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Abstract: Temporal information plays a very important role in many analysis tasks, and can be
encoded in at least two different ways. It can be modeled by discrete sequences of events as,
for example, in the business intelligence domain, with the aim of tracking the evolution of
customer behaviors over time. Alternatively, it can be represented by time series, as in the
stock market to characterize price histories. In some analysis tasks, temporal information is
complemented by other kinds of data, which may be represented by static attributes, e.g., categorical
or numerical ones. This paper presents J48SS, a novel decision tree inducer capable of natively mixing
static (i.e., numerical and categorical), sequential, and time series data for classification purposes.
The novel algorithm is based on the popular C4.5 decision tree learner, and it relies on the concepts of
frequent pattern extraction and time series shapelet generation. The algorithm is evaluated on a text
classification task in a real business setting, as well as on a selection of public UCR time series datasets.
Results show that it is capable of providing competitive classification performances, while generating
highly interpretable models and effectively reducing the data preparation effort.

Keywords: machine learning; decision trees; sequential data; pattern mining; time series classification;
evolutionary algorithms

1. Introduction

This paper presents J48SS, a novel decision tree learner based on WEKA’s J48 (a Java
implementation of C4.5 [1]) (preliminary conference versions of some of its contributions can be
found in [2,3]). The algorithm is capable of naturally exploiting categorical, numerical, sequential,
and time series data during the same execution cycle. The resulting decision tree models are intuitively
interpretable, meaning that a domain expert may easily read and validate them.

Temporal data is of most importance in the extraction of information in many applications, and it
comes in at least two flavors: it can be represented either by a discrete sequence of finite-domain
values, e.g., a sequence of purchases, as well as by a real-valued time series (for instance, think of
a stock price history). Sometimes, temporal information is complemented by other, “static” kinds of
data, which can be numerical or categorical. As an example, this is the case with the medical history of
a patient, which may include:
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• categorical attributes, with information about the gender or the smoking habits;
• numerical attributes, with information about age and weight;
• time series data, tracking the blood pressure over several days, and
• discrete sequences, describing which symptoms the patient has experienced and which

medications have been administered.

Such an heterogeneous set of information pieces may be useful, among others, for classification
purposes, such as trying to determine the disease affecting the patient. Another use case is that of
phone call classification in contact centers: a conversation may be characterized by sequential data
(for instance, textual data obtained from the call recordings), one or more time series (keeping track of
the volume over time), and a set of categorical or numerical attributes (reporting, e.g., information
pertaining to the speakers, or the kind of call). Unfortunately, different kinds of data typically require
different kinds of preprocessing techniques and classification algorithms to be managed properly,
which usually means that the heterogeneity of data and the complexity of the related analysis tasks are
directly proportional. Moreover, since multiple algorithms have to be combined to produce a final
classification, the final model may lack in interpretability. This is a fundamental problem in all domains
in which understanding and validating the tranined models is as important as the accuracy of the
classification itself, e.g., production business systems and life critical medical applications.

Specifically, the proposed algorithm has been evaluated through two distinct experimental tasks.
We first applied it in the business speech analytics setting. The starting point was the observation that
phone transcripts may be viewed as a kind of sequential data, where phrases correspond to sequences
that can be managed by our algorithm. The proposed solution has been tested on a set of recorded
agent-side outbound call conversation transcripts produced in the context of a country-wide survey
campaign run by Gap S.r.l.u.,

an Italian business process outsourcer specialized in contact center services. The considered task
consisted of identifying relevant phrases in such transcripts, by determining the presence or absence of
a predefined set of tags, that carry a semantic content. The ability of tagging phone conversations
may greatly help the company in its goal of introducing a reliable speech analytics infrastructure with
a considerable operational impact on business processes, which may help in the assessment of the
training level of human employees or in the assignment a quality score to the calls. The importance of
analyzing conversational data in contact centers is remarked by several studies [4], based on the fact
that the core part of the business still focuses on the management of oral interactions. Other benefits
that speech analytics can deliver in such a domain include the tracking down of problematic calls [5],
and, more generally, the development of end-to-end solutions to conversation analysis as witnessed,
for example, in [6].

The second experiment focused on time series, which play a major role in many domains.
For instance, in economy, they can be used for stock market price analysis [7], in the healthcare domain,
they may allow to predict the arrival rate of patients in emergency rooms [8], and in geophysics,
they convey important information about the evolution of the temperature in the oceanic waters [9].
Specifically, we evaluated the proposed algorithm against a selection of well-known UCR (University of
California Riverside) time series datasets [10], focusing on the task of time series classification: given
a training dataset of labeled time series data, the goal is that of devising a model capable of labeling
new, previously unseen instances. Several techniques have been used in the past for such a purpose,
including support vector machines [11] and neural networks [12]. Nonetheless, in all situations when
interpretability has to be taken into account, decision trees are still mostly used (see, for instance, [13]).

In both test cases, experimental results show that J48SS is capable of training highly readable
models, that nontheless achieve competitive classification performances with respect to previous
interpretable solutions, while requiring low training times. In addition, some exploratory results
suggest that J48SS ensembles might perform better than those proposed in previous studies, while
also being smaller. While we are conscious that some approaches have recently been presented,
capable of achieving a higher accuracy on time series classification than our solution (see, e.g., [14]),
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these typically come short of two distinctive characteristics of J48SS, i.e., the ability of seamlessly
handling heterogenous kinds of attributes, which, again, reduces the data preparation effort, and the
intuitive interpretability of the generated models.

The paper is organized as follows. Section 2 gives a short account of the main concepts and
methodologies used throughout the paper. Section 3 thoroughly describes the extensions made to J48 in
order to handle sequential and time series data. Section 4 details the two experimental tasks. Section 5
presents the results of the experiments. Finally, Section 6 briefly recaps the main achievements of
the work, and discusses some aspects regarding the power of the proposed algorithm and the
characteristics of the datasets where it should be capable of excelling, finding its natural application.

2. Background

This section briefly introduces the main concepts and methodologies used in the paper. Specifically,
Section 2.1 presents the J48/C4.5 learner, on which our decision tree model is based. Section 2.2
introduces the sequential pattern mining task, on which we rely to extract meaningful information from
training sequences. Finally, Sections 2.3 and 2.4 give a brief overview of evolutionary algorithms and
time series shapelets, which constitute the basis for our management of time series data, respectively.

2.1. The Decision Tree Learner J48 (C4.5)

J48 is the WEKA (Waikato Environment for Knowledge Analysis) [15] implementation of
C4.5 [1], which, to date, is still one of the most used machine learning algorithms when it comes
to classification. It owes its popularity mainly to the facts that it provides good classification
performances, is computationally efficient and it guarantees a high interpretability of the generated
models. In short, C4.5 builds a decision tree from a set of training instances following the classical
recursive Top Down Induction of Decision Trees (TDIDT) strategy: it starts from the root, and at each
node it determines the data attribute (categorical or numerical) that most effectively splits the set of
samples into subsets, with respect to the class labels. Such a choice is made according to the Information
Gain (IG) and Gain Ratio criteria, both based on the concept of Shannon Entropy. The splitting process
continues until a stopping condition is met, for instance a predefined minimum number of instances.
In these cases, the corresponding node becomes a leaf of the tree. Once the tree has been built,
(post) pruning techniques are typically applied with the aim of reducing the size of the generated
model and, as a result, of improving its generalization capabilities (for details on this latter phase,
see, for instance, [16]).

2.2. Sequential Pattern Mining

Sequential pattern mining is the task aimed at discovering “interesting” patterns in sequences [17],
i.e., patterns that may be useful for supervised or unsupervised learning purposes. Specifically,
this work focuses on the problem of extracting frequent patterns, that intuitively are concatenations of
symbols that repeatedly appear in a set of sequences, whose frequency is higher than an user-defined
minimum support threshold [18]. Many different sequential pattern mining algorithms have been
presented over the years, most notably PrefixSpan [19], SPADE [20], and SPAM [21], which share the
common drawback of generating, typically, a very large amount of patterns. This is problematic, since:

• it makes it difficult for a user to read and understand the output, and to rely on the patterns for
subsequent data analysis tasks, and

• an overly large result set may require a too high resource consumption and too long computation
time to be produced.

