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Abstract: Biometric verification systems have become prevalent in the modern world with the wide
usage of smartphones. These systems heavily rely on storing the sensitive biometric data on the
cloud. Due to the fact that biometric data like fingerprint and iris cannot be changed, storing them on
the cloud creates vulnerability and can potentially have catastrophic consequences if these data are
leaked. In the recent years, in order to preserve the privacy of the users, homomorphic encryption
has been used to enable computation on the encrypted data and to eliminate the need for decryption.
This work presents DeepZerolD: a privacy-preserving cloud-based and multiple-party biometric
verification system that uses homomorphic encryption. Via transfer learning, training on sensitive
biometric data is eliminated and one pre-trained deep neural network is used as feature extractor.
By developing an exhaustive search algorithm, this feature extractor is applied on the tasks of
biometric verification and liveness detection. By eliminating the need for training on and decrypting
the sensitive biometric data, this system preserves privacy, requires zero knowledge of the sensitive
data distribution, and is highly scalable. Our experimental results show that DeepZeroID can deliver
95.47% F1 score in the verification of combined iris and fingerprint feature vectors with zero true
positives and with a 100% accuracy in liveness detection.

Keywords: biometrics; convolutional neural network; deep learning; fingerprint; homomorphic
encryption; iris; privacy; transfer learning

1. Introduction

Biometrics is a tool to automatically distinguish subjects in a reliable manner for a target
application based on the derived signals from physical or behavioral traits (such as fingerprint, iris,
palm veins, face, DNA, voice pattern, facial pattern, and hand geometry). In comparison to the classical
security methods (including PIN, password, key, and card), this technology provides several benefits
such as being a unique identification of individuals, mobile, very hard to forge, always with the user
(no external carrying), user friendly, and secure. The process of recognizing the objects/individuals in
an automated manner using their biometric data is called biometric recognition system (BRS). A BRS
has had applications in the law enforcement for decades in authentication of individuals; however,
nowadays smartphones rely on biometrics for verification of the user as well. Traditionally, these
systems include server-side database owner and users who submit candidate biometric records for
verification of the identity profiles.

These data can be used to measure biological characteristics for identification and classification of
entities. Two biometric data that have gained significant attention are iris and fingerprint. Fingerprint
is the fundamental and traditional elements to use for identification of human beings. This element,
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as shown in Figure 1, includes a pattern of ridge and valleys on the surface of a fingertip that is formed
during the starting months of development of fetus. Even, twins from the same parents or the prints
from the fingers of the same person are not the same. Multiple fingerprints of one person can provide
additional information to allow higher level of recognition. Small cuts and bruises on the fingerprints
or other factors such as aging or being exposed to environmental parameters can cause degradation of
the recognition accuracy.
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Figure 1. An authentic fingerprint.

Iris is another and more recent element for human recognition. As shown in Figure 2, it is the
annular region of the eye, which is bounded by the pupil and the sclera on either side. Similar to
fingerprint, its texture and structure are formed during fetal development. They are stabilized after few
years from its formation. The iris texture holds unique information for recognition and identification
purposes which can be leveraged to provide high system accuracy. As opposed to fingerprint, changing
or tampering the iris pattern does not happen easily. The preprocessed format of iris that is ready for
feature (i.e., the unique information) extraction is shown in Figure 3.
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Figure 2. A human eye.
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Figure 3. The raw, localized, and normalized version of an iris.
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In a modern biometric recognition system, the biometric data of the users collected during
registration are stored in the cloud and are accessed during verification. Storing the biometric data in
the cloud enables the verification process, performing numerous computations, and storing a large
volume of data. Despite all these benefits, this technology is not without its side effects. The security
and privacy of information heightens when biometric data is being shared, since biometric data, unlike
passwords and PINs, cannot be reset and one leak of information can have inevitable consequences.
These data should not be exposed to third party and should be under control anywhere outside the
user side. To address this problem, the biometric data stored in the cloud should be secured through
encryption. By having encrypted data within the cloud, the privacy of entities are preserved.

However, simply encrypting the data makes it unusable with the computing processes in the
cloud. Therefore, it is required to provide a framework for applying mathematical functions on
the encrypted data on the cloud side. This is a mandatory requirement; otherwise the plain and
unencrypted biometric information is at risk and can be changed or leaked. Additionally, encrypting
the data by any arbitrary encryption scheme is not possible since applying a minor change on the plain
information can lead to major change in the ciphertext. This major change leads to unrecognizable
data after decryption.

This challenge can be solved through encrypting the sensitive data using a scheme that has
homomorphism. When the data is homomorphically encrypted, certain operations can be carried
out using the ciphertext, and leveraging this homomorphism enables cloud computing. In this way,
the data is processed for recognition purposes without sharing the plaintext information. Therefore,
a homomorphically encrypted data is protected against the attackers and honest-but-curious servers
since it is never decrypted.

Another challenge in this domain relates to the recognition process. A successful recognition
of biometric data highly depends on the development of efficient feature extractors that are
capable of obtaining meaningful information from the data. Traditionally hand-crafted, manual,
or trial-and-error-based feature extractors were used to represent the biometric data and help in the
recognition task. In the recent years, with the advent of deep learning, neural networks have been
deployed in this domain they have been proven to extract useful features and information from the
data and achieve high accuracy. A recognition system that takes advantage of these networks, given
enough data, can surpass human-made features and human-level accuracy in many applications.
However, compared to other similar image recognition tasks, gathering a large amount of data is
arduous in this domain. Moreover, a trained model on the biometric data holds information about the
data distribution and can be a point of vulnerability. A solution to these challenges is applying transfer
learning and transferring knowledge from another task to the biometric verification task.

In this work a deep learning-based biometric recognition system within the privacy preserving
domain is developed. In this system a pre-trained deep neural network is used to extract features from
the biometric data, alleviating the problems of small data and eliminating the need to train a model and
the possibility of information leakage through the model. Moreover, the biometric data is encrypted
using a partially homomorphic encryption and stays safe within the system while verification is being
carried out. There are multiple parties in our computation model, including client, authentication
server, database, and matcher that provide an added level of security and privacy. We also show that
the pre-trained network is useful not only for recognition of different entities, but also for detection of
true and fake biometric data.

