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Abstract: Brain–computer interfaces (BCIs) based on code-modulated visual evoked potentials
(c-VEPs) typically utilize a synchronous approach to identify targets (i.e., after preset time periods
the system produces command outputs). Hence, users have only a limited amount of time to
fixate a desired target. This hinders the usage of more complex interfaces, as these require the
BCI to distinguish between intentional and unintentional fixations. In this article, we investigate
a dynamic sliding window mechanism as well as the implementation of software-based stimulus
synchronization to enable the threshold-based target identification for the c-VEP paradigm. To further
improve the usability of the system, an ensemble-based classification strategy was investigated. In
addition, a software-based approach for stimulus on-set determination is proposed, which allows
for an easier setup of the system, as it reduces additional hardware dependencies. The methods
were tested with an eight-target spelling application utilizing an n-gram word prediction model. The
performance of eighteen participants without disabilities was tested; all participants completed word-
and sentence spelling tasks using the c-VEP BCI with a mean information transfer rate (ITR) of 75.7
and 57.8 bpm, respectively.

Keywords: brain–computer interface (BCI); electroencephalogram (EEG); visual evoked potentials
(VEP); code-modulated visual evoked potentials (c-VEP)

1. Introduction

A brain–computer interface (BCI) records, analyzes and interprets brain activity of the user and
can be used for communication with the external environment, without involving muscle activity [1].
BCIs can be utilized as communication device for severely impaired people; e.g., people suffering from
spinal cord injuries, brain stem strokes, amyotrophic lateral sclerosis (ALS), or muscular dystrophies [2].
If used as a spelling device, character output speed and classification accuracy are the most important
characteristics of the system.

Code-modulated visual evoked potentials (c-VEPs) have gathered increasing research interest
in the field of Brain–Computer Interfaces (BCIs) [3–6]. In a c-VEP application, a set of flickering
targets, each associated with a specific binary code pattern, that determines whether the stimulus is
displayed or not displayed, is presented to the user. In parallel, the user’s brain signals are recorded,
typically, via electroencephalography (EEG). For classification, the system makes use of target-specific
EEG templates, which have been pre-recorded in a training session. When the BCI user gazes at
one of the targets, the program compares the collected EEG data to the templates and produces an
output command.

Usually, time lags of an m-sequence, a type of pseudo-random code sequence with desirable
autocorrelation properties, are used for stimulus modulations [7]. In the field of BCIs, m-sequences with
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a code length of 63 bits are most popular; this code length is suitable for multi-target implementations
on 60 Hz monitors (allowing a stimulus duration of 63/60 = 1.05 s).

In terms of implementation, synchronization between the amplifier and stimulus presentation is
required as the lag between stimuli can be as low as the inverse of the monitor refresh rate. Hence,
stimulus onset markers are typically sent to the EEG hardware. These timestamps can be acquired
using a photo-resistor or photo-diode attached to the screen [4,8]. Another approach is to send the
timestamps from the stimulation computer to the amplifier using the parallel port [3].

In this article, a purely software-based approach is proposed, allowing the detection of stimulus
onset without the need for additional hardware.

Typical use cases of c-VEP BCIs are spelling applications for people with severe disabilities [9].
For these implementations, high classification accuracy and speed are desired. An issue with
c-VEP BCIs is that, usually, a full cycle of the code-pattern is used to produce a command output.
Moreover, it is desirable that the system is able to distinguish between intentional and unintentional
target fixations. The length of the code pattern becomes a bottleneck with respect to the overall
responsiveness of the system. Here, a more user friendly approach is presented, utilizing dynamic
classification time windows based on classification thresholds, which we previously used in our SSVEP
applications [10–12].

Regarding the signal classification, ensemble-based methods, which are usually used in machine
learning, have recently boosted performance in steady-state visual evoked potential (SSVEP)-based
BCI systems [13]. Here, such an approach is adopted for the c-VEP paradigm and compared to the
conventional approach.

The character output speed can further be enhanced by implementing word prediction
methods [14]. Here, an n-gram word prediction model was utilized [15,16], which offers suggestions
on the word level. The system was tested on-line using an eight-target spelling interface.

