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Abstract: Cyber-physical systems have emerged as a new engineering paradigm, which combine the
cyber and physical world with comprehensive computational and analytical tools to solve complex
tasks. In cyber-physical systems, components are developed to detect failures, prevent failures,
or mitigate the failures of a system. Sensors gather real-time data as an input to the system for further
processing. Therefore, the whole cyber-physical system depends on sensors to accomplish their tasks
and the failure of one sensor may lead to the failure of the whole system. To address this issue,
we present an approach that utilizes the Failure Modes, Effects, and Criticality Analysis, which is a
prominent hazard analysis technique to increase the understanding of risk and failure prevention.
In our approach, we transform the Failure Modes, Effects, and Criticality Analysis model into a
UML(Unified Modeling Language) class diagram, and then a knowledge base is constructed based
on the derived UML class diagram. Finally, the UML class diagram is used to build an ontology.
The proposed approach employs a 5C architecture for smart industries for its systematic application.
Lastly, we use a smart home case study to validate our approach.

Keywords: cyber-physical systems; ontology; knowledgebase; sensor failure; failure detection;
failure prevention

1. Introduction

In the era of the fourth industrial revolution, a new paradigm of an engineering approach has emerged,
the Cyber-Physical System (CPS), which handles complex tasks in various fields of information technology,
such as in smart power systems, healthcare, smart buildings, self-driving vehicles, avionics, and smart
manufacturing systems [1,2]. CPSs have penetrated almost every aspect of life. Therefore, reliability of the
CPS has become a critical factor to handle complex tasks because a single failure can have financial and
safety consequences.

The physical components of CPS include physical devices with comprehensive capabilities like
integrated networking, sensors, actuators, and information processing units. Together, these abilities lead
to the realization of a CPS that can be responsive to real-time changes in the environment [3]. The cyber
part of a CPS is composed of computational units, storage, and powerful analytical algorithms closely
work together (with a human in the loop) to accomplish a complex task. The CPS consists of highly
connected and massively networked sensors, actuators, and other devices that collect real-time data.
On the basis of that collected data, the CPS dynamically makes decisions to accomplish its goals. Therefore,
the CPS mainly depends on its sensors and actuators for whole system reliability [4].

CPSs are the next generation of engineered systems that need a tight integration of communication,
computing, and control technologies to achieve performance, stability, reliability, efficiency, and robustness
in managing the physical systems in many application domains. For example, the CPS in smart healthcare
monitors human health and provides support by detecting patient behavior. In autonomous vehicles,
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sensors, like cameras and radars, are used to achieve the goal of self-driving. In a smart home, the
CCTV(Closed-circuit Television) cameras monitor the environment and send information to the CPS
continuously to assure the safety of the smart home. Other sensors monitor temperature, rain, fog,
and humidity to facilitate the inhabitants of a smart home. All these CPSs have to be highly trustworthy
so that safety, security, and reliability of the CPS can be ensured. The failure of or a single fault in the
sensing components, like the monitoring camera, can affect the reliability of whole CPS. The reliability of
CPS sensors is influenced by many aspects such as environmental factors, component failure, task change,
and network update. Igor et al. [5] addressed the reliability of sensor nodes in wireless sensor networks
of CPS. They used the Markov chain state transition diagram to model the behavior of sensors. In order
to avoid sensor failure in a CPS, Teodora et al. [6,7] presented a multi-agent architecture approach,
which introduced four types of agents: data processing and diagnostics, diagnosis agent, data processing
agent for prevention, and prevention agent. They monitored the behavior of the system and when some
failure or maintenance event occurred, the agents analyzed the event and responded by using a knowledge
base (KB). The authors did not provide details about how and from where they derived their KB.
Another study [8] proposed an approach for modeling of prognostics health management with a machine
using ontology. The study was able to formally represent its terms, concepts, and hierarchies to create
relationships that permit the capture and analysis of data for the delivery of information. The information
enables decision-making regarding the remaining lifetime of a given mechanical component before failure
occurs. However, a lightweight approach that would address the failure from detection to prevention or
mitigation through its alignment with 5C architecture is required.

We propose an approach for the detection and prevention of sensor failure using KB. In our
approach, the KB uses a prominent hazard analysis technique: Failure Modes, Effects, and Criticality
Analysis (FMECA). The reason behind using FMECA is that it covers all the descriptions of potential
failures, from the potential effect to the recommended actions along with the severity of the failure.
We use our KB in the cognition level of the 5C architecture [9] of CPS for decision making in order to
manage the identified failure.

The remainder of this paper is organized as follows. Section 2 presents the background and
related work of our research area. In Section 3, we present our proposed methodology that transforms
FMECA into a UML diagram and then protégé is used to build an ontology-based KB. In Section 4,
we implement the UML class model for FMECA in protégé. Section 5 validates our proposed approach
by using a smart home case study, and Section 6 concludes this article.