The system extracts the features of biometric data from a deep neural network (known as
off-the-shelf features). To preserve the privacy of extracted features and make them safe and protected,
they are masked and also encrypted using Paillier Chunkwise. Then, the encrypted features are
recognized on the cloud-side without being decrypted, leveraging the additive homomorphism
property of the applied encryption method. To further increase the system security and make
its recognition functionality more accurate, a true/fake detector is implemented on the user side.
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This detector utilizes the extracted deep features by inputting them into a Support Vector Machine
(SVM) for distinguishing the true and the fake biometric data.
Our main contribution can be stated as:

1.  Proposing DeepZerolD system, which makes a bridge between deep features, homomorphic
encryption, and biometric security. Moreover, the running protocol among all parties within the
system that takes an encrypted and masked data for query computations has been demonstrated.
In this way, accessing, computing, and storing the data by the agents and parties inside the
framework become more secure. This system has the capability of having zero information
leakage for two reasons. Firstly biometric data stays encrypted in the system. The encryption
prevents the attackers from gaining access to any sensitive data or the contents of the individual
queries. Secondly the neural network used as a feature extractor is not trained on biometric data
and has no knowledge of the data distribution. This lack of knowledge enables the scalability of
the proposed system as well, since new user can be added without the need for changing the
feature extractor.

2. Development of CNNOptLayer, which is an algorithm that performs an exhaustive search
operation among all layers of the convolutional neural network under process. It is capable of
finding the optimal layer for feature extraction.

3. Inclusion of a single Convolutional Neural network (CNN) as the feature extractor for multiple
tasks within the system (namely iris/fingerprint recognition and true/fake detection). The feature
extraction is performed based on leveraging the CNNOptLayer algorithm.

4. Improving the encryption speed of a CNN-based privacy preserving biometric recognition system
by utilization of Paillier Chunkwise.

5. Presentation of new attacks and malicious scenarios for deep learning-based biometric recognition
system and demonstrating the weaknesses and deficiencies of the system under these attacks.

The rest of this paper is structured as: the background of the work is presented in Section 2. In the
background section, the general information about transfer learning, homomorphic encryption, the
leveraged deep neural networks within the biometric system, and true/fake detection of biometric
data (which is a part of our system) are discussed. Section 3 discusses the related works. Section 4
describes our proposing system and methodology. In this section, the general overview of our privacy
preserving biometric recognition system is explained. The processing flow of biometric data from the
user-side perspective is described as well. At its end, the process of deciding on a biometric data input
is denoted. Section 5 centers around experimental approach and the results, discusses the experimental
setup and the process of selecting dataset, shows the final results, and analyzes security aspect of the
system. Moreover, a discussion and limitations of the system are provided in its last part. The work is
concluded in Section 6.

2. Background

In this section, the fundamental concepts and techniques that are utilized in this work are
discussed. These concepts and techniques include transfer learning, homomorphic encryption,
leveraged pre-trained deep neural networks (which are DenseNet and AlexNet), and the process
of true/fake detection of the biometric data.

2.1. Transfer Learning

The process of making predictions on the future data is done using the statistical models that are
trained on previously collected labeled or unlabeled training data within the context of traditional
data mining and machine learning algorithms. If there is sufficient labeled data for gaining knowledge,
then a fair classifier can be built. Within this context, the semi-supervised classification addresses the
problem of insufficient labeled data for building a good classifier through utilizing a large amount of
unlabeled data and a small amount of labeled data. Most of the techniques in this domain assume that
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the distributions of the labeled and the unlabeled data are the same. Also, each task is learned from
the scratch in these techniques.

However, in the cases where there is noticeable insufficiency in the labeled data, transfer
learning helps to overcome this issue base on allowance of difference among the domains, tasks,
and distributions used in training and testing. This technique helps to apply knowledge learned
previously (from source tasks) to solve new problems (target tasks) faster and/or with higher quality
solutions. According to this technique, the knowledge and patterns extracted from certain data can be
helpful in representing another data distribution.

In this work, we use a deep neural network pre-trained on a thousand classes of ImageNet dataset,
consisting of many different classes such as objects and animals. The biometric data is fed to this
neural network and the output of different layers is considered as the feature representation of the
input data.

2.2. Homomorphic Encryption

Homomorphism is mapping of a mathematical set into another set or onto itself in such a way
that applying mathematical operations to the elements of the source set is mapped into the elements
of the target set. Using this property, a dataset can be transformed into another while preserving the
relationships among their elements. Leveraging homomorphism during the encryption process helps
to perform certain types of computations on the ciphertext. The result of operations on the ciphertext
is also a ciphertext, which if decrypted results in the same outcome of applying the mapped operations
on the initial plain information. This is different from other types of encryption according to which
applying any change on the ciphertext causes damage of the plain information when it is decrypted.
This type of encryption is called Homomorphic Encryption.

Nowadays, industries, companies, organizations, and any other private institutes allow storing
their information in a public cloud to access their computing and analytics services. Theoretically,
a fully homomorphic encryption scheme [1] allows the computing and analytics services to be done in
the cloud in a protected and secure way. Therefore, cloud computing platforms can perform complex
and complicated computations on homomorphically encrypted data without ever having access to the
unencrypted data. As a result, arbitrary computations can be applied on the encrypted data, while
the features of the functions and the format of the encrypted data remain preserved. However, the
efficiency and speed of these computations, at the moment, are drastically low, causing hindrance of
leveraging fully homomorphic encryption by its full capacity.

Within this context, the Paillier cryptosystem is a probabilistic asymmetric algorithm for public
key cryptography and a partially homomorphic encryption. This system is additively homomorphic,
meaning it supports addition and is semantically secure. Its probabilistic property causes randomness
in production of ciphertext. Due to the decisional composite residuosity assumption (DCRA) property
of the Paillier encryption scheme, an encrypted data using this system is secure against honest but
curious servers and users. The properties of homomorphic Paillier encryption system can be stated as:
(a) the encrypted numbers can be multiplied by a non-encrypted scalar; (b) the encrypted numbers
can be added together; (c) the encrypted numbers can be added to non-encrypted scalars. So, these
operations hold for a Paillier encryption system: (i) the product of two ciphertexts is decrypted to the
sum of their corresponding plaintexts. (ii) the multiplication of a ciphertext and a random number
with the power of a plaintext decrypted to the sum of the corresponding plaintexts. (iii) an encrypted
plaintext with having another plaintext as its power is decrypted to the product of the two plaintexts.