In summary, the contributions of this research are threefold:

• Implementation of a novel software-based synchronization between stimulus presentation and
EEG data acquisition,

• investigation of performance improvements in c-VEP detection utilizing an ensemble-based
classification approach,

• presenting dynamic on-line classification utilizing sliding classification windows and n-gram
word prediction.

The article evaluates the feasibility of the proposed methods based on a test with
18 healthy participants.

2. Materials and Methods

This section describes the methods and materials as well as the experimental design. The sliding
window mechanism, as well as the utilized dictionary-driven have been presented before in our
previous publication [15].

2.1. Participants

Eighteen able-bodied participants (eight female and ten male) with mean (SD) age of 23.3 (4.4)
years, ranging from 19 to 31, were recruited from the Rhine-Waal University of Applied Sciences.
Participants had normal or corrected-to-normal vision. They gave written informed consent in
accordance with the Declaration of Helsinki before taking part in the experiment. This research
was approved by the ethical committee of the medical faculty of the University Duisburg–Essen.
Information needed for the analysis of the test was stored pseudonymously. Participants had the
opportunity to withdraw at any time.
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2.2. Hardware

The used computer (MSI GT 73VR with nVidia GTX1070 graphic card) operated on Microsoft
Windows 10 Education running on an Intel processor (Intel Core i7, 2.70 GHz). A liquid crystal display
screen (Asus ROG Swift PG258Q, 1920 × 1080 pixel, 240 Hz refresh rate) was used to display the user
interface and present the stimuli.

All 16 channels of the utilized EEG amplifier (g.USBamp, Guger Technologies, Graz, Austria) were
used; the electrodes were placed according to the international 10/5 system of electrode placement (see,
e.g., [17] for more details): PZ, P3, P4, P5, P6, PO3, PO4, PO7, PO8, POO1, POO2, O1, O2, OZ, O9, and
O10. In general, good results may be achieved with a smaller number of the EEG channels, however,
a higher number of EEG electrodes is beneficial to achieve higher accuracies and ITRs. In this study,
the number of electrodes used was defined by the hardware (limited to 16). Further, the common
reference electrode was placed at CZ and the ground electrode at AFZ (quite common locations of the
ground and reference electrodes for BCI studies based on visual stimuli). Standard abrasive electrolytic
electrode gel was applied between the electrodes and the scalp to bring impedances below 5 kΩ. The
sampling frequency of the amplifier, Fs, was set to 600 Hz.

2.3. Stimulus Design

In the c-VEP system used in this study, eight boxes (230 × 230 pixel), each corresponding to one
of K = 8 stimulus classes, arranged as 2 × 4 stimulus matrix (see Figure 3) were presented. The color
of a target stimuli alternated between the color of the background, ‘black’ (represented by ‘0’) and
‘white’ (represented by ‘1’) in accord with a distinct flickering pattern. To this end, the well-established
63 bit m-sequences, non-periodic binary code patterns, which can be generated using linear feedback
were applied.

The m-sequences ci, i = 1, . . . , K were assigned to the stimulus matrix employing a circular shift
of 2 bits (c1 had no shift, c2 was shifted by 2 bits to the left, c3 was shifted by 4 bits to the left, etc.). The
initial code, c1 is presented in Figure 1.

0

1

20 40 60 80 100 120 140 160 180 200 220 240

Frames

Figure 1. Stimulus pattern of the 63 bits m-sequence used in the experiment. Each ‘1’ in the m-sequence
corresponded to four frames where the associated stimulus was shown and each ‘0’ to four frames
where the stimulus was not shown. Thus the duration of a stimulus cycle was 1.05 s (also achievable
with common 60 Hz monitors).

2.4. Synchronization

The synchronization between stimulus presentation and data acquisition is necessary, as the
values for the sampling frequency of the amplifier Fs as well as for the monitor refresh rate r are not
precise and small differences might accumulate.

