

available FPGA resources. The FPGA uses less registers as shown in Figure 16a, followed by the LUTs
in Figure 16b and the slices in Figure 16c. Generally, opt3 and opt4 use less resources than opt1 and opt2.
Please note that the results for non-synthesizable designs are not shown in which case the rectangular
bars are skipped and this happens in large OFDM applications that are based on the IEEE 802.22.

OFDM TX
(IEEE 802.11a)

OFDM RX
(IEEE 802.11a)

OFDM TX
(IEEE 802.22)

OFDM RX
(IEEE 802.22)

MIMO-OFDM TX
(IEEE 802.11a)

MIMO-OFDM RX
(IEEE 802.11a)

GSM DDC FM DDC

SDR Application

0

20

40

60

80

100

Re
gi
st
er
s (

%
)

Opt1
Opt2
Opt3
Opt4

(a) Registers

OFDM TX
(IEEE 802.11a)

OFDM RX
(IEEE 802.11a)

OFDM TX
(IEEE 802.22)

OFDM RX
(IEEE 802.22)

MIMO-OFDM TX
(IEEE 802.11a)

MIMO-OFDM RX
(IEEE 802.11a)

GSM DDC FM DDC

SDR Application

0

20

40

60

80

100

LU
Ts
 (%

)

Opt1
Opt2
Opt3
Opt4

(b) LUTs

OFDM TX
(IEEE 802.11a)

OFDM RX
(IEEE 802.11a)

OFDM TX
(IEEE 802.22)

OFDM RX
(IEEE 802.22)

MIMO-OFDM TX
(IEEE 802.11a)

MIMO-OFDM RX
(IEEE 802.11a)

GSM DDC FM DDC

SDR Application

0

20

40

60

80

100

Sl
ice

s (
%
)

Opt1
Opt2
Opt3
Opt4

(c) Slices

Figure 16. The benchmark results of resource use for each SDR application.



Computers 2018, 7, 53 31 of 36

Moreover, we carry out the performance benchmark experiments using the metrics of power
consumption and maximum frequency for each SDR application where the results are shown in
Figure 17. The results of the average power consumption by each of the SDR applications when
the four optimizations are used are as shown in Figure 17a. In most cases, the applications with
the largest area consume more power than the ones with the smallest area footprint on the FPGA.
On average, Opt4 consumes 16%, 15%, and 1% more power than opt1, opt2 and opt3 respectively.
Similarly, Opt3 consumes 15%, and 13% more power than opt1 and opt2 respectively. Lastly, the opt2
power consumption is 1% more than that of the opt1. Our final performance benchmark results include
the maximum frequency that is achieved for each SDR application as shown in Figure 17b. For each
application, the frequency results are the same in all design variants. The optimizations opt1 and
opt2 have the same frequency results in each application, likewise opt1 and opt2 also result in similar
maximum frequencies for each application. Both optimizations opt3 and opt4 have highest maximum
achievable frequency by an average factor of 1.093 in comparison to opt1 and opt2. This happens
because opt3 and opt4 operate without FIFO channel instances where the allocated buffer size is 1.

Opt1 Opt2 Opt3 Opt4
Optimization

113.4

113.6

113.8

114.0

114.2

114.4

114.6

114.8

115.0

Po
we

r (
m
W

)

113.45
113.5

114.82

114.27

114.56

114.47
114.51

113.44
113.5

114.86
114.81

113.91

114.29

114.43

114.52

113.46
113.47

114.84
114.77

114.26

114.1
114.14

114.45

113.46
113.45

114.8
114.87

113.88

114.19
114.16

114.46

OFDM TX (IEEE 802.11a)
OFDM RX (IEEE 802.11a)
OFDM TX (IEEE 802.22)

OFDM RX (IEEE 802.22)
MIMO-OFDM TX (IEEE 802.11a)
MIMO-OFDM RX (IEEE 802.11a)

GSM DDC
FM DDC

(a) Average Power

T1 T2 T3 T4 T5 T6 T7 T8
SDR Application

0

20

40

60

80

100

120

140
Fr

eq
ue

nc
y 

(M
H
z)

33.762
33.987

34.071
34.115

13.007
12.954
12.96

33.762
33.987

34.071
34.115

120.15

127.344

117.752
118.718

Opt1 & Opt2 Opt3 & Opt4

(b) Frequency

Figure 17. The frequency and power consumption results for each SDR application.