2.3. Leveraged Deep Neural Networks: DenseNet and AlexNet

The algorithms within the deep learning domain learn the complex, representative, and
discriminative features in a hierarchical way from the high dimensional data. These architectures of
these algorithms are usually constructed as multi-layer networks in a way to have more computation
of abstract features as nonlinear functions of lower-level features. They are used to build a model
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that relates the inputs to the outputs based on modeling complex non-linear relationships in both
supervised and unsupervised settings.

These algorithms have applications in a variety of domains ranging from image processing,
computer vision, speech recognition, natural language processing, communication patterns,
pixel-based classification, and target recognition, to high-level semantic feature extraction. A deep
learning method can be categorized as supervised, semi-supervised, or unsupervised. Two deep
neural networks are introduced in this section due to their utilization in our system: AlexNet and
DenseNet. In the ImageNet Large Scale Visual Recognition Challenge (in 2012), the AlexNet (i.e., the
challenge winner) was introduced that is a convolutional neural network written in the CUDA
platform. The network is usually made of five convolution layers, max-pooling layers (with local
response normalization), dropout layers, and three fully connected layers. A softmax layer at the end
classifies the input data. It showed more than 10% accuracy higher than the second-ranked network in
the competition and outperformed all its predecessors in the challenge.

The other network utilized in this work is Dense Convolutional Network (DenseNet).
This network is a stack of dense blocks followed by transition layers. According to its architecture,
each layer is connected to every other layer in a feed-forward format (within each dense block).
This means each layer is connected to the entire earlier layers (which provide feature re-use). Each
block is made from a series of units, which each packs two convolutions, batch normalization, and
ReLU activations. The output of each unit is a fixed number of feature vectors. According to this
parameter, the flow of information through the layers is controlled. For each layer, the feature maps
of all preceding layers are treated as separate inputs whereas its own feature maps are passed on
as inputs to all subsequent layers. DenseNets have many persuading advantages namely, reducing
the vanishing-gradient problem, strengthening feature propagation, encouraging feature reuse, and
reducing the number of parameters substantially. This network architecture is not only efficient, but
also has the big advantage of improved flow of information and gradients throughout the network.
The dense connections in this network have a regularizing effect that reduces over-fitting on tasks
with smaller training set sizes. Moreover, due to allowance of feature reuse among the Dense units,
its structure tends to be more compact in comparison to its counterparts. The most noticeable trend in
the network behavior is its easy training and higher accuracy in comparison to the other state-of-the-art
networks with less number of network parameters. The architectures of these networks are shown in
Figure 4. In this work a pre-trained DenseNet on the ImageNet dataset is used as a feature extractor.
Moreover, AlexNet is used to demonstrate the vulnerabilities of deep neural networks against attacks.
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2.4. True/Fake Detection of Biometric Data

Biometric data presents several benefits over classical data (i.e., password, key, card, and so
forth) for provision of security. In order to attack a biometric recognition system, the easiest way is to
deliver a fake biometric data. This attack is called spoofing and is of great importance to the research
community. This attack can be used to find the vulnerabilities against a recognition system of the iris,
the fingerprint, the face, and the signature. The main strength of this attack is its defensive capability
against digital protection mechanisms, including encryption, digital signature, or watermarking.
A strong and protected biometric recognition system can distinguish authentic fingerprint or iris from
fake ones. A number of true and fake biometric data (i.e., fingerprint and iris) employed in this work
are shown in Figure 5.

Figure 5. The samples of true fingerprint (first row), fake fingerprint (second row), true iris (third row),
and fake iris (fourth row).

The systems for discriminating between true and fake biometric data can be classified into two
parts: (a) hardware; and (b) software. In the hardware-based systems, a specific device is added
to the sensor in order to detect particular properties of a living trait such as blood pressure or skin
distortion. The hardware-based systems display higher detection rate. In the software-based systems,
fake traits are detected once the sample has been acquired with a standard sensor. These systems
are less expensive and less intrusive and can be integrated in any part of the recognition system.
Using software-based modules, the system can be protected against external injection of malicious
data samples.

The traits for distinguishing the real and the fake data are extracted from the image instances of
fingerprint or iris. There are a number of ways to extract features: (ix) the manual descriptors including
usage of local amplitude contrast (spatial domain) and phase (frequency domain) for formation of a
bi-dimensional contrast-phase histogram, (iy) local phase quantization (LPQ) for texture derivation,
and local binary pattern (LBP) with wavelet. (iz) convolutional neural network. The countermeasures
for this attack are stated as: (al) utilization of multi-biometrics; (a2) using challenge-response methods;
and (a3) liveness detection techniques. The last technique has shown significant performance in recent
years and uses different physiological properties to distinguish the real and fake traits.

The protection methods based on the liveness assessment need to satisfy certain requirements: (i1)
being non-invasive; (i2) being low cost, which implies the possibility of its wide usage if it is affordable;
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(i3) delivering high performance, which means the detector needs to demonstrate a good accuracy,
while it does not cause any degradation on the system recognition performance. Finally, development
of a robust liveness assessment system which satisfies these requirements can improve the integrity
and correctness of the overall biometric recognition system.

3. Related Work

In this section, the related works to the application of deep learning in recognition systems as well
as the applications of homomorphic encryption schemes are described. While traditionally recognition
systems use manually extracted features to represent the input data [2], the state of the art systems
have proven that end-to-end systems that allow the neural network to perform the feature extraction
autonomously have shown higher accuracies [3]. Moreover, homomorphic encryption has been
involved in these recognition systems to preserve the privacy. A. Ene et al. [4] proposed implementing
speech recognition system and preserving the identity of users (or speakers) through leveraging
homomorphic operations and usage of large amount of plaintext space. In [5], the authors proposed
executing computationally intensive biometric recognition system by offloading the recognition process
to the cloud. In this technique, the recognition-based operations as well as bulk enrollment operations
are divided into multiple tasks, to be executed on a set of servers in the cloud. In order to further
improve the privacy and security of biometric data, it is offered to make them cancelable when they
are stored in the cloud. The work [6] presented a secure and privacy-preserving mechanism for
authentication of users based on their biometric data in a distributed framework. In order to improve
the security and privacy, three modalities are combined based on a weighted score level fusion to
determine the final multimodal data. To protect biometric data storage, they proposed processing
the data in a multi-party framework that enhances security in all stages of authentication. Therefore,
attacking a single database does not significantly jeopardize the security of the data. This framework
not only provides security, but also improves usability, execution time, and efficiency.