In order to present a small set of patterns to the user, also reducing the computational burden of
the mining tasks, several succinct representations of frequent sequential patterns have been devised.
For instance, a frequent closed sequential pattern is a frequent sequential pattern such that it is not
included in any other sequential pattern having exactly the same frequency, that is, it is somehow
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“maximal”. Algorithms capable of extracting closed patterns include CloSpan [22], BIDE [23], ClaSP [24],
and CM-ClaSP [25]. An additional feasible alternative is that of sequential generator patterns: contrarily
to closed patterns, they are “minimal”, in the sense that a pattern is considered to be a generator if
there exists no other pattern which is contained in it and has the same frequency. Observe that, based
on the Minimum Description Lenght (MDL) principle [26], generators patterns are to be preferred over
closed ones for model selection and classification, being less prone to overfitting effects [27]. In the
present work, we rely on the algorithm VGEN [28], which, to the extent of our knowledge, represents
the state-of-the-art in the extraction of general, sequential generator patterns. Considering the pattern
generalization, VGEN operates in a top-down fashion, starting from the most general patterns down
to more specific ones.

A pattern is a sequence of itemsets, which can be in turn be considered as unordered sets of distinct
items. An item is an element that may be present in a sequence belonging to the reference dataset.
Intuitively, items belonging to the same itemset are meant to occur at the same time. The algorithm
begins its execution by generating all single-itemset, single-item frequent patterns. They are then
grown by means of the so-called s-extension (that enqueue a new itemset to the pattern) and i-extension
operations (that add a new item to the last itemset). Of course, as a pattern undergoes extension
operations, its support (i.e., the number of instances in the dataset containing the pattern) tends to
decrease, and the growing phase continues until a user-defined minimum support threshold is reached.
The algorithm can also generate patterns which are not strictly contiguous, by specifying a maximum
gap tolerance between the itemsets.

2.3. Evolutionary Algorithms

Evolutionary Algorithms (EAs) are adaptive, meta-heuristic optimization algorithms, inspired
by the process of natural selection, and the fields of biology and genetics [29]. Unlike traditional
random search, they can effectively make use of historical information to guide the search into the most
promising regions of the search space and, in order to do that, they mimic the processes that in natural
systems lead to adaptive evolution. In nature, a population of individuals tends to evolve in order to
adapt to the environment; in evolutionary algorithms, each individual represents a possible solution to
the optimization problem, and its degree of “adaptation” to the problem is evaluated through a suitable
fitness function, which may be single or multi-objective. As the optimization algorithm iterates, the
elements of the population go through a series of generations. At each generation, the individuals
which are considered best by the fitness function are given a higher probability of being selected
for reproduction. As a result, over time, the population tends to evolve toward better solutions.
Optimization algorithms may be single- or multi-objective. In particular, multi-objective evolutionary
algorithms are capable of solving a set of minimization or maximization problems for a tuple of n
functions f1(

−→x ), . . . , fn(
−→x ), where −→x is a vector of parameters belonging to a given domain. A set

F of solutions for a multi-objective problem is said to be Pareto optimal (or non-dominated) if and only if
for each ~x ∈ F :

• there exists no ~y ∈ F such that fi (~y) improves fi (~x) for some i, with 1 ≤ i ≤ n, and
• for all j, with 1 ≤ j ≤ n and j 6= i, f j (~x) does not improve f j (~y).

The set of non-dominated solutions from F is called Pareto front. Multi-objective approaches
are particularly suitable for multi-objective optimization, meaning that they are capable of finding
a set of optimal solutions in the final population in a single run. Once such a set is available, the most
satisfactory one can be selected by applying a user-defined preference criterion.

The algorithm NSGA-II [30], on which our shapelet extraction strategy is based, relies on
a Pareto-based multi-objective (λ + µ) binary tournament selection strategy with a rank crowding
better function: all elements in the population are sorted into fronts, according to a non-domination
criterion. A first front is composed of the individuals which are non-dominated overall. A second
one is made by those which are dominated by the elements in the first front only, and so on for the
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subsequent fronts. Then, pairs of individuals are randomly selected from the population. Finally,
a Binary Tournament selection is carried out for each pair, by exploiting a better-function based on
the concepts of rank (that considers the front the instance belongs to) and crowding distance (which
intuitively measures the proximity between an individual and its neighbors). The operators crossover
and mutation are then applied to the selected individuals, with the goal of generating new offspring,
i.e., a new generation of solutions. The iterations stop when a predefined criteria is satisfied, such
as a bound on the number of iterations, or a minimum fitness increment that must be achieved
between subsequent generations. An overview of the algorithm NSGA-II applied to the shapelet
extraction problem is presented in Figure 1. For more details regarding the specific implementation,
see Section 3.2.

Initialize population of size N
(shapelets are randomly
sampled from the data)

Evaluate fitness 
(information gain,
compression ratio)

Rank population

Selection

Mutation 
(randomly flip bits) 

Crossover
(swap shapelet tails)

Generate
new

offspring

Elitism

Combine parent and
offspring population

(fitness evaluation, ranking)
Select N individuals

No

Yes
Stopping
condition 

met?
End

algorithm

Figure 1. Overview of the algorithm NSGA-II applied to the shapelet extraction problem (Section 3.2).

Generalization can be defined as the ability of a model to achieve a good performance on new,
previously unseen instances, not belonging to the original training set. Conversely, overfitting is
a phenomenon that arises when a model too closely fits a specific and limited set of examples,
thus failing in applying its knowledge to new data. Given their design, evolutionary algorithms
naturally tend to generate solutions that are as good as possible with respect to a given set of instances,
against which the fitness function is evaluated, without considering the performances on possible
new cases. This may be a problem when they are used within a broader machine learning process.
For this reason, generalization in evolutionary computation has been recognized as an important open
problem in recent years [31], and several efforts are being made to solve such an issue [32]. For instance,
ref [31] proposes the usage, through the generations, of a small and frequently changing random
subset of the training data, against which to evaluate the fitness function. Another solution is given by
bootstrapping, that is, repeatedly re-sampling training data with replacement, with the goal of simulating
the effect of unseen data. The errors of each solution with respect to the bootstrapped datasets are
then evaluated, speculating that the most general solutions should exhibit a low variance among
the different samples [33]. Also, an early stopping-like strategy may be used for the evolutionary
process, based on an independent validation set [34]. Finally, other approaches are based on the idea of
reducing the functional complexity of the solutions, which is not to be confused with the concept of bloat
(that is, an increase in mean program size without a corresponding improvement in fitness). In fact,
as shown in [35], bloat and overfitting are not necessarily correlated.
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2.4. Time Series Shapelets

As extensively reported in the literature, time series classification is a difficult problem.
A commonly adopted solution is based on a preliminary data discretization step relying on strategies
like Equal Width or Equal Frequency binning, or more elaborate approaches such as Symbolic Aggregate
Approximation [36]. As a result, a discrete, symbolic representation of the time series is obtained, which
may be handled by traditional pattern mining algorithms [17]. Due to its simplicity, many studies have
pursued such an approach, for instance [37,38]; still, its downsides typically include information loss,
and a reduced interpretability of the final results. Other strategies make use of patterns that may be
extracted straight from the numerical data, such as time series shapelets. Shapelets have been first defined
in [39] as contiguous, arbitrary-length time series subsequences which are in some sense maximally
representative of a class. The idea is that they should be capable of capturing local features of the time
series, that ought to exhibit a higher resistance to noise and distortions than global ones. Figure 2
shows an example of a shapelet capturing a local pattern in a time series.

Figure 2. A shapelet (red dotted line) capturing a local pattern of a time series (blue solid line).
For ease of reading, the two lines have been slightly shifted.

Given their definition, it is possible to calculate the total number of shapelets that can be extracted
from a given set of sequences. Let us consider n instances, and define li as the length of the ith instance’s
time series. Then, the total number of shapelets that may be generated is ∑n

i=1(li!) . Searching such
a huge space for the best shapelets in an exhaustive manner is unfeasible and, for this reason, several
studies have focused on how to speed up the shapelet extraction process [40–46], by means, for instance,
of heuristics-driven search, or random sampling of the shapelet candidates. Tipically, shapelets are
used as follows. Given a training dataset composed of time series, k shapelets are extracted through
a suitable method. As a result, every instance is characterized by k predictor attributes, each encoding
the distance between the corresponding shapelet and the instance’s time series. As for the specific
distance metric, for its speed and simplicity, most studies have relied on Euclidean distance, although
Dynamic Time Warping [47] or Mahalanobis distance [48] have been experimented as well: the resulting
value is the minimum distance between the time series and the shapelet, established by means of
a sliding window approach.

3. Materials and Methods

This section presents J48SS, a new decision tree learner based on J48 (WEKA’s implementation of
C4.5, release 8 [15]): Section 3.1 describes the extensions we made to the original algorithm to manage
sequential data, while Section 3.2 describes how we handle time series.
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3.1. Handling of Sequential Data

To extract meaningful information from sequential data, J48SS relies on the VGEN frequent closed
pattern extraction algorithm [28]. The following sections thoroughly describe all the changes that
we made in order to seamlessly integrate the two algorithms. For further details regarding the main
recursive procedure used in the tree building phase, see the code of Algorithm 1.