9. Related Work

An overview of the state of the art development tools that support the integration of the IP cores
for prototyping SDR applications as shown in Table 4. The features which are contributed to our
framework are compared with these tools. The first desirable feature determines whether the tool is
domain-specific to SDR which helps to increase design productivity using high-level constructs and
language idioms familiar to the domain expert. A dataflow model of computation is another feature
which hides the low-level behaviour by performing analysis of timing and performance properties
at the high-level of design abstraction. Furthermore, the dataflow model is required to have access
patterns, a desirable feature that moves a dataflow model closer to a hardware by determining exact
clock cycles at which the data tokens are produced and consumed. The high-level design constraints
should be correctly mapped to the low-level to ensure the conformance of the low-level design to the
high-level design. In addition, the predefined hardware descriptions using the prototyping tool should
easily be re-used to speed-up the hardware design. To produce quality results, the tool must automate
optimizations at the high and low levels of a hardware generation. Lastly, the tool has to be open to
the public to enable modification and improvements.



Computers 2018, 7, 53 32 of 36

Table 4. Comparison of features for different SDR prototyping tools.

Features Matlab + Vivado LabView Frame-Based Our
Simulink HLS DSL [28] Framework

Domain-Specific to SDR 7 7 7 3 3

Uses a dataflow-model of computation 7 7 3 3 3

Dataflow supports access patterns 7 7 3 7 3

Low-level hardware conformance to high-level design constraints 7 7 7 7 3

Supports design re-use 3 3 3 7 3

Automates optimizations 3 3 7 3 3

Open-source and available to public 7 7 7 3 3

9.1. Matlab + Simulink

Simulink [29] combines textual and graphical programming to model, simulate and analyze
multi-domain systems. The SDR applications can be developed using a wide range of built-in
functions/tools and components, in particular, the ones that support DSP and telecommunication
systems [3]. Developers use HDL coder to generate Verilog or VHDL and various optimizations are
supported at high-level and low-level of optimizations. Incorporating the external IP cores requires
the creation of an interface (called BlacBox) that models the existing subsystem in VHDL or Verilog.
Models can be stitched together by connecting the ports across different models using an interactive
GUI. While the predefined models can easily be used, the code generation method does not support
dataflow models and the FPGA programming only targets the Xilinx and Intel SoC device, therefore
limiting generated code portability. Furthermore, HDL coder requires a license to use and the source
code is not open for the public to access.

9.2. Vivado HLS

Xilinx Vivado IP Integrator [30] uses a combination of IP Integrator and Xilinx System
Generator [31], that provides support for several languages (e.g., C, C++, SystemC, and OpenCL),
for facilitating the process of generating VHDL or Verilog for multi-domain FPGA applications.
These offer developers with several manual optimization rules through the use of directives and
pragmas which require extensive knowledge of low-level hardware design. Hence the quality of
results relies upon the hardware skills that the designer has. The generated IP modules can be reused
in a Vivado Design Suite and they can only be programmed on Xilinx FPGA devices. Vivado HLS does
not support dataflow models and its a commercial tool that requires expensive license to use.