In [7], a framework is shown that has the duty of protection and privacy provision within the
context of having a large amount of information. This framework consists of two layers of protection,
the first layer of which provides robust hash values as queries and the second layer provides an ability
for the client to modify certain bits in a hash value to prevent original content or features from being
revealed. This scaling of information helps make computations more difficult on the server based on
the interest of the client. This interaction of client and server within a protected environment helps to
preserve their privacy. A secure system for multi-biometric data has been proposed in [8] that uses deep
neural networks and error-correction coding. The multi-biometric data is generated by a feature-level
fusion framework with the input of multiple biometric data. Via making the multi-biometric data
cancelable, they further secure the privacy and confidentiality of the users. The PassBio has been
proposed in [9] according to which a user-centric biometric authentication scheme is offered that
gives this ability to users to encrypt the biometric templates with a light weight encryption scheme.
The encrypted data stay in the server and will never be accessed directly. In this framework, the
privacy and protection are catered through running the “compute-then-compare” computational
model coupled with the threshold predicate encryption.

The authors in [10] provided good answers for characterization of biometric designs based
on privacy enhancing technologies. Through answering these questions, the regulations for the
protection of biometric information are presented and the cryptographic techniques for design of a
secure biometric system are analyzed and compared. In addition, a privacy-preserving approach for
authentication of biometric data within the context of mobile applications is proposed. The proposed
model uses a mechanism according to which pseudonymous biometric identities are used for securing
the registration and authentication of biometric identities. In [11], a basic fusion model blueprint for
preserving the privacy of cloud-based user verification/authentication is proposed. It is considered
that the three modalities of biometric data are located in different databases of semi-honest providers.
They are combined based on their performance parameters (i.e., weighted score). It was proposed
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in [12] that a distributed setting of clients, cloud server, and service provider with verifiable interactions
(to be executed on top of a homomorphic encryption scheme) can help improve security against
malicious servers. Taheri et al. in [13] showed the biometric recognition systems (specifically for
fingerprint and iris) are not secure due to possible presence of hardware and software Trojans inside
the system. In their work, they proposed how hardware Trojans can manipulate the image instances of
the iris and the fingerprint, leading to denial of service in many of the existing biometric recognition
systems. Accordingly, a cross-layer recognition system is developed that performs security-based
data analysis of biometric data in two levels and is strong enough in confronting the designed
hardware Trojans.

The authors in [14] proposed using a privacy-preserving biometric identification for face
recognition based on eigen-face approach. In their technique, Paillier cryptosystem is used as an
additive homomorphic encryption unit. For finding the difference between the face image vector
from the client and the server’s database, Euclidean distance is employed. Inside their framework,
a matcher is used to compare the information within the encrypted domain in order to avoid revealing
any information.

A privacy-preserving face identification has been proposed in [15] according to which the facial
images are presented by binary feature vectors. In its implementation, additive homomorphic
encryption and oblivious transfer have been used. In order to measure the similarity between the
images, the Hamming distance has been used. An efficient matching protocol has been proposed
in [16] with having application in many privacy-preserving biometric identification systems inside a
semi-honest setting. A more efficient protocol is proposed by the authors that computes the Euclidean
distances for improving the privacy and security of the matching system. A novel privacy-preserving
biometric identification scheme was proposed in [17] that achieves efficiency through exploitations
of the cloud computing power. The scheme provides outsourcing of biometric data to the cloud
servers. The identification of biometric data occurs through generation of a credential for the candidate
biometric trait and its submission to the cloud. On the cloud side, the identification happens over the
encrypted data using the credential. This identification has the advantage of real time computation,
low communication cost, and secure outsource of data to the cloud. In addition, the problem of training
high quality word vectors over large-scale encrypted data within the context of privacy-preserving is
tried to be solved by designing a suite of arithmetic primitives on encrypted data.

A privacy-preserving identification mechanism for mobile sensing is proposed in [18] that selects
sensed data dynamically in order to protect the sensitive information of participants. This mechanism
solves the contradiction between the protection of user privacy and performing the task of the
identification. The privacy and sensitivity of the data are catered by letting the users to define
their sensitivity and selecting the sensed data dynamically. The identification part is given by training
a two-layered neural network and learning the user behavior in order to generate an identity for it.
In [19] an efficient and privacy-preserving identification system for fingerprint data was presented
using cloud systems. Within this context, the cloud has the duty of exploiting the computation power
for extensive mathematical computations. [20] proposed a privacy-preserving identification system
that outsources the encrypted biometric data into the cloud and is efficient in computations. All the
identification operations within the cloud are executed on the encrypted data and they are returned to
the database owner. A complete security analysis shows that this scheme is secure even if attackers
forge requests.

In [21] proposed a secure face verification scheme using a specifically trained neural net. They
extracted the features from the last layer of the network. In comparison to that work, we eliminate
training on sensitive data, use a faster encryption scheme, and find the optimum layer to train on using
CNNOptLayer. It has been proven that transfer learning can increase the accuracy when small data is
presented, and in this work, the case is similar with the presence of small data and the need for feature
extractors. Therefore, using the same concept of deep features can help the verification task. Moreover,
in this work an algorithm is presented to assist in finding the optimum layer for feature extraction.
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Furthermore, by adding homomorphic encryption and eliminating the need for training, this work
leverages a pre-trained DenseNet to preserve the security of the biometric data.

4. Methodology of the Proposed System

The proposed system in this work caters privacy-preserving capability to a deep learning-based
biometric recognition system that receives queries from users. In this system four elements are
involved, namely client (from cellphone/computer), matcher (from cloud), database (different means
can be used for this purpose), and authentication server (from cloud). The data stored on the database
is encrypted personal records which prevents attackers from gaining access to the sensitive information
of the enrolled users. The DeepZerolD system uses only fingerprint and iris, but it can be extended to
other biometric images as well. For every query, the region of interest within the biometric data needs
to be localized and processed before it is sent to the recognition system.

4.1. General Overview of Privacy-Preserving Biometric Recognition System

The network architecture and the associated biometric recognition system (including their
elements) are shown in Figure 6. The details of this system are depicted in Figure 7. As it can
be observed from the figure, there are four sides in the network namely client, matcher, database, and
authentication server.
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Figure 6. The proposed deep learning-based privacy preserving biometric recognition system.



