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Abstract: The process of image retrieval presents an interesting tool for different domains related
to computer vision such as multimedia retrieval, pattern recognition, medical imaging, video
surveillance and movements analysis. Visual characteristics of images such as color, texture and shape
are used to identify the content of images. However, the retrieving process becomes very challenging
due to the hard management of large databases in terms of storage, computation complexity, temporal
performance and similarity representation. In this paper, we propose a cloud-based platform in which
we integrate several features extraction algorithms used for content-based image retrieval (CBIR)
systems. Moreover, we propose an efficient combination of SIFT and SURF descriptors that allowed
to extract and match image features and hence improve the process of image retrieval. The proposed
algorithms have been implemented on the CPU and also adapted to fully exploit the power of GPUs.
Our platform is presented with a responsive web solution that offers for users the possibility to
exploit, test and evaluate image retrieval methods. The platform offers to users a simple-to-use access
for different algorithms such as SIFT, SURF descriptors without the need to setup the environment
or install anything while spending minimal efforts on preprocessing and configuring. On the other
hand, our cloud-based CPU and GPU implementations are scalable, which means that they can be
used even with large database of multimedia documents. The obtained results showed: 1. Precision
improvement in terms of recall and precision; 2. Performance improvement in terms of computation
time as a result of exploiting GPUs in parallel; 3. Reduction of energy consumption.
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1. Introduction

Multimedia content-based retrieval in large databases is an active topic in various research
communities such as video surveillance, 3D models analysis, plant leaf retrieval [1], computer aided
diagnosis (CAD) and pattern recognition. Indeed, large databases of multimedia data (2D images,
videos, 3D objects) became more and more available recently. However, when the dataset size
gets very large, the retrieving process becomes very challenging due to the hard management of
storage, computation speed and similarity representation. In the literature, several methods and
algorithms can be applied for content-based image retrieval systems such as invariant features (SIFT [2]
and SURF [3]), points of interest, contours and mean projection transform. These algorithms can
also be applied for content-based image retrieval (CBIR), content-based video retrieval (CBVR),
and content-based storage retrieval (CBSR). In the same way, similarity measurements can be
used for this kind of systems. In order to accelerate the retrieval process and achieve large-scale
retrieval, various content-based methods and approaches have been proposed in the literature [4].
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The latter exploit the high-performance computing of different processors such as multi-core, GPU,
and multi-GPU, etc. Despite the high efficiency of these solutions, the problem is that most of them
are partial and do not cover the whole retrieving process. In this context, several computer vision
algorithms and applications tend to benefit from the high computing power of multi-CPU or/and
multi-GPU platforms by the development of parallel solutions. Notice that image and video processing
algorithms, and more particularly SIFT and SURF [3] descriptors are well adapted for parallelization
within multi-CPU or/and multi-GPU platforms since they consist mainly of a common computation
over many pixels [5,6]. Several parallel solutions that exploit the above-mentioned hardware have
been developed recently. Although they offer a great potential of processors (multi-CPU or/and
multi-GPU, cluster, grid, etc.), the use, configuration and exploitation of these solutions in not so easy.
Indeed, users must have the required hardware and need to download, install and configure the
related CPU or/and GPU libraries.

Therefore, we propose a cloud-based platform that groups and integrates image and video
processing algorithms, which are exploited and combined for providing an efficient method of image
indexation and retrieval. The proposed combination of descriptors is well adapted for dimensionality
reduction, where the selection of the most significant values of descriptors (using PCA method)
allowed to reduce the research time with the maintain of precision [7]. As a result, our method is well
suited for large scale image retrieval.

For the platform, each connected guest or user (to our platform) can select the required
application, load its data and retrieve results with an environment similar to desktop either if the
required application exploits parallel (GPU) or heterogeneous (multi-CPU/multi-GPU) platforms.
Our cloud-based image retrieval method can be executed in real time and in a secure way. The related
libraries and hardware drivers are automatically integrated and configured in order to offer to users
an access to the different algorithms without the need to download, install and configure software and
hardware. Moreover, the platform offers the access to the integrated application from multiple users
thanks to the use of docker [8] containers and images.

The remainder of the paper is organized as follows: Section 2 presents the related works.
In Section 3, we present our GPU-based and hybrid method of image retrieval that combines SIFT and
SURF descriptors. Section 4 describes our related cloud-based solution for image retrieval. In Section 5,
experimental results are presented and discussed. Finally, conclusions and future works are discussed
in the last Section.

2. Related Work

In literature, we can cite several works related to the domain of cloud-based image retrieval.
These works can be presented within two subsections: (1) content-based image retrieval systems.
(2) Cloud-based computer vision platforms.