3.1.1. Adapting VGEN

One of the key component of the proposed tree learner is a suitable adaptation of the algorithm
VGEN. As already pointed out, such an algorithm builds frequent generator patterns in a top-down
manner, until a user-defined minimum support threshold is met. Since we are not interested in
obtaining a set of frequent patterns, but rather highly discriminative patterns that may be used in the
classification task, the information gain criterion has been integrated into the algorithm. In the following,
such an integration is described in detail for the (simpler) two-class classification problem; however,
it can be easily generalized to multi-class classification, e.g., following a one-vs-all strategy.

To begin with, we observe that the information gain of a pattern can be computed by partitioning
the dataset instances in two classes: the class of the instance that satisfy it, and the class of those that
do not. It is worth noticing that the information gain of a pattern is directly affected by its support
(see [49]: often patterns with a very high or low support are not really useful, as the former are just too
common, and the latter have a too limited coverage among the instances in the dataset).

Based on such assumptions, Cheng et al. [49] presents a strategy to derive an upper bound to
the information gain, taking into account the support of the pattern. A graphical account of the
relationships between such an upper bound and the support is given in Figure 3 (solid curve), which
refers to data collected from a randomly-generated binary class dataset. As expected, looking at the
picture from left to right, we observe that an increase in the support causes an increase in the upper
bound, until it peaks; then, it starts decreasing as the relative support approaches 1. In addition,
the picture shows (red dots) the information gain and support of each pattern extracted by VGEN on
the same dataset.
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Figure 3. Pattern information gain and its theoretical upper bound with respect to the support on
a randomly generated dataset.
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Hence, given a calculation method for the upper bound, we can easily define a stopping criterion
for the pattern growing process (remember that, as a pattern grows, its support may only decrease).
Throughout the pattern generation process, a dedicated variable stores the best information gain found
up to a certain moment. Then, given a pattern, the following strategy may be used to decide if it is
worth growing or not: if the derivative at the point in the curve associated with the value of the support
is positive or equal to zero, then growing it may only decrease the upper bound or leave it unchanged.
It follows that if the best information gain obtained so far is already greater than or equal to the
information gain upper bound of the pattern, the growing process can be stopped. As a matter of fact,
such a strategy works as a second stopping condition, which is combined with the minimum support
threshold method.

As we shall see in Section 3.1.2, VGEN is called at each node by the main decision tree learning
procedure, in order to obtain a candidate pattern that may be used for the split operation (refer to the
code of Algorithm 1). Thus, at that stage, we are interested in obtaining just the single most useful
pattern, rather than a set of patterns, as returned by the original VGEN algorithm. Observe, however,
that sometimes it is not possible to just select the most informative one, as it might overfit training data.
In order to customize the output of the algorithm, we proceed as follows. The best pattern (in terms of
information gain) for each encountered pattern size is stored. Then, at the end of the algorithm,
the following formula, inspired again by the MDL principle [26], is evaluated for each pattern:

W ∗ (1− patternrIG) + (1−W) ∗ patternrlen (1)

where W ∈ [0, 1] is a weight that can may customized by the user, patternrIG ∈ [0, 1] is the information
gain of the pattern, divided by the highest information gain observed, and patternrlen ∈ [0, 1] is the
length of the pattern, divided by that of the longest pattern that has been discovered (in number of
items). Then, the pattern that minimizes the value of such a formula is selected, thus, intuitively,
the larger the user sets the weight, the longer and more accurate (at least, on the training instances)
the extracted pattern will be. Conversely, smaller weight values should lead to a shorter, and more
general, pattern being selected. In essence, setting W allows one to control the level of abstraction of
the extracted patterns.

3.1.2. Adapting J48 to Handle Sequential Data

As we have already pointed out, the decision tree J48 is able to hand both categorical and
numerical features. Our extension J48SS introduces the capability of managing sequences as well,
which are represented as properly formatted strings. J48SS somehow resembles the solution outlined
in [50], where the authors propose a decision tree construction strategy for sequential data. It improves
that one mainly in three respects:

• we rely on a well-established and performing algorithm, such as J48, instead of designing
a new one;

• we are able of mixing the usage of sequential and classical (categorical or numerical) data in the
same execution cycle;

• our implementation allows the tuning of the abstraction level of the extracted patterns.

The first modification concerns the splitting criterion. Instead of relying on the gain ratio,
we consider the so-called normalized gain [51], which is defined as:

NormIG(X, T) =
Gain(X, T)

log2n
, n ≥ 2 (2)

where n is the split arity. Note that considering the normalized gain allows for a straightforward
integration between the decision tree learner and the modified VGEN algorithm, since such a metric is
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the same as the information gain for binary splits, as in the case of a pattern-based split (based on the
presence or absence of the pattern in the instance).

At each node of the tree, the learning algorithm first determines the most informative attribute
among the categorical and numerical ones. Then, it calls VGEN, passing two fundamental parameters:

• the weight W, in order to control the abstraction level of the extracted pattern, and
• the normalized gain of the best attribute found so far, which, as previously described, can be used

to prune the pattern search space.

Once VGEN terminates, if a pattern is returned, its normalized gain is compared with the best
previously found. If it is found to be better, then a binary split is created on the basis of the presence or
absence of the pattern; otherwise, the best numerical or categorical attribute is used.

In Table 1, we list the six parameters that have been added to J48SS, with respect to the original
J48, in order to handle sequential data. Observe, in particular, the role of maxGap, that allows one to
tolerate gaps between itemsets: in the text classification context, this gives the possibility to extract
and apply ngrams capable of tolerating the presence of some noisy or irrelevant words. Observe that,
in general, the larger the value of maxGap, the slower the algorithm.

Table 1. Custom parameters for sequential pattern extraction in J48SS.

Parameter Name Default Description

maxGap 2 maximum gap allowance between itemsets (1 = contiguous)
maxPatternLength 20 maximum length of a pattern, in number of items

maxTime 30 maximum allowed running time of the algorithm, per call
minSupport 0.5 minimum support of a pattern

patternWeight 0.5 weight used in VGEN for the extraction of the result
useIGPruning True use information gain pruning of the pattern search space

Although having to tune six parameters may seem rather complicate, it should be observed that
maxTime is just an upper bound on the running time of the algorithm, and thus it may simply be left at
its default value. The parameter useIGPruning should just be left at True as well, since its activation
may speed up the computation time of the algorithm. For what concerns maxGap, maxPatternLength,
and minSupport, their value should be suggested by domain knowledge. Hence, just one parameter,
namely, patternWeight, has to be tuned, for example by cross-validation.

Figure 4 shows a typical J48SS decision tree that makes use of sequential, categorical,
and numerical data, built by integrating the proposed extension to WEKA data mining suite [15].
The considered dataset is characterized by three features: sequence_attribute, which is a string
representing a sequence of itemsets; attribute_numeric, that has an integer value; attribute_nominal,
which may only take one out of a predefined set of values. The class is binary and its labels are: class_0
and class_1. The first test, made at the tree’s root, determines whether a given input sequence contains
the pattern (A, B) > D or not, checking if there exists an itemset containing A, B, followed (within
the maximum allowed gap) by an itemset containing D. If this is the case, the instance is labeled with
class_0; otherwise, the tree proceeds by testing on the numerical and categorical attributes.

sequence_attribute !contains (A,B)>D 
|   attribute_numeric <= 20: class_1  
|   attribute_ numeric > 20 
|   |   attribute_nominal = value_1: class_0  
|   |   attribute_nominal = value_2: class_1  
sequence_ attribute contains (A,B)>D: class_0  

Figure 4. A typical J48SS decision tree built by means of WEKA.
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3.2. Handling of Time Series Data

To extract meaningful information from time series data, J48SS relies on NSGA-II [30]. As in
the case of sequential data, this section presents all the changes that have been made in order to
integrate the two algorithms together. Specifically, Section 3.2.1 describes the evolutionary algorithm
implementation, while Section 3.2.2 illustrates the extensions made to J48.

3.2.1. Using NSGA-II to Extract Time Series Shapelets

Evolutionary algorithms have already been profitably used in different phases of the decision tree
learning process [52]. In order to describe how we adapted NSGA-II for the task of shapelet generation,
in the following we will discuss:

• how the population (i.e., potential solutions) is represented and how it is initialized;
• how the crossover and mutation operators are defined;
• which fitness function and constraints are used;
• which decision method is followed to select a single solution from the resulting front, given that,

as we shall see, we are considering a multi-objective setting.