Computers 2019, 8, 3 12 of 24

Matcher

A
@ Database

A
4 N\
Username Word-Based Feature e.g.5 (a) Client
(Example: acostadavid) Extractor (1) (b) Authentication
Data Final :
) ) N Fusion % mask Client Server
ngr:'l’:::: I:fﬂ;::tlon : Word-Based Feature (c) Database
d) Matcher
(Example: LondonEngland) Extractor(2) e.g.13 (d)
Pre-Tra.med pesP Homomorphic Authentication 3
Learning-Based Eneryotion
Feature Extractor
Reference Data Match'er ]
(Database) (:iastn;:::g
Data ] Pre-Tra'lned Deep Homomorphic Authentication )
Preprocessing EamERdeed Encryption Server ) -
Feature E

True Fingerprint

- Pre-Trained Deep Learning-
C Based Feature Extractor (a) Client
w—i (b) Authentication
= “d  Fake Fingerprint a Server

(c) Matcher

- . True/Fake ] & client
@*«% Decision Unit
Pre-Trained Deep Learning-
( Based Feature Extractor

Fake Iris J

Figure 7. The details of the proposed system.

On the client-side, a person provides his/her fingerprint, iris, username, and biographic
information (which is the place of birth in here). The inputted iris image is segmented in order to find
the region of interest within the eye and then normalized; however, the fingerprint stays in its raw
format. These images are then fed to a pre-trained deep neural network (DenseNet) and the outputs
of specific layers of this network are extracted as the feature vectors for the inputs. An algorithm
namely CNNOptLayer is developed to find the optimal layer for feature extraction. In parallel to this
process, the username and biographic information that was gathered from the user are delivered to
two word-based feature extractors. After extraction, these two word-based features, are concatenated
and replicated to create a binary mask for the user. Having done so, the extracted features from the
fingerprint or iris are binarized and bit-masked, and then up-sampled and encrypted using a partially
homomorphic encryption scheme. On the other side, two SVM classifiers trained on the true and fake
fingerprint and iris features are used to determine the type of the input biometric data in terms of
being true or fake.
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Outside of the user side, the encrypted features are stored in a database for future matching.

The future queries are compared to the reference features by a matcher within the cloud. In order to
verify an input, their encrypted binary vector is sent to the authentication server and is compared to

the

reference vector with the XOR operation being carried out. The results of the XOR operation are

sent to the matcher unit, where the hamming distance is calculated. If the hamming distance is smaller
than a certain threshold, the vectors match. The input is verified if the results of the verification system
as well as the authenticity system are positive. The flow and protocol for this system is shown in
Algorithm 1.

Algorithm 1: The protocol and overall scheme of deep learning-based privacy preserving bi-modal biometric
recognition system.

01: Input Parameters: True and Fake Biometric Data, Username, and Biographic Information

02: Output Parameters: Output: Authorization Determination

03: Client:

04: BiometricData <— DenseNet Features & CNNOptLayer (TrueFingerprint or Preprocessed Iris)

05: BiolnfoDatal < WordBasedFeatureExtractorl (Username)

06: BiolnfoData2 +— WordBasedFeatureExtractor2 (Biolnfo)

07: FinalMask <+ WordDataFusion(BioInfoDatall, BioInfoData2)

08: Client-AuthenticationServer-Database-Matcher:

09: PlainData + XOR (BiometricData, Final Mask)

10: Ref / TestEncryptedData <— Homomorphic Encryption Scheme (PlainData)

11:  Matcher < XOR (Ref EncryptedDatal, TestEncryptedData)

12:  MatchingDecision +— Hamming Distance Threshold (Matcher)

13: TrueFakeBiometricData <— DenseNet Features (TrueFakeFingerprint/Iris)

14: DetectedTrueFakeData +— SVM (TrueFakeBiometricData)

15: Client-AuthenticationServer-Matcher:

16: AuthorizationDetermination < FinalDecisionUnit (Matching Decision, Detected TrueFakeData)
4.2. Flow of Biometric Data at the Client-Side

The inputted data passes through five stages on the client side before being sent out to the cloud.

These stages are discussed in details hereunder.

1.

Data Preprocessing: The area of interest inside the image taken from the eye, i.e., the iris, needs
to be extracted. In this work circular Hough transformation is used to localize the iris and extract
it. The segmented iris is then normalized. Fingerprint images remain unchanged.

Feature Extraction: The images are fed to a DenseNet that is pre-trained on millions of images
from the ImageNet dataset. This massive amount of images included a thousand various classes
such as chairs, zebras, apples, monitors, and etc. The concept of transfer learning aids us to use
the patterns learnt from these images for the task of biometric verification. Each layer within
this deep network contains many patterns that might be useful in representing the inputted
image. The output of these layers, also known as off-the-shelf features [22], is taken as the
representation of the input, i.e., the feature vector. However, the task of finding the right layer to
extract the features from can be arduous. In [23], layers are chosen randomly in order to extract
features. In this work the pre-trained DenseNet is coupled with the CNNOptLayer algorithm
to find the most optimal layer for feature extraction for each task. This algorithm performs
an exhaustive search on the convolutional layers within the network, and uses their output as
features. The acquired features result in a verification output and their performance can be
measured using the F1 score. The layer with the highest F1 score is chosen as the optimal layer
for that specific task. After extraction, the feature vectors are binarized based on the mean of each
feature. This binarization allows us to perform hamming distance and use the encryption scheme.
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3. Masking the Data: The username and the biographic information (or place of birth) are given to
two word based feature extractors. The first extractor finds the index of the first, the middle, and
the last element of its word from the dictionary of letters. Then, the ceiling of the index of the
first element to the power of the index of the third element is divided by the multiplication of the
index of the second element to the power of two on one side and the addition of the index of the
first element and the index of the second element on the other side. The output of this function
is BioInfoDatal. The other feature extractor finds three elements: the length of the birth place
word, the frequency of the most repeated character, and the difference between the highest and
the lowest indices among the characters in the word. The operation to be performed on these
elements is described as the round of the addition of the first element, the second, and the third
element divided by three as the base and the ceiling of the first element divided by the third
element as the power. The output of this unit is BioInfoData2. These two data are concatenated
and repeated until the lengths of the image feature vectors are reached. After getting the final
mask, it is XORed with the biometric feature vectors to create the plain data for the encryption.
The reason for XORing the mask with the feature vector lies within the fact that feature vectors
are binarized and later XORed for comparison. Since the mask generation outputs the same
mask for the same individual each time they request for verification, the result of comparing two
masked feature vectors of the same individual is equal to that of the comparison of two plain
feature vectors. Therefore, masking the binary feature vectors does not change the results of the
comparison unit for the same individuals, but highly affects the cases where the vectors come
from different individuals.