2. Background and Related Work

2.1. 5C Architecture

Lee et al. [9] proposed a 5C architecture that provides a systematic guideline to develop and deploy
a CPS for smart manufacturing applications. Through a sequential workflow manner, 5C architecture
clearly defines how to build a CPS step-by-step, including a collection of initial data, the data to
information conversion, data analytics, and configuration for final decision making. The 5C architecture
is described in detail as follows.

2.1.1. Smart Connection

In the first step, the data are acquired from the sensors to develop a CPS application. The data should
be accurate and reliable because the entire CPS system depends on the acquired data. Kalyani et al. [10]
proposed a framework for data reliability in wireless sensor networks. Jiang et al. [11] also addressed
the issue of sensor data reliability. Yuan et al. [12] modeled sensor reliability in fault diagnosis based on
evidence theory. The authors mentioned that their proposed approach improved the accuracy of fault
diagnosis to 89.48%.

The connection level determines how to acquire data from physical objects. Automatic Identification
and Data Capture (AIDC) is a common prominent technique used to obtain the data from physical objects.
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ISO/IEC 19762:2016 provides a definition for AIDC. There are other standards as well that provide
guidelines to acquire data at this level [13].

2.1.2. Data-to-Information Conversion

In this level of 5C architecture, meaningful information is inferred from the data. Several tools
and techniques are available that convert data into information. In CPS, the data come from several
resources, €.g., Sensors, controllers, or from other maintenance records. This data describe the current
condition of a monitored CPS. However, the data must be converted into information to understand
the system. Later, this information will be applied for fault diagnosis and health assessment of a CPS.

2.1.3. Cyber

This level of 5C architecture is considered a central information hub. Based on the massive
amounts of information gathered, some particular analytics have to be conducted to gain additional
information to provide better insight into a CPS application. These analytics provide system
self-comparability, where a performance of a single sensor can be compared with and rated among
others. Also, the similarity between sensor performance and previous historical information can be
measured to predict the future behavior of a sensor. Use of the collected data is the next challenge
once the data are collected from the CPS. The elicited information from the monitored CPS may tell
the condition of the CPS at that specific time. When comparing this information with similar CPSs or
with historical data of other CPSs, the system engineers can obtain more insight into the system and
predict the lifespan of the system [14].

2.1.4. Cognition

Th cognition layer of 5C architecture generates a thorough knowledge of the target system.
The presentation of the generated knowledge can help system engineers to make informed decisions.
Among the levels of 5C architecture, the cognition and configuration levels are difficult to achieve [15].
In this level, the CPS can diagnose potential failures of the system and alert system engineers about its
potential degradation in advance. In this level, various predictive algorithms are used to predict the
potential failures and estimate the mean time to failure of the target CPS.

2.1.5. Configuration

In the configuration level, the system configures itself based on the corrective and preventive
decisions made in the cognition level of 5C architecture. This level works as a resilience control system
to enforce preventive and corrective decisions that have already been made in the cognition level [9].
The system can track its health condition; therefore, it can provide early failure detection and dispatch
its health report to the operation level where operators or system engineers made the right decision.
The system can adjust itself to prevent the potential failures.

2.2. Ontology Engineering

Ontology is a formal expression of a specific domain of interest. Therefore, ontologies are used in
a number of fields such as information extraction, knowledge management, and the semantic web [16].
There are a number of studies on the development of ontologies in the literature [17-19]. There are a
variety of ontology modeling tools that support the development of ontologies. Some well-known
tools are Hozo [20], OntoEdit [21], and protégé [22]. Protégé is an open source tool with a number
of plug-ins that provide extensibility along with OWL, RDF, Excel, and XML. It also offers SPARQL
queries, rules in a semantic web rule language, and graphic taxonomy. Protégé also supports pellet and
Hermit reasoners for the validation of concepts. Ontology engineering is used for the failure analysis
in CPSs to estimate and predict the failures.
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2.3. Ontology and Cyber-Physical Systems