Differently from the majority of previous works, in our solution we do not require shapelets to
be part of any training time series: once they are initialized with values taken from the time series
data, they may evolve freely through the generations. As for the implementation of the evolutioary
algorithm, we relied on the jMetal framework [53].
Representation of the Solutions and Initial Population. In order to make it easier for us to define the
mutation operator, we decided to represent each shapelet in the population by an ordered list of binary
arrays, each one of them encoding a floating point value in IEEE 754 double-precision 64 bit format
(see Figure 5): the first, leftmost bit establishes the sign of the number, the following 11 bits represent
the exponent, and the remaining 52 bits encode the fraction.

0 11 63

Sign Exponent Fraction
11 bit 52 bit

...

Figure 5. IEEE 754 double-precision floating point format.

As for the initialization of the population, the step is performed on each instance as follows: first,
a time series is randomly selected from the dataset; then, a begin and an end index are randomly
generated. The shapelet corresponds the portion of the time series that lies between the two indexes.
Crossover Operator. As for the crossover operator, we rely on an approach similar to the single-point
strategy [29]. Given two parent solutions, that is, two lists of binary arrays, a random index is generated
for each of them. Such indexes represent the beginning of the tails of the two lists, that are then swapped
between the parents, generating two offspring. Figure 6 graphically represents the crossover operation,
where the two indexes happen to have the same value. Observe that, in general, the two offspring may
have a different length with respect to those of the two parents.
Mutation Operator. A properly designed mutation operator should not try to improve a solution on
purpose, since this would bias the evolution process of the population. Instead, it should produce
random, unbiased changes in the solution components [29]. In the present approach, mutation is
implemented by randomly flipping bits in the binary array representation of the elements composing
the shapelet. Since we rely on the IEEE notation, the higher the index in the array, the less significant
the corresponding bit. Taking that into account, we set the probability of flipping the ith bit to be
Pmut − Pmut ∗ log65(65− i − 1)) , where Pmut is the overall mutation probability, governed by the
mutationP parameter. Intuitively, by employing such a formula, we effectively penalize flipping the
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most significant bits in the representation, avoiding sharp changes in the values of the shapelets that
might interfere with the convergence of the algorithm to a (local) optimum. Finally, when randomly
flipping the bits leads to non-valid results (NaN in the IEEE 754 notation), we simply perform a further
random flip in the exponent section of the binary array.

(a) Shapelets before the crossover operation. (b) Shapelets after the crossover operation.

Figure 6. Crossover operation. Dotted lines represent the tails of the shapelets that are being swapped.

Fitness Function. In our implementation, we make use of a bi-objective fitness function. The first
one is that of maximizing the information gain (IG) of the given shapelet, as determined on the
training instances belonging to the specific tree node: observe that such a measure corresponds to the
normalized gain, since a split over a shapelet is always binary. To calculate the IG of a shapelet, first its
minimum Euclidean distance with respect to every time series is established, by means of a sliding
window approach. Then, the resulting values are dealt with following the same strategy as the one
used by C4.5/J48 for splitting on numerical attributes (see, for instance, [1]). Observe that, in principle,
one may easily use any other distance metric in the objective.

The second objective is that of reducing the functional complexity [35] of the shapelet, so to fight
against undesirable overfitting phenomena that might occur if considering only the first objective.
To do so, we make use of the well-known Lempel-Ziv-Welch (LZW) compression algorithm [54]: first,
we apply such an algorithm to the (decimal) string representation of the shapelet, and then we evaluate
the ratio between the lengths of the compressed and the original strings. Observe that such a ratio is
typically less than 1, except for very small shapelets, in which compression might actually lead to longer
representations, given the overhead of the LZW algorithm. Finally, NSGA-II has been set to minimize
the ratio, following the underlying intuition that “regular” shapelets should be more compressible than
complex, overfitted ones. As a side effect, also extremely small (typically singleton) and uninformative
shapelets are discouraged by the objective.

Given the fact that we use a bi-objective fitness function, the final result of the evolutionary
process is a set of non-dominated solutions.This turns out to be an extremely useful characteristic of our
approach, considering that different problems may require different levels of functional complexities of
the shapelets in order to be optimally solved. As we shall see, one may easily achieve a a trade-off
between the two objectives by simply setting a parameter. It is worth mentioning that we also tested
other fitness functions, inspired by the approaches described in Section 2.3. Among them, the best
results have been given by:

• an early-stopping strategy inspired by the separate-set evaluation presented in [34]. We first
partition the training instances into two equally-sized datasets. Then, we train the evolutionary
algorithm on the first subset, with a single-objective fitness function aimed at maximizing the
information gain of the solutions. We use the other dataset to determine a second information
gain value for each solution. During the execution of the algorithm, we keep track of the best
performing individual according to the separated set, and we stop the computation after k non
improving evolutionary steps. Finally, we return the best individual according to the separated set;
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• a bootstrap strategy inspired by the work of [33]. The evolutionary algorithm evaluates each
individual on 100 different datasets, built through a random sampling (with replacement) of the
original dataset. Two objectives are considered: the first one is that of maximizing the average
information gain of the shapelet, as calculated along the 100 datasets, while the second one tries
to minimize its standard deviation, in an attempt to search for shapelets that are good in general.

As a matter of fact, both these strategies exhibited inferior accuracy performance than the
previously discussed solution. While for the first approach this might be explained by the fact that it
greatly reduces the number of training instances (a problem that is exacerbated in the smallest nodes
of the tree), the reason behind the poor performance of the second one is still unclear, and deserves
some further attention.
Decision Method. In order to extract a single shapelet out from the resulting front of Pareto-optimal
solutions, we evaluate each individual with respect to the following formula:

(1−W) ∗ ComprRatiorel + W ∗ (1− In f oGainrel) (3)

where W ∈ [0, 1] is a weight that can be customized by the user (by the patternWeight parameter),
ComprRatiorel ∈ [0, 1] is the compression ratio of the shapelet, and In f oGainrel ∈ [0, 1] is the
information gain of the shapelet, both divided by the respective highest values observed in the
population. The solution that minimizes the value of such a formula is selected as the final result of
the optimization procedure, and is returned to the decision tree for the purpose of the splitting process.
Intuitively, large values of W should lead to a highly accurate shapelet being extracted (at least, on the
training set). Conversely, a small value of W should result in less complex solutions being selected.
Note that the approach is quite similar to the one we used to handle sequential data: in fact, this allows
us to seamlessly rely on the same weight W in both cases.

3.2.2. Adapting J48 to Handle Time Series Data

Consider now the execution of J48SS on time series data, concerning the tree growing phase.
Algorithm 1 illustrates the main procedure that is used during the tree construction phase: it takes
a node as input, and proceeds as follows, starting from the tree root. If the given node already achieves
a sufficient degree of purity (meaning that almost all instances are characterized by the same label),
or any other stopping criteria is satisfied, then the node is turned to a leaf; otherwise, the algorithm
has to determine which attribute to rely on for the split. To do so, first it considers all classical attributes
(categorical and numerical), determining their normalized gain value (see Section 3.1.2), according to
the default C4.5 strategy. Then, it centers its attention on string attributes that represent sequences:
VGEN is called in order to extract the best closed frequent pattern, as described in Section 3.1. Then,
for each string attribute representing a time series, it runs NSGA-II with respect to the instances that
lay on the node (see the details presented in the remainder of the section), obtaining a shapelet. Such
a shapelet is then evaluated as if it was a numerical attribute, considering its Euclidean distance with
respect to each instance’s time series (computation is sped up by subsequence distance early abandon
strategy [39]), and thus determining its normalized gain value, that is compared to the best found one.
Finally, the attribute with the highest normalized gain is used to split the node, and the algorithm is
recursively called on each of the generated children.
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Algorithm 1 Node splitting procedure

1: procedure NODE_SPLIT(NODE)
2: if NODE is “pure” or other stopping criteria met then
3: make NODE a leaf node
4: else
5: best_attr← null
6: best_ng← 0
7: for each numeric or categorical attribute a do
8: a_ng←get information gain of a
9: if a_ng > best_ng then

10: best_ng← a_ng
11: best_attr← a
12: for each sequential string attribute s do
13: pat, pat_ng←get best frequent pattern in s
14: if pat_ng > best_ng then
15: best_ng← pat_ng
16: best_attr← pat
17: for each time series string attribute t do
18: shap, shap_ng←get shapelet in t using NSGA-II
19: if shap_ng > best_ng then
20: best_ng← shap_ng
21: best_attr← shap
22: children_nodes← split instances in NODE on best_attr
23: for each child_node in children_nodes do
24: call NODE_SPLIT(child_node)
25: attach child_node to NODE
26: return NODE

As for the input parameters of the procedure for
the shapelet extraction process, they are listed in Table 2. With the exception of patternWeight,

which determines the degree of complexity of the shapelet returned to the decision tree by NSGA-II
(see Algorithm 1), they all regulate the evolutionary computation:

• crossoverP determines the probability of combining two individuals of the population;
• mutationP determines the probability of an element to undergo a random mutation;
• popSize determines the population size, i.e., the number of individuals;
• numEvals establishes the number of evaluations that are going to be carried out in the

optimization process.