9.3. LabView

LabView [32] offers a graphical programming approach that helps to easily develop and visualize
the multi-domain applications such as data acquisition, instrument control, industrial automation, SDR,
etc. IP integration requires the IP synthesis files, such as vhd files, Xilinx IP configuration files, or netlist
files to meet the requirements for predefined rules for integrating the hardware models. LabView
supports FPGA code generation from SDF models and other SDF-extended models which include
Homogeneous Synchronous Dataflow (HSDF) [12], Cyclo-Static Dataflow (CSDF) [33], Parameterized
Static Dataflow (PSDF) [34] and Parameterized Cyclo-Static Dataflow (PCSDF) [35]. Furthermore,
LabView supports FPGA design using an SDF model with access patterns (SDF-AP). The LabView
hardware implementation prototypes using the SDF-AP model are discussed in [10,13,14,36] where
the experimental results indicate that SDF-AP model can reduce the buffer size requirements by
about 63%. However, generating the FPGA code from these supported dataflow models relies on
correct-by-design approach which does not provide conformance analysis of the hardware design.
Furthermore, using LabView requires a licensing (i.e., uses closed source-code that is not shared with
the public), and the FPGA design caters well for National Instruments and compatible systems. As a
result, these limitations make it very difficult for experimentation by the open-source community.



Computers 2018, 7, 53 33 of 36

9.4. Frame-Based DSL for SDR

Ouedraogo et al. [28] present a frame-based Domain Specific Language (DSL) for prototyping
SDRs on FPGAs and the DSL is available as open-source to enable further research in the SDR
community. The DSL design flow uses the SDF model to connect the IP components and to
communicate frame information among the network components. Furthermore, it supports high-level
HLS optimizations and enables the re-use of defined components. The disadvantages of these DSL are
that it only supports frame-based applications such OFDM systems, it does not formally bridge the
semantic between the SDF model and the generated hardware designs, and lastly the SDF model does
not use the access patterns which are necessary for correct and optimized designs.

9.5. Our Framework

In this work, we have developed a methodology which automates the seamless integration of
IP cores for SDR applications that runs on the FPGA. Our open-source framework which is based
on the proposed methodology in this work relies on the SDF-AP model which aids in the system
analysis and optimization. The framework also leverages the embedded DSLs features of Scala which
include highly expressive and modular constructs for expressing functions quickly. The conformance
analysis ensures the system correctness and adds confidence to the results that satisfy the specified
design constraints.

10. Conclusions

In this paper, we have presented an approach that automates the integration of IP cores using a
SDF-AP model for rapid prototyping of reconfigurable hardware solutions used in the implementation
of SDR applications to be deployed on FPGA-based platforms. Our proposed methodology of
hardware generation bridges the gap between the SDF-AP model and the low-level model of the
hardware resulting in guaranteed correctness of the hardware design which conforms to the high-level
specifications. To obtain quality results, four optimizations have been implemented to provide a
solution space that enables the user to choose the best solution that meets the desired performance
under throughput and target hardware resource constraints. We have demonstrated the applicability of
our approach through practical implementation of a selection of eight representative SDR case studies.
The results showed that high performance constraints (i.e., latency, buffer size, maximum frequency
and power) and optimal area use can be achieved and can continue to be improved to provide a
best-effort throughput performance, within reasonable limits of the target hardware concerned.

Our future work plans include performing the design space exploration (DSE) by exploitation of
the proposed optimization techniques results together with RTL synthesis results provided by the RTL
tool-flow. In addition, we will benchmark our hardware design approach against popular HLS tools
such as HDL Coder, LabView and Xilinx Vivado.

Author Contributions: Conceptualization, L.T., S.W. and M.I.; Methodology, L.T. and S.W.; Software, L.T.;
Validation, L.T. and S.W.; Formal Analysis, L.T.; Investigation, L.T.; Resources, L.T. and S.W.; Data Curation, L.T.;
Writing-Original Draft Preparation, L.T.; Writing-Review & Editing, L.T. and S.W.;Visualization, L.T.; Supervision,
S.W. and M.I.; Project Administration, L.T., S.W. and M.I.; Funding Acquisition, S.W.

Funding: This research was funded by the South African Radio Astronomy Observatory.

Acknowledgments: This research was supported by the South African Radio Astronomy Observatory, which is a
facility of the National Research Foundation, an agency of the Department of Science and Technology.