A number of researchers used ontology in CPSs to identify the cause of hazards. Zhou et al. [23]
proposed Hazard Ontology (HO), which consistently formalizes the system description to provide
a better understanding for system engineers. The authors extended their work [24] to identify the
hazards in CPS using ontology in order to improve the completeness of hazard identification and
to avoid potential ambiguities. Since the proposed HO provides a whole description of potential
hazards related to the target system, it is used to identify the cause of hazards in safety-critical
systems [25]. Sanislav et al. [26] used a partial dependability taxonomy to form a knowledge
base. However, a more specific and detailed hazard analysis technique is required to cope with
failures. Zhao et al. [27] have used FMEA (Failure Mode Effect Analysis) applications in manufacturing
processes by utilizing ontology. The authors studied how to build a repository and acquisition, storage,
and searching of FMEA. Lihua et al. [28] also used ontologies to represent the knowledge sensor
data to create awareness of the traffic conditions of autonomous vehicles. By apply ontology-based
KB, they produced a fast decision-making system. The ontology-based knowledge base enables the
vehicles to make decisions at intersections. The fast decision-making system uses traffic regulations
and a part of map information from the KB to make its decisions. Pradorn et al. [29] proposed an
approach that captures, creates, and represents ontology for organization development by using
knowledge engineering. Sadik et al. [30] presented a distributed control solution that incorporates
an ontology-based multi-agent and business rule management system to address the challenges in
cooperative manufacturing.

Torsleff et al. [31] proposed an approach to modeling a collaborative CPS and generating
ontologies that can be used at runtime to communicate with each other and perform context-related
decisions. The proposed approach facilitates consistent context specification across various CPSs
and enables multiple CPSs to exchange context-related information at runtime. Pentga et al. [32]
proposed an ontological-based knowledge and reasoning framework to support decisions in CPSs.
The proposed framework enabled the development of determinate CPS models with meta-domain
and domain-specific semantics that strengthen the model-driven approach for CPS designing.
Maria et al. [33] introduced a framework for knowledge-based development and event-driven
execution of multi-domain systems, where data, ontologies, and rules in a specific domain have equal
importance and are co-developed. Feixiang et al. [34] proposed an ontology-based fault diagnostic
method to diagnose the faults in loaders. This method has a threefold contribution. Firstly, it introduced
the ontology-based fault diagnosis model to accomplish the sharing, integrating, and reusing of
fault diagnosis for all loaders. Secondly, case-based reasoning is proposed to realize effective and
accurate fault diagnosis. Thirdly, to cope with the limitations of case-based reasoning, rule-based
reasoning is used through semantic web language rules. However, this study only addressed fault
diagnosis and did not consider recommended actions to prevent potential failures. Elaheh et al. [35]
introduced a tailored ontology that supports sensor implementation for the maintenance of mechanical
machines. The proposed ontology can be used for the query and classification of a wide range of
sensors types: chemical sensors, radiation detectors, etc. This classification can be useful for designing
new maintenance services. Evelio et al. [36] proposed system-based ontologies to define alarms in
geographic sensor systems. The authors established a semantic approach to integrating the information
of systems that need alarms. Alirezaie et al. [37] proposed a framework called E-care@home for
monitoring the users with special needs to increase the possibility of ageing at home. Smart home
environments are usually equipped with various heterogeneous sensors that continuously monitor
both environment parameters and health.

3. Proposed Approach

In this section, we propose an approach to detect and prevent failure using a KB. Our approach
has two parts: (1) failure detection and (2) prevention. We used 5C architecture to predict and detect the
failure. When failure is predicted or detected, then the recommended actions for each detected failure
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are triggered to prevent the failure according to its severity. In the cyber level of the 5C architecture,
which is also called the self-compare level, the current information just acquired from the sensor is
compared with similar cases or historical data of that sensor to predict the performance of the sensor
and to predict the reliability of that sensor. In the cyber level, complex analytical algorithms are
used to compare the data. As a result, the failures can be predicted or identified. Once the failure
is predicted or identified, FMECA is used to address the failure. The proposed knowledge-based
failure prevention and mitigation framework (Figure 1) uses a popular hazard analysis technique,
FMECA [38], to generate KB. FMECA is used to identify failure modes to assess the risk associated with
these failure modes and to identify and carry out corrective actions to address the critical concerns.

-
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FMEA/FMECA § -FMECA Class model

S

&

Decision Reflection
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\
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§ Configuratlon
8
Cognitiop,
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Figure 1. Proposed framework to detect and prevent failure by using a knowledge base.

FMECA is composed of basic information: item/component, functions, failures, failure effects,
the cause of the failure, current controls, severity, recommended actions, severity criticality, and other
relevant details. FMECA also includes some other methods to assess the risk associated with the
failures identified during safety analysis to prioritize the corrective measures. These methods include
criticality analysis and Risk Priority Number (RPN) [39]. RPN is used to asses risk associated with
identified failures. The RPN is usually calculated as follow:

RPN = Severity x Occurrence x Detection 1)

where Severity is the estimation of the severity of the potential failure, Occurrence or likelihood
is a numerical subjective estimate of the likelihood for each cause of failure, and Detection is
the effectiveness of detecting the failure prior to failure occurrence. According to the standard
MIL-STD-1629A [40], criticality analysis can be divided into two types: qualitative or quantitative. For
quantitative analysis, the system engineers must define the reliability for each component and rate the
probability of loss or severity that will emerge from each failure mode.