Of course, when choosing the parameters, one should set the the number of evaluations (numEvals)
to be higher than the population size (popSize), for otherwise high popSize values, combined with small
numEvals values, will in fact turn the evolutionary algorithm behaviour to a blind random search.
Each parameter comes with a sensible default value that has been empirically established. However,
a dedicated tuning phase of patternWeight and numEvals is advisable to obtain the best performance.

Table 2. Custom Parameters for time series shapelet extraction in J48SS.

Parameter Name Default Description

crossoverP 0.8 crossover probability to be used in the evolutionary algorithm
mutationP 0.1 mutation probability to be used in the evolutionary algorithm
numEvals 500 number of evaluations to be carried out by the evolutionary algorithm

patternWeight 0.75 weight used for the extraction of the final shapelet
popSize 100 population size to be used in the evolutionary algorithm
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4. Experimental Tasks

This section presents the two analysis tasks on which we evaluate J48SS, namely, tagging of call
conversation transcripts (Section 4.1) and time series classification (Section 4.2). All models have been
trained on a common, i5 powered, laptop.

4.1. Call Conversation Transcript Tagging Task

In the following, we provide (i) a brief overview of the contact center domain, in which the
analysis task takes place; (ii) the details regarding the experimental procedures we followed; (iii) the
data preparation and model training steps.

4.1.1. Domain and Problem Description

Telephone call centers are more and more important in today’s business world. They act as
a primary customer-facing channel for firms in many different industries, and employ millions of
operators (also referred to as agents) across the globe [55]. Call centers may be categorized according to
different parameters. Particularly significant is the distinction between inbound (answering incoming
calls) and outbound (making calls) activities. Regardless of its specific characteristics, a large call center
generates great amounts of structured and unstructured data. Examples of structured information
include the tracking of involved phone numbers, call duration, called service, and so on, while textual
notes and call recordings are typical forms of unstructured information.

The activity we are going to consider is the analysis of the behavior of agents in calls done for
an outbound survey service offered by Gap. When executing outbound calls, agents are requested to
strictly follow a pre-established script: in order to classify a call as a successful one, the script must be
respected. Such a rigid structure of conversations makes it easy to establish whether or not an agent
has fulfilled all the steps in the relevant script.

In such a context, machine learning techniques can be exploited to learn appropriate models to
be used to check the presence or absence of specific tags in call transcripts. For any given domain,
it is possible to identify a set of tags that allow one to detect the presence of certain contents in the
conversation. Despite its simplicity, such an analysis turns out to be extremely useful for the company.

Typically, the behavior of an agent is manually inspected by supervising staff. The inspection
consists in listening to a number of randomly-chosen calls of the agent. Such a work is extremely
time-consuming and it requires a significant amount of enterprise resources. The possibility of a fully
automatic analysis of conversation transcripts has thus a strong impact: it allows the staff to identify
potentially “problematic” calls that require further screening, thus considerably reducing the overall
time needed for verification, and increasing the global efficacy of the process. On the basis of the
outcomes of the analysis task, the supervising staff can identify those agents who need further training,
and also get an indication of the specific deficiencies that must be addressed.

4.1.2. Experimental Setting

In this section, we describe the setup of the experimentation carried out with J48SS, with the
aim of enriching call transcripts with relevant tags. For the outbound survey service of choice, we
considered the following tags:

• age: the agent asked the interviewed person his/her age;
• call_permission: the agent asked the called person for the permission to conduct the survey;
• duration_info: the agent gave the called person information about the duration of the survey;
• family_unit: the agent asked the called person information about his/her family unit members;
• greeting_initial: the agent introduced himself/herself at the beginning of the phone call;
• greeting_final: the agent pronounced the scripted goodbye phrases;
• person_identity: the agent asked the called person for a confirmation of his/her identity;
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• privacy: the agent informed the called person about the privacy implications of the phone call;
• profession: the agent asked the interviewed person information about his/her job;
• question_1: the agent pronounced the first question of the survey;
• question_2: the agent pronounced the second question of the survey;
• question_3: the agent pronounced the third question of the survey.

In Table 3 some examples of transcriptions with the associated tags are presented. Observe
that tags are general concepts, that are independent from the specific service under consideration.
For example, the greeting_initial tag may apply to different services.

Table 3. Transcriptions with the associated tags. Data has been anonymized, and punctuation has been
added for ease of reading.

Phrase (Italian) Phrase (English) Tags

Si pronto buongiorno sono X dalla X
di X, parlo con la signora X?

Hello, my name is X and I am calling
from X of X, am I talking with Mrs
X?

greeting_initial,
person_identity

Lei è pensionato. Ultima domanda,
senta, a livello statistico la data solo
di nascita... millenovecento...?

You are retired. Last question, listen,
statistically, the birth date only...
nineteen hundred...?

age, profession

Ho capito. Posso chiederle il nome
di battesimo?

Understood. May I ask you for your
first name? person_identity

Mi permette? Trenta secondi, tre
domande velocissime...

May I? Thirty seconds, three
quick questions... duration_info

The training and test datasets for the machine learning models have been built starting from
a set of 482 distinct outbound calls. Each call has been subdivided into chunks (phrases delimited
by silence pauses), and then each chunk has been transcribed by means of an internally-developed
solution based on the Kaldi automatic speech recognition toolkit [56]. The result is 4884 strings,
that have been manually labeled by domain experts, in a way that each instance is characterized by
the transcription, and by a list of Boolean attributes that track the presence or absence of each specific
tag. Table 4 reports the number of positive and negative instances for each tag. The resulting dataset
has been split into a training (75%, 3696 instances) and a test (25%, 1188 instances) set, according to
a stratified random sampling by group approach, where each single session is a group on its own, so not to
fragment a session between the two sets. Finally, observe that the reported word error rate (WER) for
the Kaldi model is 28.77%, which may seem overly high if compared with the WER of 18.70% obtained
on the same dataset by relying on Google Speech API. Nevertheless, it is actually low enough to allow
for the analysis tasks needed by the company to be performed. A detailed account of these aspects is
the subject of a forthcoming work about the whole speech analytics process.

Table 4. Number and percentage of positive and negative tags.

Tag Name #Positive %Positive #Negative %Negative

age 638 13.1 4246 86.9
call_permission 565 11.6 4319 88.4
duration_info 491 10.1 4393 89.9
family_unit 506 10.4 4378 89.6

greeting_initial 560 11.5 4324 88.5
greeting_final 453 9.3 4431 90.7

person_identity 600 12.3 4284 87.7
privacy 440 9.0 4444 91.0

profession 391 8.0 4493 92.0
question_1 516 10.6 4368 89.4
question_2 496 10.2 4388 89.8
question_3 500 10.2 4384 89.8
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4.1.3. Data Preparation and Training of the Model

The training and test datasets for J48SS have been prepared as follows, starting from the data
described in the previous section. First, the text has been normalized: all characters have been
converted to lowercase, preserving only the alphabetical one. Then, all Italian stopwords have been
removed from the chunks. Subsequently, the remaining words have been stemmed through the
algorithm PORTER2. To carry out the preprocessing, we relied on Python’s NLTK library. A training
and a test dataset have been created for each tag (for a total of 12 dataset pairs), where each of the
instances is characterized by just two attributes: the processed text of the chunk and an attribute
identifying the presence or absence of the specific tag (class). As for the training phase, we left almost
all parameters at their default values, with the exception of minSupport, which has been set to 0.01 (1%),
so as to allow for the extraction of uncommon patterns, and patternWeight, which has been set to 1,
based on the domain expert knowledge that the survey service requires very specific phrases to be
pronounced by the agents. To provide a baseline for the evaluation of the experimental results, we also
made use of logistic regression. Such a choice has been driven by the necessity, expressed by the
company, of relying only on interpretable models and led us to neglect, for example, support vector
machines, that are often employed for text classification purposes. Three training and test dataset
pairs have then been assembled for each keyword, considering different ngram lengths and again
a frequency threshold of 1%: unigrams (leading to a total of 177 attributes, plus the class), bigrams
(154 attributes, plus the class), and trigrams (102 attributes, plus the class). Given the 12 possible tags,
and the 3 different ngram lengths that have been considered, overall 36 training and test dataset pairs
have been generated. Logistic models have been trained using WEKA’s logistic algorithm, employing
also a feature selection step based on the multivariate, classifier-independent filter CfsSubsetEval [57],
that reduced the number of attributes to an average of 12.