Two timers were used to determine the stimulus onset delay ds , which describes the time interval
between the beginning of a signal acquisition block and stimulus onset. A time stamp t1 was acquired
directly after the command responsible for the initiation of the flickering in the thread dedicated to the
stimulus presentation. A second time stamp, t2 was acquired after receiving a block of EEG data in the
thread dedicated for signal classification. The number of samples nb of one amplifier block is set prior
to the experiment. The duration of the collection of one EEG data block in seconds is db = nb/Fs.

The time interval between drawing command and stimulus presentation can thus be calculated
as ds = t2 − db + t1.

The number of samples prior to stimulus onset, ns, was determined as ns = [dsFs], where []

denotes the nearest integer function; half integers were rounded to the nearest even integer.
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Therefore, the difference between the calculated stimulus onset and the duration of the removed
samples cannot surpass 1/2Fs. This accuracy can not as easily be achieved with hardware based
triggers; when using the digital input of the amplifier, the sample corresponding to stimulus onset is
either rounded down or up, the difference can therefor be higher than 1/2Fs. An illustration of the
proposed software-based synchronization is provided in Figure 2.

......
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Figure 2. Software-based synchronization between signal acquisition and stimulus presentation.
(A) Real-time data analysis interprets the acquired EEG-data with respect to a classification time
window; displayed is the averaged EEG response. The classification is performed block-wise (i.e., after
acquisition of a new amplifier block, every db ms). The EEG-data collected prior to stimulus onset
need to be shuffled out. Collection of a minimum time window, e.g., the length of one stimulus cycle,
dc, can be used as additional condition to trigger an output command. (B) The first amplifier block is
shown (at the bottom). Stimulus onset duration, ds, was calculated after receiving the first block after
the gaze-shifting period. It was determined using the block duration, db, as well as time stamps t2 and
t1 which were set in the thread dedicated to the stimulus presentation, and classification respectively.
The dashed blue line indicates the last sample that is shuffled out.

2.5. Experimental Procedure

First, each of the 18 participants went through a training phase, which was required to generate
individual templates and spatial filters for on-line classification. Thereafter, an on-line copy spelling
task was performed, which immediately followed the training phase.

In the training, data for each of the stimuli were collected. The data collection was grouped in
six blocks, nb = 6; in each block each of the K = 8 targets was fixated. Hence, nb · K = 48 trials were
collected in total.

Each of these trials lasted for 3.15 s, i.e., the code patterns ci (see Figure 1) repeated for 3 cycles.
The box at which the user needed to fixate was highlighted by a green frame. At the beginning of each
of the nb recording blocks, the flickering was initiated by the user by pressing the space bar. After
each trial, the next box the user needed to focus on was highlighted, and the flickering paused for one
second. After every eight trials (one block) the user was allowed to rest.

The training phase was followed by a familiarization run were participants spelled the word
BCI. The classification threshold was adjusted manually during this familiarization run to ensure
adequate speed.

Three spelling tasks were performed: First, the word BRAIN was spelled (word task), thereafter
the sentence THAT_IS_FUN (to get familiar with the integrated dictionary) and an additional sentence,
different for each user (individual sentence task, see Table 1) were spelled with the BCI. Errors needed
to be corrected using the integrated UNDO function. For the sentence spelling tasks, dictionary
suggestions could be selected.
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Table 1. Individual sentences for the on-line experiment.

Subject Sentence

1 I_FORGOT_TO_DO_MY_HOMEWORK
2 I_LIKE_TO_EAT_CHEESE
3 I_BOUGHT_EGGS_TODAY
4 I_COULD_NOT_HEAR_THAT_
5 I_DO_NOT_SPEAK_FINNISH
6 WHAT_DID_YOU_HAVE_IN_MIND
7 I_AM_NOT_YET_HUNGRY
8 HOW_LATE_IS_IT
9 I_COULD_EAT_PIZZA_EVERYDAY
10 THE_DIVING_SUIT_IS_TOO_SMALL
11 THE_SUN_IS_SLOWLY_RISING
12 IT_IS_GOING_TO_RAIN_TOMORROW
13 THE_DOG_BARKED_LOUDLY
14 THE_LIGHT_BULB_HAS_BURNED_OUT
15 HE_SANG_OUT_OF_TUNE
16 MY_BIKE_HAS_NOT_BEEN_STOLEN
17 THEY_OWN_A_BLACK_CAT
18 AND_THAT_IS_IT