4. Encryption: The two plain vectors data go into a Paillier Chunkwise encryption scheme [24].
This scheme first up-samples the data, and then encrypts chunks of it using Paillier Encryption.
This scheme has two advantages; firstly, Paillier encryption is partially homomorphic and
supports addition, which enables us to perform the XOR operation on the authentication server.
Secondly, the up-sampling allows the matcher to calculate the hamming distance and recognize
if the two feature vectors match or not.

5. True/Fake Detection: The last operation on the client-side to identify the liveness of the presented
biometric data. The CNNOptLayer is used to find the optimal layer for feature extraction for this
task and a SVM, which is trained on these feature vectors from true and fake datasets, identifies
the liveness of the data.

4.3. Decision Making Process

The decision for a claimed identity is made based upon two elements: (1) the result of matcher,
and (2) the result of true/fake detection unit. In this work the authentication/matcher architecture
which is pivotal for the performance of Paillier Chunckwise is used. The encrypted feature vector
is sent to the authentication server along with the username. The original biometric data for that
user name is retrieved from the database and is sent to the authentication server. Using the additive
homomorphism of Paillier scheme, the two encrypted vectors are XORed. The results of this XOR
and tell us how similar these binary vectors were before encryption. This result is sent to the Matcher,
which calculated the hamming distance by looking at the up-sampled results. If the resulted hamming
distance is smaller than a pre-defined threshold, which will be determined in the next section, the two
vectors come from the same user. If the true/fake detection unit identifies the biometric data as live
data, and the hamming distance is smaller than the threshold, the user is verified.

5. Experimental Approach and Results

5.1. Experimental Setup

In order to perform the feature extraction, a pre-trained DenseNet is acquired. The used
DenseNet is a Keras implementation of this network in Python that supports the TensorFlow backend.
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This network has 161 layers with the input size of 224 x 224. The iris images are segmented using
Hough transformation. The images are resized to match the input size and are fed to the DenseNet.
Using CNNOptLayer, the optimum layer for the tasks of biometrics verification and true/fake detection
are identified. The features extracted from these layers are binarized and up-sampled and masked.
The final vectors are encrypted using Paillier Chunkwise Encryption written in Matlab. The true/fake
detection classifier is written using Scikit-learn’s SVM.

5.2. Dataset Selection

The datasets used in this work are the CASIA fingerprint and iris datasets [25]. Both of these
biometric data also have fake version, which were used in the training of the true/fake detection
unit. Overall, 165 users were selected with each having five fingerprint and five iris images. The right
thumb and the right iris are used for each user and a unique username and place of birth is given to
them. Therefore, there are 825 images for each biometric input that can be compared to each other.
This yields 339,900 different cases of comparisons for each biometric data type. In the end, the iris and
fingerprint vectors are merged to see how well our system works in a bi-modal environment.

The true/fake classifier is trained on data from CASIA’s true/fake dataset, with ten-fold
cross-validation. Therefore, this system’s data is different from the ones used for verification.

5.3. Final Results

Each of the nearly 340,000 comparisons yields in a hamming distance computed by the matcher.
If the input vectors match, this distance should be low. After all of the distances are calculated,
a threshold that maximizes the F1 score is found and the last F1-score is computed. The F1 score results
of choosing each layer of the DenseNet as feature extractor is shown in Figure 8.
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Figure 8. The results of each layer of the DenseNet as feature extractor for (a) iris and (b) fingerprint.

As it is visible from Figure 8, different layers have different capabilities in extracting features.
The optimum layer for feature extraction from the iris images is the 21th layer, while the 12th layer
gives the best representation for the fingerprints. This is due to the fact that each of these layers holds
patterns learnt from the ImageNet dataset and different patterns suit different types of data. Moreover,
it can be seen that iris verification achieves a higher F1 score than fingerprint verification, showing
that this pre-trained network is more suitable for feature extraction from normalized iris images.

Another important observation is the fact that the performance seems to become better as the
layers increase but falls after certain layers. While the first layers hold a simpler abstraction of the
input data, the higher layers hold a more complex abstraction. If this abstraction becomes too complex,
information is lost and performance is downgraded.
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Having found the optimum layers using CNNOptLayer, we take a closer look at the results from
these two layers. After the iris features are extracted from the 21th layer and fingerprint features are
extracted from the 12th layer, they are binarized. Having done so, the hamming distances between all
possible and unique pairs of input images are calculated. In order to do so, one image (e.g., an iris)
is taken as the reference, and the rest of the images are compared to it and the hamming distances
are recorded. Since there are 5 images taken from each user in the dataset, only 4 other image should
ideally match this image and the 820 other users should have a higher hamming distance. In this
work, the collection of the distances that are gathered from match cases are called “Positive”, while the
collection of the distances that are not from the same person’s data are called “Negative”. This naming
can also be thought of as their ground truth verification results. These two distributions are shown in

Figure 9.
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Figure 9. The optimum distance distributions of (a) iris and (b) fingerprint.

As it is visible from Figure 9, the negative instances in average have a higher hamming distance
than the positive ones. This is a testament to the fact that the feature extraction is performed correctly.
However, these two distributions have less overlap in the iris images than they do in the fingerprint
images, showing that the verification of irises is easier for the system that verification of fingerprints.

In order to find an optimum threshold, this value is swept across the minimum to the maximum
range of the distances and the one with the highest F1 score is chosen. This is reflected in Figure 10.
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Figure 10. The results of changing the threshold in (a) iris and (b) fingerprint verifications.
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Now that the thresholds are found, we can depict how the decision boundary would look like in
this one dimensional space in Figure 11.
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Figure 11. The optimum distance distributions of (a) iris and (b) fingerprint with the

optimum thresholds.

As it can be seen from Figure 11, there are misclassifications in both cases of verification. In order
to alleviate this problem, we take the action of bit-wise masking the data with the mask created from
the user input. This masking of the data takes place before up-sampling and encryption. After the
masks are applied, the changes in the distributions are depicted in Figure 12.