4.2. UCR Time Series Classification Task

All the following experiments have been performed on a selection of 16 UCR [10] datasets
given the fact that, as witnessed by the literature, it has been broadly used in the machine learning
community [14,42,43,45,46]. In addition, such a decision allows us to compare our results to the ones
presented in [45]. The details concerning the dataset selection are reported in Table 5. Note that, even if
the considered time series all have the same size, J48SS my handle time series having different lengths
as well. We pre-processed each of the datasets and, as a result, each instance is characterized by the
following set of attributes (other than the class label):

• the original time series, represented by a string;
• the original time series minimum, maximum, average, and variance numerical values;
• the skewness and kurtosis numerical values [58], generated from the original time series;
• the slope time series, derived from the original one and represented by a string;
• the slope time series minimum, maximum, average, and variance numerical values;
• the skewness and kurtosis numerical values [58], obtained from the slope time series.

The performance of J48SS has then been evaluated with respect to the pre-processed datasets,
and against the results presented in [45] (Random Shapelet), that has been chosen for comparison since it
is relatively recent approach that also embeds the shapelet generation phase in a decision tree inducing
algorithm. Moreover, the paper thorougly describes all aspects of the experimentation phase, which
makes our comparison task easier.
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Table 5. The UCR datasets under study, with the tuned values of patternWeight and numEvals.

Dataset Domain |Train| |Test| TS Length patternWeight numEvals

Adiac Biology 390 391 176 0.4 800
Beef Food quality 30 30 470 0.5 800

ChlorineC Health 467 3840 166 0.9 800
Coffee Food quality 28 28 286 0.0 800

DiatomSize Biology 16 306 345 0.0 400
ECGFiveD Health 23 861 136 0.4 200
FaceFour Image recognition 24 88 350 0.5 200
GunPoint Motion detection 50 150 150 0.8 800

ItalyPower Energy consumption 67 1029 24 0.6 800
Lighting7 Weather prediction 70 73 319 0.9 800
MedicalIm Health 381 760 99 0.2 400
MoteStrain Signal discrimination 20 1252 84 0.9 200
SonyAIBO Robotics 20 601 70 0.2 200
Symbols Health 25 995 398 1.0 800

Trace Nuclear energy safety 100 100 275 0.5 400
TwoLead Health 23 1139 82 0.7 200

As for the experiment workflow, we built 100 J48SS models for each considered dataset. Each tree
has been built starting from a different initial random seed, in order to produce statistically sound
results. In order to get a better performance, we also tuned, in sequential order, the two parameters
that are most likely to control the degree of generalization of the model, i.e., patternWeight and
numEvals: the first considering the range [0.1, 0.2, . . . , 1.0]; the second over the values [200, 400, 800],
while leaving all other parameters at their default values. The results of the tuning phase are reported
in Table 5. Note that, due to time constraints, we neglected a true grid-search approach that would
have allowed us, in principle, to find even better combinations of the two values. We then turned
our attention on collecting statistics over several aspects of the algorithm, including its running time,
the model sizes, and the generalization capability of the evolutionary approach. In order to do that,
we focused on the numEvals parameter, which has been tested over the values [200, 400, 800, 1600].

Again, to ensure statistical soundess, 100 models have been built for each dataset and for each
parameter value, varying the evolutionary algorithm initial random seed.

Although, given their interpretability characteristics, we are most interested in the evaluation of
single trees, we believe that it is also interesting to get at least some preliminary insights on how
ensembles of J48SS models perform. For this purpose, we considered ensembles of 100 trees, built
through Weka’s Random Subspace [59] method. Again, we built 100 different models for each dataset,
by varying the initial seed and keeping the tuned values for patternWeight and numEvals. We compared
the average accuracy results with the ones reported in [43] (Generalized Random Shapelet Forests) which,
to the best of our knowledge, has been the only work so far that uses shapelets in a forest inducing
algorithm, in the context of time series classification. Along with the accuracy results, we also report the
computation times of our approach, even if the Generalized Random Shapelet Forests paper does not
exhibit any absolute computation time. Finally, for the sake of clarity, observe that Weka’s Random
Subspace function has a seed that should be independently set with respect to the one used by the
evolutionary algorithm in order to get proper statistical results; nevertheless, due to time constraints,
we did not consider this fact in our analysis. The same reason led us to consider 100-tree ensembles,
which is a relatively small number compared, for instance, to the 500 trees that have been suggested as
an appropriate ensemble size for traditional random forests [60]. Despite the limits of our preliminary
experimentation, we believe that the obtained results are still useful to establish a baseline, and we
look forward to carefully investigate the performance of different kinds and sizes of ensembles of
J48SS models in future work.
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5. Results

In this section, we report the results of the evaluation of J48SS with respect to the tasks of tagging
call conversation transcripts (Section 5.1) and classifying time series (Section 5.2).

5.1. Results on Call Conversation Tagging

We evaluated each of the 1188 chunks in the test set against the presence of every possible
tag, looking for the concordance between its manual annotations and the ones provided by the
corresponding decision tree. In order to evaluate the performance, the following standard metrics
have been considered:

• accuracy, which is the fraction of times when a tag has been correctly identified in a chunk as
present or absent;

• precision, that is, the fraction of chunks in which a specific tag has been identified as present by the
method, and in which the tag is indeed present;

• recall, which shows the proportion of chunks presenting the specific tag, that have been in fact
identified as such;

• true negative rate (TNR), that reports the proportion of chunks not presenting the specific tag,
that have been classified as negative by the method.

As witnessed by the figures reported in Table 6, our approach can reach a very high accuracy in
tagging chunks. However, given the fact that the dataset is unbalanced with respect to the target class,
in order to present a more unbiased review of the performances, we also consider the true negative
rate, precision and recall indicators. Specifically, the latter is of primary importance to the company,
since it may help in revealing which tags are the most difficult to identify. Again, we obtained highly
satisfactory results for most of the tags, with the exception of call_permission, that falls slightly under
0.65 precision and recall.

As an example, consider the tag greeting_final. A typical, well-recited closing phrase for the
considered service should be of the form: “Ok, we have finished. Thank you for the cooperation and good
day, also on behalf of [company_name]. If you allow me, I inform you that [company_name] may recontact you”.
Figure 7 presents the model that recognizes the presence of the tag. The tree has just 9 leaves, meaning
that, besides the chosen representation, it is very simple and intuitive to read, even for a non computer
scientist domain expert. For instance, the tree already discards conversations which do not contain the
words recontact and inform and the sequence thank>cooperation. This is plausible, since such elements
are very important components of the scripted phrase, that should not be forgotten. Specifically, a rule
that may be extracted from the decision tree model is:

IF the current instance contains neither the terms ‘recontact’ and ‘inform’, nor the term ‘thank’
followed by the term ‘cooperation’, THEN label such an instance with class ‘0’.

As for the complexity of the training phase, the considered tree has been built in less than 30 s on
a common, i5 powered, laptop, while its application to a new instance is almost instantaneous.

As for the logistic regression approach, surprisingly, the experimental results suggested that the
unigram-based models are the most effective in tagging the transcripts. This may be explained in
two ways:

• the considered datasets may just not be large enough to justify the use of bigrams and trigrams, or
• tag recognition in calls generated in the context of the considered service may not be a difficult

concept to learn, so unigrams are enough for the task.

In Table 7, the detailed results for the unigram models are reported.
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transcription !contains recontact 
|   transcription !contains thank>cooperation 
|   |   transcription !contains inform: 0  
|   |   transcription contains inform 
|   |   |   transcription !contains inform>company_name: 0  
|   |   |   transcription contains inform>company_name 
|   |   |   |   transcription !contains allow: 0  
|   |   |   |   transcription contains allow: 1 
|   transcription contains thank>cooperation 
|   |   transcription !contains ok>finish>thank>behalf 
|   |   |   transcription !contains allow>inform 
|   |   |   |   transcription !contains cooperation>day: 0  
|   |   |   |   transcription contains cooperation >day: 1  
|   |   |   transcription contains allow>inform: 1  
|   |   transcription contains ok>finish>thank>behalf: 1  
transcription contains recontact: 1 
 
 
 
 
 
 

Figure 7. J48SS decision tree recognizing the presence of the tag greeting_final. Words have been
unstemmed for the ease of reading.