2.1. Content-Based Image Retrieval Systems

In this paper we are focused on content-based image retrieval (CBIR) systems, which can be
exploited for 3D objects and videos research and indexation since both of them (videos and 3D objects)
are composed from 2D images [9]. Theses retrieval systems are generally based on the same operating
philosophy that, given a query document, retrieve similar documents in the database. The process of
retrieval is performed in two essentials phases: indexing phase and matching phase.

• Indexing phase: this phase consists of designing an efficient canonical characterization of the
multimedia document. This characterization is referred to as a descriptor or a signature, it serves as
a key in the search process. The principal step of this phase is the features extracting. The indexing
phase is the principal problematic of content-based image retrieval that scientific committee is
working on. Indeed, designing an efficient canonical characterization of a given multimedia
document still remains a major challenge, it is a critical kernel with a strong influence on the
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retrieval performances (i.e., computational efficiency and relevance of the results). The bulk of
that challenge lies in the step of features extracting, which is the principal step of the indexing
phase. In order to design an efficient method of features extraction, several algorithms have
been proposed in the literature, [2,3,10]. Otherwise, several solutions are proposed for feature
extraction using deep neural networks that consist of learning from annotated data before
applying inference within the generated model [11,12]. Notice that the deep learning approach
provides high precision due to the generation of very large sets of features but it requires high
intensive computation and already annotated data. In this context, some GPU implementations
are proposed in [13,14].

• Matching phase: this phase consists of comparing the descriptor of the query with the descriptor
of each multimedia document in the database. This comparison is performed using a dissimilarity
measure, that computes the distances between pairs of descriptors. The existing Multimedia
content-based retrieval methods use different well known dissimilarity measurements like,
K-nearest neighbor (KNN), Euclidean L2, Minkowski, KLD, etc. The reader can refer to the
survey of [15] to get more details about these similarity measures. Authors in [16] proposed a
content-based synthetic aperture radar (SAR) image retrieval approach for searching SAR image
patches. This method is based on a similarity measure named region-based fuzzy matching
(RFM) and relevance feedback for improving precision. Otherwise, one can find methods
that use 3D specific measurements like the CM-BOF method [17], used for 3D shape retrieval.
The latter is based on a measurement function called clock matching. In order to accelerate the
matching process, several techniques based on distributed computing have been proposed in [18].
These solutions use CPUs only, while others implementations are implemented in parallel with
GPU platforms [19,20]. Authors in [21] proposed a shape retrieval method using distributed
databases that allowed to increase result precision.

2.2. Cloud-Based Computer Vision Platforms

Recent development of computer vision platforms have been significantly influenced by the
emergence of a growing number and accessible cloud computing platforms hosted by large-scale
IT-companies (AWS, GCP, Azure). They enabled the development of a variety of cloud interfaces,
which makes abstraction on the complexity behind computer vision application. The latter use a
specific workflow for cloud architectures [22], which gives access to a high computing power without
the need of a low-level software programming or any hardware adaptation.

CloudCV [23] is an example of a cloud-based and distributed computer vision platform composed
of three parts; an AI-as-a-service platform that enables researchers to easily convert their deep learning
models to web service and call them by a simple API, a drag and drop collaborative platform for
building models, an evaluation server for comparing different AI and computer vision algorithms
(for example for challenges). CloudCV provides access to two API (Python and Matlab), and englobes
multiple modern components for its backend architecture such as OpenCV, Caffe, Turi (GraphLab).

The image processing on line (IPOL) [24] platform provides image processing algorithms and
descriptions, source code and a handy web interface to check results from new input images.
This initiative intended to promote reproducible research related to image processing. Other cloud
commercial applications such as Face API (by Microsoft Azure), Amazon Rekognition, Watson Visual
Recognition (by IBM) or Clarifai, deliver APIs, which focus on specific computer vision tasks for image
and video understanding.

On the other hand, with the exponential growth of image data, solving big data challenges
becomes an important task managed on the cloud. Yan et al. [25] proposed a cloud architecture
dedicated to large scale image processing based on Hadoop. They evaluated the performance of the
platform using different image processing algorithms. They reported some issues with data distribution
and cluster resource related to the use of Hadoop. Recently, we developed real time web-based toolbox
for computer vision [26,27] that integrates several classic image processing algorithms.



Computers 2019, 8, 48 4 of 12

In terms of security, authors in [28] explained that the best way to communicate between machines
(or containers) is the use of secured protocols such as FTP [29], SSH [30], SFTP [31] and SCP. In [32],
authors demonstrated that the protocol HTTPS actually presents the best solution for a web server,
since it combines between HTTP protocol and an encrypted connection (ensured by the transport
layer security, or its predecessor, secure sockets layer). In our case, we have chosen the famous
protocol HTTPS for our web server, and SFTP protocol to ensure secure transfer of data within our
platform. Notice that SFTP is provided with SSH protocol that allows to execute commands and run
the applications. Our contribution can be summarized with three points:

1. The development of an efficient method of content based image retrieval that combines the
descriptors of SIFT and SURF;

2. A portable GPU implementation that allows to accelerate the process of indexation and research
within multimedia databases. This implementation allows to exploit both NIVIDIA and
AMD/ATI cards;

3. Cloud-based implementation that allows an easier exploitation of our GPU-based method without
the need to download, install and configure software and hardware. The platform handles multi
user connection based on docker container orchestration architecture.