The Failure Mode Criticality (FMC) can be calculated as follows:

FMC = Bopt )
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where f3 is the conditional probability of occurrence of upcoming higher failure effect, o represents the
failure mode ratio, A, represents the part failure rate, and ¢ is the time duration of the mission phase.
The criticality for each item or component can be determined by the summation of all criticalities for
each failure mode identified for each component or item. FMECA begins with the knowledge of failure
modes of a component and addresses the effects of each failure on the system or sub-systems [33].
FMECA supports system engineers to check whether the components, with their identified failure
modes, meet safety requirements. FMECA results may lead to accepting the proposed component,
to suggesting recommendations for possible maintenance, or to demanding component replacement.
Equations (1) and (2) are used to describe the potential failures in our KB because recommended
actions are triggered based on the RPN and FMC of a failure.

In our proposed approach, we transformed the FMECA to a UML class diagram as shown
in Figure 2 (FMECA class model in Figure 1). The model-based software development approach
has already been used to help overcome various challenges regarding the development of CPS [31].
We used a model-based approach [41] to create a meta-model for FMECA. The main elements of
FMECA are considered as classes during transformation. The essential relationship between these
elements (classes) is defined as follows: a failure hasCause due to the occurrence of a causal factor,
hasEffect on the whole CPS, hasMode to visible, hasType according to its severity, hasControlRules to
detect, and has recommended actions that must be triggered to prevent the failure. The class diagram
also includes a component. which has associated failures. The components have a location where they
are spread.

FMECASystem Potential Hazard
“system Narr'f::. sting ComponentData -ld: string
-referenceld : string " - - -origin : string
: . -information : string :
lifeTime : d°'-'b_l° -recommendedictions : string
-components : list<Component> -description : sting FailureType
] 1 i -severityLevel : Estring P hasType -name : string
P hasComponents P hasDaia 1. 1 “lype - sting
o 1. A hasHazard -description : string
< hasSeverityCategol - 1.7
tyCategory Component 1 P hasFailure 1.0
-name ! string - Failure .lwsEﬂect FailureEffect
-1d : long 0. -ld : keng -name : string
-functionDescription : string -methodOfDetection : string 1.0 1. -description : string
-compenentType : string -hazard : hazard 1B hasFailureCause
-Failure : list<Failures> -name : string . FallureCause
-location : string -oocurrence | integer 1. -name : string
o Ml hasCriticality ) - 1 1. -description ! string
- hasCriticality - -location : string
SeverityCategory
-name . string 1.0 P hasControlRules . Com.m.IRuIes
o hasActions - -name : string
» hasFail n:Modc1 -description : string
1 0. 1.0 -
- .. - FailureMode
SavarityCriticalit RecommendedActions id  stri
- hasCategory - y y . -id : string
-severity : integer -name : string -hazard : hazard
1. ~type : string -name : string
-description : string -description : sting

Figure 2. FMECA modeling in UML class diagram.

The representation of the class diagram to the KB is performed using ontology. The ontology has
object properties and data properties. The relationship description from the class diagram is used as
object properties and the attributes of the class diagram are considered as data properties. Figure 3
shows an example of object property transformation, where the hasCriticality relationship from the
class diagram (Figure 2) has been used as an object property, which has domain class Failure and class
Component. Class SeverityCategory is the range of the hasCriticality object property. The attributes of
the class have been used to form the data properties during ontology-based KB construction.
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==Class=> <<domain>>

Failure |

<<0ObjectProperty=> <<(Class>>
<<range=w

hasCriticality ———*  SeverityCriticality

<<Class=>

Component

<<domain>>

Figure 3. UML representation of the class hasCriticality relationship.

4. Implementation of FMECA Class Model

Protégeé [42] is a free and open-source framework to build intelligent systems. It is a tool that
facilitates transposition of the FMECA class model into an ontology that is expressed in an equivalent
XML-based format. The FMECA class metamodel is implemented in two steps.

4.1. Presenting Class Hierarchy

The UML classes of FMECA metamodel are expressed by protégé classes that have the exact
same name and responsibility. The classes represented in Figure 2 are considered classes in
protégé. Figure 4 shows the class hierarchy of our ontology in protégé. FMECASystem is the main
class of the defined ontology, which consists of subclasses to identify and mitigate the identified
failures. The subClassOf axiom type represents a subordination relationship between main class
and its subclasses. The subclasses of FMECASystem are shown in Figure 4, where PotentialHazard,
Component, ComponentData, ControleRule, Failure, FailureCause, FailureEffect, FailureMode, FailureType,
RecommendedActions, SeverityCategory, and SeverityCriticality are presented as subclasses of FMECASystem.