2.6. Dictionary Supported Spelling Interface

An eight target spelling interface as presented in [15] was utilized. The graphical user interface
(GUI) is illustrated in Figure 3. Selecting individual characters required two steps. The first row of
GUI contained 28 characters (26 letters, underscore and full stop character) divided into four boxes
(seven characters each). The second row offered three dictionary suggestions, as well as a correction
option. By selecting the correction option, the last typed character or word was deleted. By selecting a
letter group from the first row, the associated characters were presented individually (see Figure 3).
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Figure 3. Interface of the eight-target speller used in the on-line experiment. In the first layer of the
interface dictionary suggestions based on n-gram word prediction model were provided. By selecting
a group of letters (e.g., H–N), a second layer containing individual letters was displayed.

The dictionary suggestions were updated after each performed selection, on the basis of an n-gram
prediction model, which is used in computational linguistics.

This model considers a sequence of n items from a text database. An item xi (here, a word) has the
probability P(xi|xi−(n−1), . . . , xi−1). Here, a bi-gram (n = 2) was utilized, to predict word candidates
based on the previously typed/selected word.

The text database was derived from the Leipzig Corpora Collection [16]. The corpora collection
based on English news was derived from approximately 1 million sentences. It contained a word
frequency list and a word bi-grams list (co-occurrences as next neighbors). The word suggestions
were retrieved on-line from the database using structured query language (SQL). An example of the
functioning of the dictionary-driven speller is provided in Table 2.

Every selection was accompanied by audio and visual feedback (the size of the selected box
increased for a short time). Additionally, a progress bar displayed the current certainty level of the
associated class label.
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Table 2. Writing the sentence JUST_DO_IT with the eight-target speller. Selection of individual letters
required two steps, the group containing the character (Layer 1), and the desired character (Layer 2).
When selecting one of the three dictionary suggestions, the word as well as a space character where
added to the current user sentence.

# Selection Layer Command Suggestion 1 Suggestion 2 Suggestion 3 User Sentence

1 H-N 1 2 OF THE TO
2 J 2 3 - - -
3 JUST 1 2 JULY JUNE JUST J
4 A-G 1 1 A AS ONE JUST_
5 D 2 4 - - - JUST_D
6 DO 1 6 DAYS DO DOING JUST_DO_
7 IT 1 5 IT NOT YOU JUST_DO_IT_

2.7. Spatial Filtering and Template Generation

In this study, two approaches of spatial filtering, the conventional and the ensemble-based
approach were investigated. In both approaches, Canonical-correlation analysis (CCA) [18], a statistical
method which investigates the relationship between two sets of variables X ∈ Rp×s and Y ∈ Rq×s, was
utilized (see, e.g., [6]).

CCA determines weight vectors wX ∈ Rp and wY ∈ Rq that maximize the correlation ρ between
the linear combinations x = XTwX and y = YTwY by solving

max
wX ,wY

ρ(x, y) =
wT

XXYTwY√
wT

XXXTwXwT
YYYTwY

. (1)

Each training trial was stored in a m× nt matrix, where m is the number of electrode channels
(here all 16 signal channels of the amplifier were utilized for computation, i.e., m = 16) and nt is the
number of sample points (here, nt = 1.05 · Fs · 3 = 1890).

In the conventional approach, all training trials are shifted to a zero-class trials Zi, i = 1, . . . , nbK
and than averaged yielding an averaged zero-class template Z̄.

The matrices
Ẑ = [Z1Z2 . . . ZnbK] and Z̃ = [Z̄Z̄ . . . Z̄︸ ︷︷ ︸

nbK

] (2)

were inserted into (1), yielding a filter vector w(1) = wẐ. Class specific templates X(1)
i , i = 1, . . . , K

were generated by circular shifting the zero-shifted average Z̃ in accordance with the bit-shift of the
underlying code ci.