Conflicts of Interest: The authors declare no conflict of interest.



Computers 2018, 7, 53 34 of 36

Abbreviations

The following abbreviations are used in this manuscript:

DSL Domain Specific Language
DSP Digital Signal Processing
FIFO First In First Out
FIR Finite Impulse Response
FPGA Field Programmable Gate Array
FSM Finite State Machine
GPP General Purpose Processor
GUI Graphical User Interface
HDL Hardware Description Language
HLS High Level Synthesis
I/O Input/Output
IP Intellectual Property
ISE Integrated Synthesis Environment
LUT Lookup Table
PC Personal Computer
RTL Register Transfer Level
SDR Software Defined Radio
SoC System on Chip
SPC Samples Per Cycle
VHDL Very high speed integrated circuit Hardware Description Language

References

1. Tuttlebee, W.H.W. Software-defined radio: Facets of a developing technology. IEEE Pers. Commun. 1999,
6, 38–44. [CrossRef]

2. Rouphael, T.J. RF and Digital Signal Processing for Software-Defined Radio: A Multi-Standard Multi-Mode
Approach; Newnes: Oxford, UK, 2009.

3. Akeela, R.; Dezfouli, B. Software-defined Radios: Architecture, State-of-the-art, and Challenges. arXiv
2018, arXiv:1804.06564.

4. Tan, K.; Liu, H.; Zhang, J.; Zhang, Y.; Fang, J.; Voelker, G.M. Sora: High-performance Software Radio Using
General-purpose Multi-core Processors. Commun. ACM 2011, 54, 99–107. [CrossRef]

5. Chu, P. RTL Hardware Design Using VHDL: Coding for Efficiency, Portability, and Scalability; Wiley: Hoboken,
NJ, USA, 2006.

6. Ecker, W.; Müller, W.; Domer, R. (Eds.) Hardware-Dependent Software: Principles and Practice; Springer:
Berlin, Germany, 2009.

7. Lin, C.Y.; Jiang, Z.; Fu, C.; So, H.K.H.; Yang, H. FPGA High-level Synthesis Versus Overlay: Comparisons
on Computation Kernels. SIGARCH Comput. Archit. News 2017, 44, 92–97. [CrossRef]

8. Tsoeunyane, L.J.; Winberg, S.; Inggs, M. An IP core integration tool-flow for prototyping software-defined
radios using static dataflow with access patterns. In Proceedings of the 2017 International Conference
on Field Programmable Technology (ICFPT), Melbourne, Australia, 11–13 December 2017; pp. 88–95.
[CrossRef]

9. D’silva, V.; Ramesh, S.; Sowmya, A. Synchronous protocol automata: A framework for modelling and
verification of SoC communication architectures. In Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition, Paris, France, 16–20 February 2004; Volume 1, pp. 390–395. [CrossRef]

10. Tripakis, S.; Andrade, H.; Ghosal, A.; Limaye, R.; Ravindran, K.; Wang, G.; Yang, G.; Kornerup, J.;
Wong, I. Correct and non-defensive glue design using abstract models. In Proceedings of the 2011
Ninth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Taipei, Taiwan, 9–14 October 2011; pp. 59–68. [CrossRef]

11. Wang, G.; Allen, R.; Andrade, H.; Sangiovanni-Vincentelli, A. Communication storage optimization
for static dataflow with access patterns under periodic scheduling and throughput constraint.
Comput. Electr. Eng. 2014, 40, 1858–1873. [CrossRef]

http://dx.doi.org/10.1109/98.760422
http://dx.doi.org/10.1145/1866739.1866760
http://dx.doi.org/10.1145/3039902.3039919
http://dx.doi.org/10.1109/FPT.2017.8280125
http://dx.doi.org/10.1109/DATE.2004.1268878
http://dx.doi.org/10.1145/2039370.2039382
http://dx.doi.org/10.1016/j.compeleceng.2014.05.002


Computers 2018, 7, 53 35 of 36

12. Lee, E.A.; Messerschmitt, D.G. Synchronous data flow. Proc. IEEE 1987, 75, 1235–1245. [CrossRef]
13. Ghosal, A.; Limaye, R.; Ravindran, K.; Tripakis, S.; Prasad, A.; Wang, G.; Tran, T.N.; Andrade, H.