Class hierarchy (inferred) Annotations | Usage
Class hierarchy

Show: || thisl¥ disjeints|v| named sub/superclasses
Asserted ¥ Found 36 uses of FMECASystem
¥ Component

¥ owl:Thing Component SubClassOf FMECASystem

A& ® FMECASystem

PotentialHazard

Component ¥ ComponentData
ComponentData H ComponentData SubClassOf FMECASystem
¥-{ ControlRule
Prevent ¥ ControlRule
Detect ControlRule SubClassOf FMECASystem
Failure :
Fa[lureCause v 0 Failure
FailureEffect H
FailureMode Failure SubClassOf FMECASystem
FailureType
Location ¥ FailureCause
RecommendedActions FailureCause SubClassOf FMECASystem
SeverityCategory

SeverityCriticality v-- 0 FailureEffect
: FailureEffect SubClassOf FMECASystem

V- FailureMode
H FailureMode SubClassOf FMECASystem

¥ FailureType
FailureType SubClassOf FMECASystem

- Location
i Location SubClassOf FMECASystem

¥ @ PotentialHazard
PotentialHazard SubClassOf FMECASystem

¥ RecommendedActions
: RecommendedActions SubClassOf FMECASystem

V-1 SeverityCategory
H SeverityCategory SubClassOf FMECASystem

¥ SeverityCriticality
H SeverityCriticality SubClassOf FMECASystem

Figure 4. Protégé representation of FMECA.
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4.2. Data Property and Object Property Representation

The attributes of our UML class model for FMECA are expressed in protégé by type property.
There are two types of properties in protégé: (1) Data Property, which elaborates the features offered by
the respective class through various data types, and (2) Object Property is used to define the relationship
between classes of UML class model of FMECA by mentioning domain and range. Figure 5 shows an
example of datatype representation in protégé. For example, the hasName datatype of class FailureType,
FailureMode, Component, FailureCause, FailureEffect, RecommendedActions, Failure, etc. is presented as data
property in protégé. Figure 6 shows the representation of object properties in protégé. The reasoning
outlined in Figure 3 is used to reflect the object properties in protégé. The object properties, which are
called relations in UML, can be functional, inverse functional, transitive, symmetric, asymmetric,
reflexive, or irreflexive [43]. These characteristics of object properties are used to help to analyze the
failure in our study. For example, Figure 7 shows an example of the transitive property hasCause.
The transitive property is used in cases such as: if subclass FailureMode has object property hasCause
and subclass Component has object property hasMode related to subclass FailureCause, then subclass
Component is inferred to have hasCause object property related to subclass FailureCause.

FMECASystem ComponentData PotentialHazard
FailureType
1 i 1 P hasType P
P hasComponents be-  basDals Lr 1
as 1t A hasHazerd
o hasSeveil 1." .
asSevenlyCalegory Clcfmponent B hasFailure 1 - :
s name: string E; Failure S FailureEffect
Id:long - -
FunctionDescription:string )
CompenentType: string 1. # hasFailweCause,
Failure :list<Failure> 1. FailureCause
0. Location: string A hasCrilicality ] ] 1.r
] l hasCrilicality J -
SevertyCategory
-name : siring 1. P hasControlRules ,

ControlRules
o hashctions P hasFailureMode - ]

- : . . | 1.0
. FailureMode
rasCategory | SeverityCategory RecommendedActions

1.

Data property hierarchy: hasNan DS EE QN s Usage ]

=S| 3 Asserted ¥

v--mm owl:topDataProperty Show: [+ thislv disjoints

m hasComponents Found 24 uses of hasName
- hasComponentType ¥--mm hasName
B hasDescription 1 m hasName Domain RecommendedActions
m hasfailure = hasName Domain FMECASystem
= hasFailureFrequency == hasName Domain Component
m hasFailureRate mm hasName Domain SeverityCategory
: E:::gfonnation m hasName Domain FailureCause
m hasMethod OfDetection Wt Domain ControlRule

B hasName Domain FailureEffect
B hasName Domain Failure

M hasName Range: xsd:string

M hasName Domain FailureType

B hasName Domain FailureMode

- hasOccurance

- hasOrigin

mm hasReferenceld
M hasSeverity :
- hasVideoguality . - hasName

Figure 5. Data property representation in protégé.
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<<Class>> <<domain>»

Failure |

<<0ObjectProperty>» <<ranges> <<Class=>»

hasCriticality ———*  SeverityCriticality

<<Class>>

Component ]

<<domainz=

Object property hierarchy: hasCritica DBEE

Show: v thislv| disjoints
T= S | Asserted ¥ Found 8 uses of hasCriticality
=l owl:topObjectProperty s has(:rltlcallt_y_ . : S
== hasAction ; mm hasCriticality Domain Fgl!ure_
== hasCause - hasCriticality
== hasComponents mm hasCriticality Range SeverityCriticality
mm hasControlRules mm hasCriticality Domain Component
mm hasData
= hasEffect
mm hasFailure
m hasHazard
== hasLocation
= hasMode
= hasRecommendedActions
mm hasSeverityCategory
m hasType
m Measures