For the ensemble-based approach, individual templates X(2)
i ∈ Rm×nt and filters w(2)

i were
determined for each stimulus (i = 1, . . . , K). Class specific trial averages X̄i were generated by
averaging all trials corresponding to the i-th class, Tij, j = 1, . . . , nb. The matrices,

T̂i = [Ti1Ti2 . . . Tinb ] and X(2)
i = [X̄iX̄i . . . X̄i︸ ︷︷ ︸

nb

] (3)

were constructed and inserted into (1), yielding w(2)
i = wX̂i

, i = 1, . . . , K.
For both methods, the on-line classification was performed after receiving new EEG data blocks,

which were automatically added to a data buffer Y ∈ Rm×ny with dynamically changing column
dimension ny.

The data buffer Y was compared to reference signals R(j)
i ∈ Rm×ny , i = 1, . . . , K which were

constructed as sub-matrix of the corresponding training template from rows 1, . . . , m and columns
ns, . . . , ny + ns from X(j)

i for the conventional (j = 1) and ensemble method (j = 2), respectively.
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For signal classifications, correlations between the spatially filtered reference signals and
the unlabeled EEG data were computed. For the conventional approach, correlations λ

(1)
k , were

determined as

λ
(1)
k = ρ

(
YTw(1), R(1)

k

T
w(1)

)
, k = 1, . . . , K; (4)

the ensemble correlations, λ
(2)
k , were determined as

λ
(2)
k = ρ




YTw(2)
1

...

YTw(2)
K

 ,


R(2)

k

T
w(2)

1
...

R(2)
k

T
w(2)

K


 , k = 1, . . . , K. (5)

In both cases the classification output class label C is set to

C = arg max
k=1,...,K

λ
(j)
k , j = 1, 2. (6)

2.8. Sliding Window Mechanism

The number of samples per channel in each EEG data block was selected as a divider of the cycle
length in samples (here, 30 samples). This was necessary to maintain synchronization between data
collection and stimulus presentation when shuffling out old data blocks.

The output of the user interface corresponding to a classified label was only performed if
additionally a threshold criterion was met. In this regard, the data buffer Y, storing the EEG, changed
dynamically, i.e., the length of the classification time window ny was extended incrementally as long
as ny < nt. The decision certainty, ∆C, which was determined as the distance between the highest and
second highest correlation needed to surpass a threshold value, β, which was set for each participant
individually after the training. If this criterion was met, ∆C > β, the BCI executed the associated
output command, the data buffer Y was cleared and a two seconds gaze shifting period followed (data
collection and flickering paused). Figure 4 illustrates the sliding window mechanism and compares it
to the conventional method.

Threshold

Figure 4. Illustration of the threshold-based classification approach utilized in the on-line experiment.
Displayed is the classification time needed to spell the word BCI for both the conventional approach
and the threshold-based classification. The squares contain the label classified after the received block,
as well as the certainty associated with the label (color coded from red to green). The gray boxes indicate
gaze shifting phase (here, 7 blocks). In the conventional approach, a command is produced based on
the time window only, i.e., after 1.05 s. In the proposed sliding window mechanism commands were
performed if a threshold criterion was met. In the example, it resulted in reduced spelling time and
higher accuracy.
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3. Results

All participants completed the on-line experiment. The two tested classification approaches were
compared using off-line leave-one-out cross-validation. In this respect, all but one recording blocks
were used for the training and one block was used as validation data. The cross-validation process
was repeated nb times, with each recording block used once as the validation data. The nb results were
then averaged. Figure 5 shows accuracies across all participants for classification time windows up to
1.05 s. The accuracies for the ensemble-based classification were significantly higher.