Static dataflow with access patterns: Semantics and analysis. In Proceedings of the DAC Design Automation
Conference 2012, San Francisco, CA, USA, 3–7 June 2012; pp. 656–663. [CrossRef]

14. Ravindran, K.; Ghosal, A.; Limaye, R.; Wang, G.; Yang, G.; Andrade, H. Analysis techniques for static
dataflow models with access patterns. In Proceedings of the 2012 Conference on Design and Architectures
for Signal and Image Processing, Karlsruhe, Germany, 23–25 October 2012; pp. 1–8.

15. Du, K.; Domas, S.; Lenczner, M. A solution to overcome some limitations of SDF based models.
In Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France,
19–22 February 2018; pp. 1395–1400. [CrossRef]

16. Schaumont, P.R. Data Flow Modeling and Transformation. In A Practical Introduction to Hardware/Software
Codesign; Springer US: Boston, MA, USA, 2013; pp. 31–59.

17. Bhattacharyya, S.; Murthy, P.; Lee, E. Software Synthesis from Dataflow Graphs; The Springer International
Series in Engineering and Computer Science; Springer US: Boston, MA, USA, 2012.

18. Tripakis, S.; Limaye, R.; Ravindran, K.; Wang, G. On tokens and signals: Bridging the semantic gap between
dataflow models and hardware implementations. In Proceedings of the 2014 International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV), Samos, Greece,
14–17 July 2014; pp. 51–58. [CrossRef]

19. OpenCores. OpenCores Projects. Available online: http://www.opencores.org/projects/ (accessed on 2
September 2018).

20. Gaisler, J. An open-source VHDL IP library with plug&play configuration. In Building the Information
Society; Springer: Berlin, Germany, 2004; pp. 711–717.

21. Gaisler, C. LEON/GRLIB. Available online: https://www.gaisler.com/index.php/downloads/leongrlib/
(accessed on 2 September 2018).

22. Edwards, S.A.; Townsend, R.; Kim, M.A. Compositional Dataflow Circuits. In Proceedings of the
15th ACM-IEEE International Conference on Formal Methods and Models for System Design, Vienna, Austria,
29 September–2 October 2017; ACM: New York, NY, USA, 2017; pp. 175–184. [CrossRef]

23. Berls, A. Graph for Scala: Scalax.collection.Graph. Available online: http://www.scala-graph.org/
(accessed on 6 October 2018).

24. Pohl, C.; Paiz, C.; Porrmann, M. vMAGIC: Automatic code generation for VHDL. Int. J. Reconfig. Comput.
2009, 2009, 205149. [CrossRef]

25. IEEE. IEEE Standard for Information Technology—Telecommunications and Information Exchange Between
Systems—Local and Metropolitan Area Networks-Specific Requirements—Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications; IEEE Std 802.11-2007 (Revision of IEEE Std
802.11-1999); IEEE: Piscataway Township, NJ, USA, 2007; pp. 1–1076.

26. Federal Communications Commission. IEEE 802.22 Working Group on Wireless Regional Area Networks;
Technical Report; Federal Communications Commission: Washington, DC, USA, 2006.

27. Li, Y.G.; Winters, J.H.; Sollenberger, N.R. MIMO-OFDM for wireless communications: Signal detection
with enhanced channel estimation. IEEE Trans. Commun. 2002, 50, 1471–1477. [CrossRef]

28. Ouedraogo, G.S.; Gautier, M.; Sentieys, O. A frame-based domain-specific language for rapid prototyping
of FPGA-based software-defined radios. EURASIP J. Adv. Signal Process. 2014, 2014, 164. [CrossRef]

29. Simulink, M.; Natick, M. Simulink User’ Guide. 2018. Available online: https://www.mathworks.com/
help/pdf_doc/simulink/sl_using.pdf (accessed on 19 October 2018)

30. Xilinx. Accelerating Integration: Block-Based IP Integration with Vivado IP Integrator. Available online:
https://www.xilinx.com/products/design-tools/vivado/integration.html (accessed on 18 February 2018).