Figure 6. Object property representation in protégé.

hasMode hasCause
Range Range
Domain Domain
Component FailureMode FailureCause
3 i
\_\\ ./(_.
\"x___ Domain Range -~
“=~——__! hasCause - -—

Figure 7. Representation of the transitive rule of object property (hasCause).
5. Approach Validation

We chose a smart home case study to validate our proposed methodology. The smart home
provides home security, convenience, comfort, and energy efficiency by controlling these aspects with
smart devices. The smart home includes security cameras allowing residents to monitor their home
when they are on vacation or away from their homes. For this purpose, we established a testbed,
where we used an Intel Galileo Gen?2 card [44] as the experimental platform. The XBee pro(S2B) [45]
wireless communication, as the communication unit, and some off-the-shelf sensors for temperature,
humidity;, fire, rain, and carbon monoxide (CO) were installed to facilitate the inhabitants of a smart
home. The temperature sensor was installed in a window to monitor the outside temperature to control
the heating system of the home. The humidity sensor was also installed in a window to monitor
the humidity and moisture in the air. The fire sensor was installed in the kitchen to prevent any
fire incident in the home, while the CO sensors were installed in bedroom and lobby to record the
concentration of CO in the home. When the concentration of CO crosses a defined limit, it generates
an alarm and opens the home windows automatically. The rain sensors were installed in front of
windows, which are used to close the windows in case of rain. The cameras were installed on the
front main gate and the rear gate of the smart home to enable differentiation between visitors, pets,
residents, and burglars. Figure 8 shows the general architecture of a smart home system.
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o
L

Rear gate

Window Bedroom Main gate

Figure 8. General architecture of a smart home system.

In our testbed, each XBee module was configured through the XCTU [46] program. The XCTU is a
free, multi-platform application compatible with windows, MacOS and Linux. Subsequently, the input
pins were selected and activated through which the sensors were connected with each module. The data
gathered by the sensor were sent to the coordinator XBee module. The coordinator XBee module
transferred collected data from each sensor to serial communication on the Inter Galileo card, and it
goes through the conversion layer of 5C architecture, where data are converted into information.

Six sensors were placed in five different places of the smart home including the lobby, windows,
bedroom, main gate, and rear gate. For simplicity, we only monitored the data of CCTV cameras
installed in front of the main gate and rear gate. In a smart home, the CCTV cameras monitor the
environment and send information to the CPS continuously to assure the safety of the home. The CCTV
cameras collect initial real-time data from the environment surrounding the main gate and rear gate.
Therefore, parameters like video quality (Q) of a camera, the angle of rotation (R¢), time delay (T),
and rotation speed (Sr) are recorded to monitor the performance of the installed cameras. The collected
data were transmitted to the cyber layer through the conversion layer, where they are stored in a
database. Using this data, system engineers would be able to estimate the life of the camera and
measure the reliability of the camera. The cameras and other sensors were connected through the smart
connection layer of CPS. To achieve availability, redundant cameras (CCTVCameral, CCTVCamera2,
and CCTVCamera3) were installed to cope with any potential failure. If CCTVCameral failed for
any reason, the system would detect the failure and automatically activate either Camera 2 or 3 as an
alternative. As mentioned above, we employed 5C architecture to design the smart home security
system systematically. Considering that, the input of sensors had to go through a smart connection
layer that deals with data acquisition and monitoring. Then, the data went through a data conversion
layer, where the data were converted into information (how to convert data to information is beyond
the scope of this paper).

Finally, information was stored in a database in cyber layer, which is also called the self-compare
level, where it compares the current information from the sensor with similar cases or historical data
of that sensor to predict the performance of the sensor and to predict the reliability of that sensor.
Here, the failures can be identified, because it analyzes the data based on similar cases or compares
it with the historical data. In our case, the cyber layer of 5C architecture has to maintain parameters
such as Q, Rt, T, and Sr. Any difference among expected and actual values is considered as a fault and
the next level of 5C architecture decides what to do if a fault occurs. Figure 9 shows an example of
stored parameters in the cyber layer. The data are continuously stored with the time difference of 60 s.
Then, the stored data are compared with previous similar data and failures are identified. As shown in
Figure 9, the camera failure occurred due to stop rotation. At a specified time (6/06/18 10:06 p.m.),
when the camera stopped its rotation, the system noticed that camera 1 could not update its value in
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the cyber layer. As a result, the system considered it as a null value and compared it with historical
data of the same camera and determined that a fault occurred. Hence, the failure was identified.