Table 6. Tagging performances of J48SS.

Tag Name Accuracy Precision Recall TNR

age 0.9655 0.9241 0.8171 0.9893
call_permission 0.9167 0.6500 0.6454 0.9532
duration_info 0.9739 0.9008 0.8516 0.9887
family_unit 0.9722 0.8779 0.8712 0.9848

greeting_initial 0.9739 0.9397 0.8195 0.9934
greeting_final 0.9916 0.9823 0.9328 0.9981

person_identity 0.9428 0.7851 0.6934 0.9753
privacy 0.9916 0.9550 0.9550 0.9554

profession 0.9840 0.8969 0.9063 0.9908
question_1 0.9857 0.9688 0.9051 0.9962
question_2 0.9815 0.9153 0.9000 0.9906
question_3 0.9798 0.9237 0.8790 0.9915

Macro average 0.9716 0.8933 0.8480 0.9839

By looking at the (macro) average values of the logistic approach, we may notice that most of
the performance metrics are very close to the ones provided by J48SS, with the exception of recall
(once again, the most important metric in this context), which is lower than the one provided by the
decision tree, somehow balanced by a slightly higher precision.

Thus, the result provided by J48SS ares comparable to the ones of the best approach based on
logistic regression. Moreover, since such results have been obtained by running J48SS with the
default parameters (except for the minimum support value and pattern weight, which have been set
following domain expertise), we speculate that an even better performance might be achieved through
a dedicated tuning phase. Apart from the mere classification performance, observe also that the use of
J48SS entails a much simpler data preparation phase than logistic regression, since the decision tree is
capable of directly exploiting textual information. This allows one to avoid the ngram preprocessing
step, and the related a-priori choices of the ngram sizes and frequencies altogether. In fact, recall that
the ready-to-process datasets for J48SS are very simple, having exactly two attributes, while those for
the ngrams-based approach varied from 103 to 178 attributes, a number that required us to perform
an additional feature selection step. In addition, sequential patterns should be more resistant to noise
in the data than bigrams and trigrams, as they allow to skip irrelevant words thanks to the maxGap
parameter. Last but not least, J48SS models are much more understandable to (non computer scientists)
domain experts than regression models.
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Table 7. Tagging performance with logistic regression (unigrams).

Keyword Name Accuracy Precision Recall TNR

age 0.9663 0.8974 0.8537 0.9844
call_permission 0.9310 0.7980 0.5603 0.9809
duration_info 0.9672 0.9083 0.7734 0.9906
family_unit 0.9630 0.8929 0.7576 0.9886

greeting_initial 0.9773 0.9206 0.8722 0.9905
greeting_final 0.9941 0.9912 0.9496 0.9991

person_identity 0.9369 0.7500 0.6788 0.9705
privacy 0.9907 0.9545 0.9459 0.9954

profession 0.9874 0.8932 0.9583 0.9899
question_1 0.9840 0.9683 0.8905 0.9962
question_2 0.9840 0.9244 0.9167 0.9916
question_3 0.9848 0.9417 0.9113 0.9934

Macro average 0.9722 0.9033 0.8390 0.9893

5.2. Results on UCR Datasets Classification

In this section, we present the results of the experiments carried out on the selection of UCR
datasets, with respect to single trees (Section 5.2.1) and ensembles of J48SS models (Section 5.2.2).

5.2.1. Results of Single J48SS Models

The results of the experimentation of single J48SS trees are reported in Table 8, together with the
accuracies originally presented in [45] (Random Shapelet). Both performances have been obtained by
averaging over 100 executions of the algorithms.

Table 8. Comparison between the accuracy results of the Random Shapelet algorithm and J48SS.
Observe that using a large sampling value in Random Shapelet typically leads to computation times
orders of magnitude larger than those required by J48SS. Missing values, due to too long computation
times (several weeks), are represented by asterisk characters (*).

Dataset
Random Shapelet

J48SS
0.10 0.20 0.50 1.00 2.00 10.00 20.00 25.00 33.33 50.00

Adiac 45.4 47.7 49.6 50.6 51.9 51.6 51.3 51.7 50.3 51.8 60.5
Beef 40.0 39.3 36.8 35.5 33.6 32.4 31.6 32.0 31.8 31.2 55.4

ChlorineC 54.2 54.8 55.7 55.9 56.0 57.2 57.2 55.5 58.1 * 61.4
Coffee 69.0 70.3 73.1 74.1 76.4 76.9 78.1 78.3 78.3 78.3 100.0

DiatomSize 83.6 85.4 82.5 80.5 78.6 77.4 79.5 79.8 79.9 79.7 82.7
ECGFiveD 94.2 96.2 96.7 97.2 97.3 97.7 97.3 97.0 96.7 96.1 96.2
FaceFour 72.1 71.6 73.8 72.9 72.8 74.2 74.6 75.0 75.5 74.4 84.5
GunPoint 89.3 88.3 87.9 87.3 87.3 84.4 82.9 82.7 82.8 82.9 91.8

ItalyPower 87.1 87.8 90.0 90.4 90.8 92.4 93.0 93.0 93.1 93.2 92.7
Lighting7 61.9 61.0 58.1 56.9 56.9 63.50 63.5 63.9 64.9 63.0 66.0
MedicalIm 58.3 58.5 58.8 58.9 58.8 59.2 59.6 59.8 59.7 60.6 65.8
MoteStrain 78.4 78.9 79.2 79.2 79.2 81.5 81.8 82.3 82.2 82.0 81.5
SonyAIBO 83.8 84.9 85.5 86.9 86.3 86.8 87.2 87.9 88.6 89.8 89.2
Symbols 78.0 76.1 76.0 75.2 76.8 79.5 80.6 80.8 80.7 80.6 77.6

Trace 94.4 94.5 95.0 95.0 94.6 93.4 93.1 93.1 93.0 93.0 95.0
TwoLead 82.2 85.6 87.4 89.5 90.2 91.4 92.1 92.1 92.1 92.0 90.6

Average 73.2 73.8 74.1 74.1 74.2 75.0 75.2 75.3 75.5 N/A 80.7
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The Random Shapelet approach results are obtained by sampling different percentages of the total
number of shapelets (ranging from 0.10% to 50%). We may observe that J48SS is capable of achieving
an overall better accuracy result than Random Shapelet, despite the fact that we have performed just
a mild tuning phase. Thus, we may speculate that an even better performance may be achieved by
means of a full-parameter tuning phase, for instance by means of a grid-search approach on a wider
search range.

Despite the fact that J48SS has shown an inferior classification performance on some datasets than
Random Shapelet, it should be observed that the latter requires very long computation times, especially
when the larger sampling values are used [45]: typically hundreds of seconds are needed in order to
build a single model on the smaller datasets, and thousands of seconds (or even worse) are required
on the larger ones. On the contrary, while J48SS training times tend to increase with the number of
evaluations, they are comparatively much lower, as shown in Table 9.

Let us now consider the importance of weight tuning. Figure 8 reports the accuracies (averaged
over 100 executions) for datasets ECGFiveD and SonyAIBO, when different values of patternWeight are
employed. Observe the very different behaviours shown by the two datasets: while in ECGFiveD the
best performance is provided by high-performing shapelets (with respect to the Information Gain),
SonyAIBO tends to favor simple patterns. This fact remarks the crucial influence of the parameter
patternWeight on the classification performance, and the importance its proper selection.

Table 9. Average of J48SS training times (in seconds), considering different numbers of evaluations of
the evolutionary algorithm.