— Il Negative I Negative '
B Positive B Positive I
o n 5000 |
D 4000 0]
v] V]
c C 4000
S3000 3
2 & 3000
Y Y
2000
© © 2000
#* H#
1000 1000
| ———— || | | ] | Y
3000 4000 5000 6000 7000 8000 8000 9000 10000 11000 12000
Distance Distance

(a) (b)

Figure 12. The optimum distance distributions of (a) iris and (b) fingerprint with the optimum

thresholds after masking the data.

As it can be observed from Figure 12, the positive distribution remains unchanged due to having
the same masks; however, the negative distribution is pushed further in the distance. This lowers
the false positives greatly. In order to not affect the security of the system, the threshold remains
unchanged, so that if anyone can gain access to the personal data of a user, they would have no

advantage in gaining access to the system.
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In order to evaluate the performance of this system in a bi-modal environment, the features of iris
and fingerprint images are concatenated and fed to the system as the input features. The result of this

combination is visible in Figure 13.

Bl Positive
5000/ mmm Negative

# of Instances
S
o
(@]

" I | | | | | [ .
12000 14000 16000 18000 20000
Distance

Figure 13. The distance distributions of the combined iris and fingerprint features.

The combined distributions showed in Figure 13 shows that this combination has decreased the
overlap between the negative and positive distribution. Therefore, combining the fingerprint and iris
data makes the system more accurate. The optimum threshold for this case is found and shown in

Figure 14.
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Figure 14. The results of (a) threshold sweeping and (b) the optimum distance distributions of the

combined iris and fingerprint features.

As for the true/fake detection system, the CNNOptLayer was similarly used in order to find the
best features. It proved an easy task for the DenseNet since the 2nd layer’s features for the iris and the
69th layer’s features for fingerprint yielded 100 percent classification accuracy.

The results are shown in Table 1.
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Table 1. The overall results of the verification system with iris and fingerprint inputs (TP, TN, FP, and
FN denote true positive, true negative, false positive, and false negative respectively).

Data Type Masked Layer Threshold TP TN FP FN F-Score
Fingerprint No 12 10,243 812 337,450 800 838 49.79
Fingerprint Yes 12 10,243 812 338,246 4 838 65.86
Iris No 21 6427 1414 338,165 85 236 89.81
Iris Yes 21 6427 1414 338,248 2 236 92.24
Combined No 12+21 17,108 1507 338,168 82 143 93.05
Combined Yes 12 +21 17,108 1507 338,250 0 143 95.47

As is observed in Table 1, the best result was obtained when the fingerprint and iris features
were concatenated. This table also shows the reason behind masking the data. While the data is
homomorphically encrypted and does not need masking for privacy, the masking helps the accuracy
of the system. Via masking, the false positives that are detrimental to the goal of a verification system
are lowered significantly.

5.4. Security Analysis

In order to evaluate the security of the proposed system, a number of locations within the system
that the data is unprotected (or plain) are targeted. The points that are targeted in here are the
CNN-based feature extractor and the SVM-based classifier within the true/fake detection module.
These attacks are carried out on AlexNet which is different from our system and serve the sole purpose
of finding vulnerabilities within CNNs.

Besides the aforementioned privacy concerns, there are other possible threats and attacks that
can target a biometric recognition system. They can be stated as: (1) attacks on the sensing devices,
which are known as direct attacks. These attacks can cause impersonation or evasion of identity.
The countermeasure for these attacks operate based on the liveness detection according to which it
is assessed that the biometric data is fake or alive. This operation is done based on specific patterns
(such as the ones remained from sweating or blinking eyes). (2) attacks on the channels that connect
different modules. An attack from this type is called man-in-the-middle attack according to which
an original image is replaced with a new synthetic image. (3) attacks to the processing modules and
algorithms. (4) attacks to the template database. (5) fabricating a fake biometric trait to mimic an
enrolled client, which is called spoofing attack. (6) Feeding stolen data of the victim to the feature
extractor. (7) attacks on the feature extractor. (8) attacks in the matcher. (9) attacks on the template
database. (10) suffering of deep neural networks within the system from unexpected instabilities
and performing misclassification on data instances created by adversaries through adding invisible
and small disorder to the originally recognized data. Also, the extracted features from them may be
vulnerable to mimicking and synthetically image production. Another security issue is leakage of
essential information from a trained network model.

The proposing attacks for the feature extractor point to the fully connected layer, shown in
Figure 15.

The attacks are: (AX) substituting every “odd” element of the Bias vector of the seventh fully
connected layer with its next “even” element in the vector (b[2n + 1] = b[2n], for “n” starting from zero).
(BX) substituting every thirty-two elements of the Bias vector of the seventh fully connected layer with
their average value (b[n : n+ 31] = Average(b[n : n +31]),n =1, 33, 66, ... ). (CX) substituting every
thirty-two elements of the Bias vector of the seventh fully connected layer with their minimum value
(b[n : n+31] = Minimum(b[n : n +31]),n =1, 33, 66, ... ). (DX) substituting every “odd” element in
eight columns of the Weight matrix (with the interval size of 512) of the seventh fully connected layer with
its next “even” element in the vector (W([n, K] = W|2n, K], for “n” starting from zero and “K” =1, 513,
1026, etc.). (EX) substituting every element of the Weight matrix of the seventh fully connected layer with
their mean/median/minimum/mode value (W[:] = Average/Median/Minimum(W|:])). (FX) Flipping
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the Weight matrix of the seventh fully connected layer up-side and down-side (W = FlipUpDown(W)).
(GX) changing the layer for feature extraction from the seventh fully connected layer to the second

convolution layer (Yrc7 = Yconva)-

Weight Matrix Bias Vector
o + =1
Input Vector Output Vector

Output Vector (y) = Weight Matrix (W) . Input Vector (x) + Bias Vector (b)

Figure 15. The architecture and formula for the fully connected layer.

(HX) performing an insider attack by targeting the classifier and through: (i) manipulation of
12.5% of the Training labels; (ii) manipulation of 25% of the Training labels; (iii) manipulation of 50%
of the Training labels. The equation of the SVM classifier is shown to the following. According to this
equation, s represents the support vectors, a represents the weights, b represents the bias, x represents
the input vector, k represents the kernel function (i.e., it can be a dot product for a linear kernel),
c represents the group type. If ¢ > 0, then the input vector belongs to the first class, otherwise it belongs
to the second class. According to the mentioned attack, the support vectors are manipulated to cause
misclassification of the input data.

c=a; xkx(s;,x)+b

(IX) manipulation of neurons according to which: (I) positively rectify the outputs of a
number of neurons during the verification phase (e.g., |y[i]|, i € random numbers); (II) forcing the
outputs of a number of neurons to zero value (power gating neurons) during the verification phase
(e.g., y[i] =0, i € random numbers); and (III) negatively rectify the outputs of a number of neurons
during the verification phase (e.g., —|yl[i]|, i € random numbers).