Tima dalaw Bntatinm Vidan Brtatinm Nats and tima

t' Tima dalaw Bntatinm Vidan Ratatinn Nats and tima

. 1 ima dalaw Bntatinm Vidan Ratatinn Nats and tima
b (T
k t Tima dalaw Bntatinn Vidon Bntatinn Nato and timao
( Time delay Rotation Video Rotation Date and time
M Angle(Rt) Quality(Q)  Speed(Sr)
- 20 180 480 20 6/06/18 10:03 PM
[
LA 20 180 880 20 6/06/18 10:04 PM
, 19 180 480 20 6/06/18 10:05 PM
Comparison with other 20 *, 480 20 6/06/18 10:06 PM

data of the same situations

Figure 9. Failure identification in cyber layer.

By analyzing the severity, RPN, and FMC of the identified failure, the recommended action(s)
is/are taken in the cognition layer, where we already built an ontology-based KB using FMECA.
Lastly, the actions were reflected dynamically in the configuration layer. For example, the cyber layer
detected that CCTVCameral stopped rotation. Now, based on our KB, it has high severity; therefore,
the system triggered the most appropriate recommended action (activate alternative) to mitigate the
identified failure. As a result, the system configured itself to reflect the changed actions and activated
CCTVCamera2. The system identified and prevented the potential failure of the system. We applied
some dirt to the front face of Camera 2 to affect the video quality so that we would be able to test
whether the system recognizes the poor quality. We noticed that the system detected CCTVCamera2’s
video quality decreased gradually (detected in the cyber layer) and decided to generate a warning
message for the human in the loop to examine the situation as soon as possible. All this was possible
due to our KB. Figure 10 shows an example of a CCTVCameral individual of the class Component.
The instances were created in our ontology to handle the failure or predicted failure.

Usage: CCTVCamera1l

Show: [v| this|v| different

| Found 12 uses of CCTVCameral
v #CCTvCameral
# CCTvCameral hasTimeDelay "20 seconds"@en
& CCTvCameral hasld "G2.1"
& CCTvCameral hasRotationSpeed "180 degree roation in 20 seconds”@en
& CCTVCameral hasfailure "Rotation, Rotation Speed”@en
& CCTvCameral hasRotationAngle "180° wide-angle view"@en
# CCTVCameral hasDescription "G2.1 monitors front door Gate2"@en
# CCTVCameral hasLocation Gate2
& CCTvCameral Type Component
L J CCTVCameral
& CCTvCameral hasLocation "Gate2"@en
# CCTvCameral hasVideoquality "480p"@en
& CCTVCameral hasFailure Failurel

Figure 10. Example of the CCTVCameral individual in protégé.
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Figure 11 describes the instances of Failure and Component class. The arc types show the
relationship among elements of an ontology. Each instance of a class or a subclass includes data
properties and/or object properties. The CCTVCameral instance of Component class provides all the
needed information, e.g., failure, the location of the failure, its identification, and a brief description.
Another instance of the Failure class is Failurel showing complete information. For example, Failurel is
caused due to power off, has mode to manifest, and has recommended actions that must be
implemented in case of Failurel. The potential failures can be prevented by triggering the recommended
actions. In this case, when CCTVCameral fails due to power failure, then the system detects it and
activates an alternate camera to avoid the potential hazard. As such, each instance in ontology is
enriched with enough knowledge to be described. This information can be used in a number of ways.
For example, this information can be used to predict the lifespan of a camera. The sensor information
is also used to purchase reliable and quality sensors in the future because the sensor data are stored in

a database for future use.

[ — ——<|¢‘ # Failuret

Failura1

URI: hitp:/fwww. samanticwab.orgM 11 #Failura1

Object property assertions:
Failure 1 hasHazard
“Abnormal _situation_detection_[AID)_function_abnormality™
Failura1 hasFailuraModa Powar_Failura
Failura1 hasEffact Sansor_datection_arrar
Failure 1 hasRecommandedActions
Activata_Altarnate_CCTV_Camera_and_Repair_Powar_Failura
Failure1 hasFailureCauss PowarTurn_Off

* ¢ CCTVCameral |+
CCTWCamari

URI: hitp:/fwwew samantiowab.orM 11#CCTVCamaral
Object property assertions:
CCTVCamaral hasFailure Failural
CCTVCameara1 hasLocation Gate2
Data property assertions:
CCTVCamaral hasld "G2.1"
CCTVCamaral hasfailure "Rotation, Rotation Spead"@en
CCTVCamaral hasDascription "G2. 1 manitors front door Gata2" @an

" # Radar2

= # CCTVCamera2 |
I | f - Y@ Failure?
2 # CCTVCamerad 7 = 1
T # Failures
+

|
A
# Failure
- |
o
.
e \ |

TN ™
— \ * & Faiure3 |

! N
'@ FailureEffect AN
— . \ \ '.'I.
I N Y $ Failure2 | |
A

Failure

@ RecommendedActi
ons

Figure 11. Instances of Class Failure and Component in protégé ontology.
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The system engineers can also use ontology-based KB to analyze the system. For analysis,
SPARQL query [47] can be used. The result of the query can obtain information about system maintenance
or detect the failure immediately. Figure 12 shows the query and its results. The query provides
information about CCTVCamera3 including failure, failure mode, failure cause, severity, potential hazards,
and control rules. Based on the severity of the intended failure, the recommended actions are undertaken.