The on-line performance between word and sentence spelling tasks was evaluated utilizing the
output command accuracy, the ITR, as well as the output characters per minute (OCM) which is a
measure of typing speed. The OCM is calculated by dividing the total number of output characters by
the time needed to type them [14]. The ITR in bpm [1] was calculated as

ITR =
log2 K + p log2 p + (1− p) log2

(
1−p
K−1

)
t/60

, (7)

where p represents the identification accuracy (the number of correctly classified commands divided by
the total number of commands), and t represents the average time between consecutive selections, (in s).
A calculation tool for the ITR can be found at https://bci-lab.hochschule-rhein-waal.de/en/itr.html.

Table 3 displays the results of the on-line spelling tasks. In terms of detection accuracy, all
participants were able to complete the task with average accuracies above 80% for the word—as well
as for the sentence task. For the spelling task BRAIN, a mean accuracy of 98.8% was reached; for the
sentence spelling task, a mean accuracy of 95.9% was reached. Sixteen out of the eighteen participants
completed the spelling task BRAIN without any errors, reaching an accuracy of 100%. For the sentence
spelling tasks, still eight participants reached 100% classification accuracy.
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Figure 5. Classification accuracies achieved with the conventional c-VEP classification approach and
the ensemble c-VEP classification approach. In the boxplot, outliers (data points outside 1.5 times
the interquartile range) are located outside the “whiskers”. The asterisks mark statistical significance
(* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p ≤ 0.0001).
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Table 3. Provided are the results for the letter by letter spelling task BRAIN and the subject specific
individual sentence task as listed in Table 1 (Sent.).

Subject Accuracy [%] ITR [bpm] OCM [chars/min]

BRAIN Sent. BRAIN Sent. BRAIN Sent.

1 100 97 84.7 60.1 14.1 19.3
2 100 96 65.9 45.5 12.2 15.1
3 100 95 79.3 57.5 13.2 20.1
4 100 100 74.1 58.9 12.3 24.0
5 100 100 54.9 61.6 9.1 19.7
6 100 97 71.6 58.3 11.9 18.8
7 100 100 60.8 57.0 10.1 17.3
8 100 100 79.8 80.0 13.3 19.0
9 100 100 97.0 48.1 16.2 15.4

10 100 100 125.4 95.8 20.9 22.6
11 100 97 79.0 53.7 13.2 15.0
12 86 96 43.2 49.4 7.7 19.1
13 100 100 86.1 76.0 14.4 21.4
14 100 86 85.1 46.8 14.2 18.5
15 92 90 50.2 49.0 8.1 13.8
16 100 91 91.1 62.6 15.2 23.9
17 100 100 57.2 46.1 9.5 11.4
18 100 82 77.1 34.5 12.8 16.6

SD 3.6 5.2 18.7 14.0 3.1 3.3
Mean 98.8 95.9 75.7 57.8 12.7 18.4

The average ITR for the spelling task BRAIN was 75.7 bpm. For the individual sentence spelling
task, it was significantly lower, 57.8 bpm (paired two-sample t-test: t = 4.6608, d f = 17, p < 0.001).
Across individual participants, the minimal and maximal ITR were 43.2 bpm and 125.4 bpm for the
spelling task BRAIN and 34.5 bpm and 95.8 bpm for the sentence spelling task, respectively.

However, in terms of OCM, significantly better results were achieved when the dictionary
integration was used. The average OCM was 12.7 char/min for spelling BRAIN and 18.4 char/min for
the individual sentence task (t = −6.9089, d f = 17, p < 0.00001). Across individual participants, the
minimal and maximal OCM were 7.7 char/min and 20.9 char/min for the spelling task BRAIN and
11.4 char/min and 20.4 char/min for the sentence spelling task, respectively.

4. Discussion

In this study, we presented a dictionary-driven c-VEP spelling application utilizing n-gram based
dictionary suggestions. In this sense, implementation of flexible time windows were realized, which are
rarely seen in c-VEP systems, where typically fixed time windows are used. Therefore, the presented
BCI was able to accurately discriminate between intentional and unintentional fixations (i.e., if the user
did not focus on a particular button, or just briefly attended it, e.g., when searching for the desired
character, the threshold criterion was not met and no classification was performed).