31. Mittal, S.; Gupta, S.; Dasgupta, S. System generator: The state-of-art FPGA design tool for dsp
applications. In Proceedings of the Third International Innovative Conference on Embedded Systems,
Mobile Communication And Computing (ICEMC2 2008), Mysore, India, 11–14 August 2008; pp. 187–190.

32. Andrade, H.A.; Kovner, S. Software Synthesis from Dataflow Models for G and LabVIEW. In Proceedings
of the IEEE Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 20–22,
November 1998; pp. 1705–1709.

http://dx.doi.org/10.1109/PROC.1987.13876
http://dx.doi.org/10.1145/2228360.2228479
http://dx.doi.org/10.1109/ICIT.2018.8352384
http://dx.doi.org/10.1109/SAMOS.2014.6893194
http://www.opencores.org/projects/
https://www.gaisler.com/index.php/downloads/leongrlib/
http://dx.doi.org/10.1145/3127041.3127055
http://www.scala-graph.org/
http://dx.doi.org/10.1155/2009/205149
http://dx.doi.org/10.1109/TCOMM.2002.802566
http://dx.doi.org/10.1186/1687-6180-2014-164
 https://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
 https://www.mathworks.com/help/pdf_doc/simulink/sl_using.pdf
https://www.xilinx.com/products/design-tools/vivado/integration.html


Computers 2018, 7, 53 36 of 36

33. Bilsen, G.; Engels, M.; Lauwereins, R.; Peperstraete, J.A. Cyclo-static data flow. In Proceedings of the 1995
International Conference on Acoustics, Speech, and Signal Processing, Detroit, MI, USA, May 8–12 1995;
Volume 5, pp. 3255–3258. [CrossRef]

34. Bhattacharya, B.; Bhattacharyya, S.S. Parameterized dataflow modeling for DSP systems. IEEE Trans.
Signal Process. 2001, 49, 2408–2421. [CrossRef]

35. Kee, H.; Shen, C.C.; Bhattacharyya, S.S.; Wong, I.; Rao, Y.; Kornerup, J. Mapping Parameterized Cyclo-static
Dataflow Graphs Onto Configurable Hardware. J. Signal Process. Syst. 2012, 66, 285–301. [CrossRef]

36. Ravindran, K.; Ghosal, A.; Limaye, R.; Kim, D.; Andrade, H.; Correll, J.; Kornerup, J.; Wong, I.; Wang, G.;
Yang, G.; et al. Modeling, Analysis, and Implementation of Streaming Applications for Hardware Targets.
In Embedded Systems Development: From Functional Models to Implementations; Springer: New York, NY, USA,
2014; pp. 19–39.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ICASSP.1995.479579
http://dx.doi.org/10.1109/78.950795
http://dx.doi.org/10.1007/s11265-011-0599-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The SDF-AP Model
	Analysis of SDF-AP Model
	Iteration Latency Computation
	Buffer Size Computation

	Timed SDF-AP Semantics
	Hardware Implementation
	Hardware Dataflow Actors
	Hardware Dataflow Channels
	Hardware Design

	Hardware Model Using Finite State Machines
	FSM Composition
	FSM Optimizations
	First Optimization
	Second Optimization
	Third and Fourth Optimizations


	Conformance Analysis
	Experimental Results
	A Case Study
	Area and Performance Benchmarks

	Related Work
	Matlab + Simulink
	Vivado HLS
	LabView
	Frame-Based DSL for SDR
	Our Framework

	Conclusions
	References