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.0rg/2002/07 /owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.o0rg/2001/XMLSchema#>

PREFIX Hll:<http://www.semanticweb.org/Hill#>

SELECT ?Component ?Failuremode ?Failureeffect ?FailurecCause

'759ver1'tycr1't}ca1‘ity 7PotentialHazard 7ControlRule ?Failure

WHERE

?Component Hll:hasFailure ?fFailure.
7Failure Hll:hasFailuremode ?rFailuremode.
?Failuremode Hl1l:haseffect ?Failureeffect.
?Failure Hll:hasFailureCause ?FailurecCause.
?Failure Hll:hasHazard  ?PotentialHazard.
7Failure Hll:hasCriticality 7severityCriticality.
?Failure Hll:hascontrolrules ?ControlRrule.

FILTER (regex(str(?component) , "ccTvCamera3™ ))

H
‘ Component FailureMode ‘ FailureEffect ‘ FailureCause ‘ SeverityCriticalty i ‘ C Failure
CCTVCamera3 Video_detection_error Sensor_detection_error Due_to_stop_rotation H11#2 _function_abnormality ControlRule3 Failure3
CCTvCamera3 Video_detection_error Sensor_detection_error Inadequate_temperature H11#2 _function_abnormality ControlRule3 Failure3

Figure 12. SPARQL query to see CCTVCamera3 information.

Similarly, Figure 13 shows the query that returns recommended action for identified failures,
including Failure3. The system recommended two types of actions. First, the system recognized
the failure of the CCTVCameral due to power failure and configured itself to activate the alternate
camera for the site monitoring in order to avoid potential hazards. The second action was the issuance
of a notice to its operators or system engineers to repair the power failure. Therefore, Failure3 was
prevented due to the recommended action that provided an alternative camera.

PREFIX rdf: <http:/fwww.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http:/iwww . w3.0rg/2002/07/0wEE=>
PREFIX rdfs: <http:/fwww.w3.0rg/2000/01/rdf-schemad#=>
PREFIX xsd: <http://www . w3.0rg/2001/XMLSchema#=
PREFIX H11: <hitp:/iwww.semanticweb.org/H11#%>
SELECT ?Component ?Failure ?RecommendedActions

WHERE { ?Component H11:hasFailure ?Failure.

?Failure H11:hasRecommendedActions ?RecommendedActions
H

e s [ T
CCTVCamera3 Failure3 Activate_Alternate_CCTV_Camera_and_fix_Cameral_rotation_problem
CCTVCamera2 Failure2 Activate_Alternate_CCTV_Camera_and_Repair_Power_Failure
CCTVCameral Failurel Activate_Alternate_CCTV_Camera_and_Repair_Power_Failure

Figure 13. SPARQL query for recommended actions for failures of CCTVCameral, 2, and 3.
6. Conclusions

In this paper, we presented a failure identification and prevention approach using an ontology-based
knowledge base. The KB was produced using the prominent hazard analysis technique FMECA,
which manages potential failures of the system and also identifies failure cause, the effect of the failure,
severity, and recommended actions to prevent or mitigate the potential failure. We transformed FMECA
to a UML class diagram and then the UML class diagram was represented using protégé. For the
systematic application of our proposed approach, we used the 5C architecture of smart industries.
Lastly, the proposed approach was validated using a smart home case study.

However, there are some limitations of this research that need to be further investigated in the
future. The ontology model in our proposed approach is relatively simple because it only incorporated
FMECA for failure analysis. Therefore, we want to use more hazard analysis techniques, such as fault
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tree and event tree analysis, along with FMECA to enrich the KB to trace the failure in multiple CPS
applications. The data reliability was not considered in this study, so it needs to be addressed in the
future because sometimes inaccurate data itself leads to the failure of the system. Furthermore, we only
fully investigated the camera sensor in detail, which is relatively simple, although we installed four
other sensors in our case study testbed. More detail was intentionally avoided to focus on the specific
research domain.

Author Contributions: N.A. proposed the failure detection and prevention framework by using FMECA to form
a knowledge base. N.A. conducted the case study to validate the proposed approach. ].-E.H. supervised overall
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