Another advantage of the approach is the additional user feedback provided through progress
bars. Typically, in c-VEP based BCIs, to our best knowledge, feedback is given on trial base only, i.e.,
after each trial (e.g., the selected letter is displayed, also called as discrete feedback). Here, continuous
feedback was provided throughout the trial. This real-time information about the classification is
also valuable to customize system parameters during familiarization. Similar methods have been
incorporated into asynchronous SSVEP-based BCI systems and lead to increased user friendliness and
system accuracy [19,20].

It should be noted, that due to the classification thresholds, the command selection time varies.
Hence ITRs in achieved on-line experiments are typically much lower in comparison to results from an
off-line analysis.
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The selection options of the GUI changed after each selection; the dictionary suggestions were
updated after each selection. Changing elements of the GUI could be handled easily due the dynamic
time window approach.

It should be further noted, that for two step spelling interfaces, as the one presented here, letter
by letter selection includes two selection time windows and two gaze shifting phases. It remains to be
tested, if the dictionary support is as beneficial for multi target systems that require only one step to
select a character.

Another addition to the state of the art, is the introduction of a novel trigger free stimulus onset
determination approach. The high accuracies achieved in the study demonstrate that it is not necessary
to send a trigger signal to the amplifier. The same principle can also be adopted to SSVEP systems that
utilize hybrid frequency and phase coding, such as the system used by Nakanishi and colleagues [13].

Furthermore, in addition to the latency of the stimulus presentation, some time elapses between
stimulus presentation of the eye and the occurrence of a VEP. Although not applied here, some
researchers achieved improvements in BCI performance by excluding samples from the beginning of
the data buffer to address the latency of the visual system, e.g., Wittevrongel et al. recommended to
exclude the first 150 ms of the trials from the decoding for the c-VEP paradigm [5]. Similarly, Jia and
colleagues [21] found SSVEP latencies of different stimulus frequencies to be around 130 ms.

As evident from the off-line classification, see Figure 5, the classifier produced accurate labels
before a full stimulation cycle was completed. As expected, the accuracy increased when larger
time windows were used. However, it can be seen, that for the ensemble-based approach, a time
window as low as 0.35 s yielded accuracies around 90% for the majority of participants. In general,
the ensemble-based approach, utilizing individual templates for each target demonstrated superior
off-line performance.

This can also be observed in on-line spelling: In our previous study [15], we used the conventional
approach for copy spelling tasks utilizing the same interface. Participants completed sentences with a
mean ITR of 31.08 bpm. Here, the mean ITR was roughly twice as high (57.8 bpm).

A downside of the approach utilized is the prolonged training duration. Performance typically
increases when longer training sessions are conducted. Here, we averaged the data over six trials
for the ensemble approach. As eight targets where used, the same data yielded 48 trials with the
conventional approach.

As investigated by Nagel and colleagues [4], target latency is dependent on the vertical position
on the screen; the conventional approach can therefore benefit from a correction of these latencies. It
should also be noted, that some c-VEP-BCIs have additional flickering objects around the selectable
targets (principal of equivalent neighbors, see e.g., [6]). This strategy has not been applied here, and
could lead to additional differences between outer and inner targets.

Furthermore, it must be noted, that higher ITRs can be achieved utilizing the c-VEP paradigm.
Spüler et al. [6] achieved 144 bpm and an average of 21.3 error-free letters per minute in on-line spelling
tasks; the authors utilized a 32 target c-VEP system with fixed classification time windows of 1.05 s.
However, thanks to the dictionary integration, the average number of error-free characters achieved in
the presented study (i.e., 18.4 characters/min) was quite similar, albeit using only eight targets.

The dynamic sliding window mechanism as well as the implementation of software-based
stimulus synchronization utilized in this study add to a growing body of literature on c-VEP based
BCIs. In a future study, we will adopt the methods described here to a multi-target interface. Typically,
32 targets are used to maximize ITR [6,7]. VEP-based BCIs are often compared with eye tracking
interfaces, as both require control eye gaze. The responsiveness of the here presented system was
promising; hence c-VEP paradigm could be hybridized e.g., with eye tracking technology as described
in our previous publication [12].
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