Dataset 200 Evals 400 Evals 800 Evals 1600 Evals

Adiac 14.1 20.8 37.8 98.9
Beef 3.7 5.2 7.72 14.8

ChlorineC 24.5 30.1 44.2 86.4
Coffee 1.1 1.4 2.0 4.0

DiatomSize 1.9 2.5 4.1 10.9
ECGFiveD 0.8 1.1 1.4 2.2
FaceFour 2.1 2.8 4.3 8.2
GunPoint 1.3 1.5 1.9 2.6

ItalyPower 0.8 0.9 1.3 2.4
Lighting7 4.6 6.6 10.2 18.6
MedicalIm 8.3 11.0 17.4 38.4
MoteStrain 0.6 0.7 0.9 1.3
SonyAIBO 0.6 0.8 1.0 1.9
Symbols 2.7 3.9 6.3 14.5

Trace 2.2 3.0 4.6 9.5
TwoLead 0.5 0.7 0.9 1.5

As for the generalization capabilities of the evolutionary approach, Figure 9 shows the trend of
the test set accuracy of the J48SS models, over the number of evaluations, for three selected datasets,
leaving all other parameters at their default values. The typically observed behavior is the one of
DiatomSize: the accuracy tends to grow as the number of evaluations increases, until it peaks, and then
starts to decrease, due to overfitting in the evolutionary algorithm. There are also other two notable
tendencies, that have been rarely seen and typical, for instance, of datasets Beef and ECGFiveD: in the
former, the accuracy increases consistently, although we may speculate that it would peak, and then
decreases if a sufficiently high number of evaluations is given; in the latter, the accuracy decreases
steadily, potentially suggesting that the chosen fitness function is failing in avoiding the overfitting.
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Figure 8. Average test set accuracy of J48SS, with respect to different values of patternWeight.
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Figure 9. Average test set accuracy of J48SS, with respect to the number of evaluations of the
evolutionary algorithm.

Let us now discuss the interpretability of the J48SS trees. Figure 10 shows the average and standard
deviation of the number of nodes in the trees built on each of the considered datasets. As can be seen,
most of the models are quite small, exept for Adiac, ChlorineC, and MedicalIm. We speculate that such
an heterogeneity in the model sizes might indicate that different datasets are characterized by different
degrees of difficulty, when it comes to the task of deriving a classification strategy. Of course, the user
may also adjust the desired size of the decision trees by setting the two parameters of J48SS that control
the pre- and post-pruning aggressiveness (already available in J48).
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Figure 10. Average and standard deviation of the decision tree size per dataset.
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Figure 11 shows one of the J48SS models that have been trained on the Beef dataset. Starting from
the root, the tree first checks the distance between the specific shapelet and the time series attribute
named TS (the pattern may be easily visualized, for example by plotting its list of values). If such
a value is less than 0.109855, then it tests the distance between another shapelet and the time series
named TS_slope. If the distance is less than 0.01709, it assigns the class 2 to the instance. It is worth
pointing out that not only time series attributes are used by the tree, but also numeric ones, such as
the kurtosis value of the original time series and the average value of the slope time series. The specific
decision tree has a test set accuracy of 53.33%, a value which is largely superior to the ones provided
by the Random Shapelet approach.

d(TS,[-0.21788,-0.21741,-0.21622,-0.21433,-0.20888,-0.20046,-0.19195,-0.18197,-0.15951,-0.14946,-0.13987,-0.036398,-0.04448]) <= 0.109855 
|   d(TS_slope,[-0.080505,4.35E-4]) <= 0.01709: 2 
|   d(TS_slope,[-0.080505,4.35E-4]) > 0.01709 
|   |   d(TS_slope,[-0.0429]) <= 5.95E-4 
|   |   |   kurtosis <= 0.197753: 5 
|   |   |   kurtosis > 0.197753: 3  
|   |   d(TS_slope,[-0.0429]) > 5.95E-4: 5 
d(TS,[-0.21788,-0.21741,-0.21622,-0.21433,-0.20888,-0.20046,-0.19195,-0.18197,-0.15951,-0.14946,-0.13987,-0.036398,-0.04448]) > 0.109855 
|   slope_avg <= -0.003305: 4 
|   slope_avg > -0.003305: 1 

Figure 11. One of the J48SS models trained on dataset Beef.

Figure 12 shows the shapelet tested at the root of the tree with respect to two time series of the
train portion of dataset Beef, the first being representative of class 1, the second of class 5. As it can
be seen, the time series having class 1 has a bigger distance than the one having class 5, which is
consistent with the splits taken in the decision tree. Finally, we observe that in this case the shapelet is
quite short with respect to the time series. However, this is not a common situation in our experiments:
other shapelets have emerged whose length is comparable to the one of the considered time series
(indeed, the fitness function only indirectly influences the length of the generated shapelets).
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(a) Time series typical of class 1.
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(b) Time series typical of class 5.

Figure 12. Two exemplary time series from the Beef dataset, with respect to the shapelet tested in the
root of the decision tree of Figure 11. The best matching position according to the Euclidean Distance
has been enlightened.

5.2.2. Results of Ensembles of J48SS Models

Let us now briefly discuss the results of the experimentation with ensembles of J48SS models.
Table 10 reports the average accuracy and training time of the generated models (EJ48SS), with respect
to the accuracies reported in [43] (Generalized Random Shapelet Forests, gRSF). Once more, remember
that the EJ48SS models are made of just 100 trees, while gRSF employed 500-tree forest. Although
the presented results should just be regarded as a baseline for future studies on J48SS ensembles,
in 8 out of 16 datasets EJ48SS has been capable of matching or surpassing the performance of the
competitor, despite using much smaller models. Moreover, taking into account the observations
done in Section 5.2.1, it seems reasonable to assume that better results might be obtained without
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increasing the size of the ensembles much further, but relying on a thoroughly performed tuning phase
instead. We are going to investigate these issues in future studies, also assessing different kinds of
ensemble methods.

Table 10. Comparison between accuracy and training time (in seconds) of EJ48SS (100 trees),
and Generalized Random Shapelet Forests (500 trees).

Dataset gRSF Accuracy EJ48SS Accuracy EJ48SS Training Time (s)

Adiac 74.2 78.1 2196.8
Beef 80.0 67.5 269.1

ChlorineC 67.3 72.2 2230.9
Coffee 100.0 100.0 49.0

DiatomSize 96.4 86.8 57.6
ECGFiveD 100.0 100.0 6.2
FaceFour 100.0 92.8 36.8
GunPoint 100.0 98.0 40.2

ItalyPower 94.0 95.6 19.3
Lighting7 69.9 73.1 410.5
MedicalIm 73.3 75.5 392.2
MoteStrain 92.1 92.6 6.5
SonyAIBO 92.5 90.4 6.4
Symbols 96.8 76.1 215.2

Trace 100.0 99.1 61.5
TwoLead 100.0 97.1 5.8

Average 89.8 87.2

6. Discussion

The experimental results reported in the previous section allow us to conclude that J48SS is
capable of achieving a competitive classification performance with respect to both sequence and time
series data classification. Moreover, as a further advantage over previous methods, the trees built by
the proposed algorithm are easily interpretable, and powerful enough to effectively mix decision splits
based on several kinds of attributes. Finally, as occurred with call conversation tagging, such flexibility
allows one to reduce the data preparation effort.

As a matter of fact, the datasets that we used for the experimental tasks did not take full
advantage of the capabilities of the new algorithm, as they consist of sequences or time series only,
and all static attributes are simply derived ones. In order to fully exploit the potentialities of J48SS,
a dataset should contain sequential and/or time series data, and it should include meaningful static
(numerical or categorical) attributes, somehow independent from the previous ones. The latter
condition means that static attributes should not simply synthesize information already contained in
the sequences/time series, but add something per se. Such a dataset has proven to be difficult to find
in the literature, maybe because of the lack, until now, of an algorithm capable of training a meaningful
model on it. Nonetheless, as mentioned in the introduction, we believe that datasets from the medical
domain may have all the desired properties, and we look forward to applying J48SS on such use cases.

7. Conclusions

In this paper, we described J48SS, a novel decision tree inducer based on the C4.5 algorithm.
The novel approach is capable of effectively mixing, during the same execution cycle, static (numeric
and categorical), as well as sequential and time series data. The resulting models are highly readable,
which is a fundamental requirement in those domains in which understanding the classification
process is as important as the classification itself, for instance for validation purposes.
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The algorithm has been tested with respect to the tasks of sequence and time series classification:
the first experimental session has been on a real-case business speech analytics setting, while for time
series we considered a selection of UCR datasets. In both cases, J48SS has proven itself capable of
achieving a competitive classification performance with respect to previous methods, while effectively
reducing the data preparation effort.

As for future work, we look forward to investigating ensembles of J48SS trees, and to apply
the proposed algorithm to a suitable dataset, where all kinds of supported attributes naturally arise.
We expect this to be the case with medical data, where a single patient may be described by categorical
attributes (blood group, gender), numeric attributes (age, weight, height), sequential data (history of
the symptoms he/she experienced and of the prescriptions administered to him/her), and time series
(the evolution over time of his/her blood pressure, and his/her heart rate). Finally, a more ambitious
research direction may be that of extending the model in order to deal with temporal logic formulas.
One such formalism would, indeed, allow the decision tree to take into account relationships between
values of different attributes, instead of looking at each of them individually.
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