Among the proposed attacks, only a number of them were applicable and led to observable
negative impact on the system. The attack number 7 causes degradation of TPR from 1.0 to 0.17 (—83%)
and TNR from 1.0 to 0.79 (—21%) when the fingerprint is input into the system. This attack means the
unauthorized access and denial of service. The attack number 5 causes degradation of TPR from 1.0 to
0.0 and FNR when the substitution value is mean or median. On the other hand, when the substitution
value is minimum or mode then TNR is degraded from 1.0 to 0.0. The first case means denial of service
and the second case means unauthorized access. Regarding the iris biometric data, the attack number
7 causes a complete denial of service. The attack number 5 delivers the same results as what were
delivered for the fingerprint data. All these attacks are performed after the user enrollment process.

There are three components in our system that collectively defend against these attacks. Firstly,
the matching unit calculates the hamming distance between the original and the new feature vectors
and enables the task of verification to take place. Secondly, the masking unit, which requires input from
the user and only works correctly if the inputted words are the same as the original words. Lastly the
true and fake detection unit checks if the input if received from a live individual or if it is synthetized.
As we have shown, this unit is the most vulnerable unit is the system and can be manipulated to detect
fake inputs as true. If the true/fake detection unit is compromised at the user side, this manipulation is
only effective on the output of the SVM in the user side and is not effective on the results of the matcher
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in the cloud. Therefore, in the worst case scenario where the attacker has the username and the place
of birth of the user (i.e., can generate the correct mask), has fake biometric data, and manipulates the
true/fake detection unit to output true, the result of the matcher in the cloud remains the same and the
attacker is not verified.

In the literature, a number of defenses have been proposed for the attacks mentioned in (1) to
(10) [26-28]. In [26,27], it is proposed to combine cryptography and biometric security in order to design
a stronger authentication system. The authors in [28] discussed many different defenses for biometric
recognition systems, including risk-based approach, systems and security architecture, defensive
measures, challenge/response, retention of data, randomizing input biometric data, liveness detection,
multiple biometrics, multi-modal biometrics, multi-factor authentication, soft biometrics, signal
and data integrity and identity, cryptography and digital signatures, template integrity, cancellable
biometrics, hardware integrity, network hygiene, physical security, activity logging, policy, and
compliance checking.

There is another option for countering this attack that is protecting the deep neural network.
Meanwhile, a number of techniques have been proposed for protection of neural networks may
help in correcting the operation of the true/fake detection system. It means protecting the neural
network-based feature extractor. In [29], an effective defense against backdoor attacks on neural
networks has been proposed. The defense is called fine-pruning that is a combination of pruning
and fine-tuning. This defense is capable of weakening or even eliminating the backdoors (with a
specified success rate). Another work [30] proposes a novel approach for backdoor detection and
removal from neural networks. This method is able to detect poisonous data as well as repairing the
model. A robust and generalizable detection and mitigation system for detection of backdoor attacks
for neural networks has been presented in [31]. This technique can identify backdoors and reconstruct
possible triggers. The technique includes input filtering, neuron pruning and unlearning.

The SVM classifier can be defended and protected as well. The following techniques have been
proposed to defend a classifier against possible attacks, which can be integrated into our model. In [32],
an optimization framework has been proposed that is able of finding the label flips for the purpose
of maximizing the classification error. The authors in [33] presented a strategy for improving the
SVM robustness in front of input data manipulation based on a simple kernel matrix correction. [34]
shows an adversary-aware design of SVMs based on real-world security problems. A method has been
proposed in [35] according to which the classification model as well as the training procedure are not
modified and it can be used to defend against many attacks. Using this defense, the distribution of clean
and manipulated features can be modeled in order to enhance the SVM performance in classification.

5.5. Discussion and Future Research

The usage of one pre-trained neural network as feature extractor for multiple tasks in this work
showed the flexibility of deep learning. While DenseNet was trained on images of everyday objects,
the patterns learnt within proved to be useful in extracting features from both iris and fingerprint
images in both tasks of verification and liveness detection. Observing the performance delivered by
different layers’ features in Figure 9 gave us insight about how the information that is valuable for the
given task propagates through the network and at what layer the abstracted information becomes the
most valuable. This Figure which is the heart of the CNNOptLayer algorithm can be derived in other
tasks that contain transfer learning. While it is common practice to use the last layers of a pre-trained
neural network, in this work we observed that it can be detrimental to do so, and used the algorithm
to find the best layer.

One of the downsides of our work was the low F1 score on fingerprint data. This is due to the fact
that the needed patterns might not exist or be dominant in the pre-trained neural network. For future
research, one can train a specified neural network to learn verification of iris and fingerprint data
in a multitasking manner. This network then might yield better results, having seen a more similar
data distribution. The reason we avoided doing so was to not save any data from the biometric data
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distribution inside the model, gaining a zero knowledge system that is scalable with no need to train
on sensitive data. However, one can also train a network on generic fingerprint/iris dataset and test it
on the sensitive data. Overall, a trade-off was observed between preserving the security of the data
and the performance of the system.

6. Conclusions

In this work, a privacy-preserving cloud-based and multiple-party biometric verification system
has been proposed which relies on one pre-trained deep neural network to perform feature extraction.
Via using transfer learning, the achieved system was able to extract features from iris and fingerprint
images for the tasks of biometric verification and true/fake detection. This enabled usage of a neural
network that required no knowledge on sensitive data and scalability of the system when new users
are added. Optimization of this process was done using a novel algorithm called CNNOptLayer which
found the optimum layer for each task and input data type. The biometric features were bit-masked
and encrypted using Paillier Chunckwise. This homomorphic encryption allowed the biometric data
to remain encrypted outside of the user side and preserved the privacy of the user. Overall, the system
was able to achieve a verification F1 score of 95.47% when verifying the combined features of iris and
fingerprint inputs with zero false positives.
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