3. GPU-Based Hybrid Multimedia Retrieval

3.1. Sequential Solution

Before presenting the GPU-based implementation, we start by describing the main steps of our
algorithm of image indexation and matching. The latter can be summarized within three main steps
(Figure 1): pre-processing, indexation and research.

Figure 1. The process of image indexation and matching.

1. Pre-processing

The methods of image retrieval and indexation are mainly based on features extraction algorithms
that allow to detect the main key points of images. In order to improve this process, we apply
a pre-processing step that allows to reduce noise and consequently the number of key points.
For this aim, we have tested several image filters such as median, bilateral and Gaussian filters.
In our case, the Gaussian filter provided the best results for reducing the number of key points.
This reduction allowed to reduce the computation time of the next steps (features extraction).
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2. Indexation

This step was performed offline and is so time-consuming since it is applied on the entire database.
After the pre-processing step, we apply the feature extraction within SIFT and SURF descriptors.
Indeed, we started by computing SIFT features for each image from the dataset, the result is
represented by a matrix of (n × m) lines and 128 columns. Notice that n and m represent the
weight and height of image. Secondly, we applied the same process using SURF descriptor,
which requires less execution time but provides less precise results. The result of the SURF
descriptor was represented by a matrix of (n × m) lines and 64 columns. Once the steps of
SIFT and SURF were completed, we can combine their results (two matrices) with one matrix
only. Since the two descriptors (SIFT and SURF) present a different number of columns, we
have increased (using zero values) the size of SURF descriptor to 128 values in order to be
compatible with the size of SIFT descriptor. Finally, we got one matrix with 2 × (n × m) lines
and 128 columns. The latter was used for indexing the image database. As a result, we obtain
three folders: SIFT, SURF and SIFT + SURF descriptors. This step was performed offline and
was so consuming in time since it was applied on the entire database. After the pre-processing
step, we applied the feature extraction within SIFT and SURF descriptors. Indeed, we started by
computing SIFT features for each image from the dataset, the result is represented by a matrix of
(n × m) lines and 128 columns. Notice that n and m represent the weight and height of image.
Secondly, we applied the same process using SURF descriptor, which requires less execution
time but provides less precise results. The result of SURF descriptor is represented by a matrix of
(n × m) lines and 64 columns. Once the steps of SIFT and SURF were completed, we can combine
their results (two matrices) with one matrix only. Since the two descriptors (SIFT and SURF)
present a different number of columns, we have increased (using zero values) the size of SURF
descriptor to 128 values in order to be compatible with the size of SIFT descriptor. Finally, we
got one matrix with 2 × (n × m) lines and 128 columns. The latter is used for indexing image
database. As a result, we obtained three folders: SIFT, SURF and SIFT + SURF descriptors.

3. Research

Unlike the previous step, this phase was performed online where the user can provide its query
image and choose the preferred algorithm for features extraction (SIFT, SURF or both). Once the
user choice was provided, the query image was smoothed (pre-processed) within a Gaussian filter
and characterized within the previously selected algorithm. The next step consisted of comparing
the query image features with those of image database. The comparison was performed within
two similarity matching methods: Flann based matcher and Brute force matcher [7]. Our selection
of these two methods was due to their efficiency and fast execution, which is so important in
our case.

The final result of a similarity measurement was a normalized value, ranged between 0 and 1.
The value of 0 represented complete similarity and the value of 1 represented complete dissimilarity.
An algorithm of KNN [33] was used to retrieve the similar images. In our cases we showed the top
50 images similar to the query image.

3.2. Parallel Solution

Despite the high accuracy of the above-mentioned method, its computing time is so significant,
which makes our method not adapted for image indexation and retrieval within large databases.
The high computing time is due to:

• Several image processing algorithms applied for each image within the indexation phase.
• The use of high definition images that require more time for features extraction.
• The high computational intensity of features extraction and distance computation steps.
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These steps have been identified within a profiling algorithm that measured the computation time
and memory space of each step of our algorithm. The profiling result is approved by the application of
our complexity estimation equation defined in [34,35].

To overcome this constraint, we developed a GPU-based portable implementation that can exploit
both NVIDIA and ATI GPUs. For a better exploitation of GPUs, we ported the whole process of image
indexation and retrieval on GPU, by implementing (in parallel) all the steps on GPU: pre-processing,
SIFT and SURF descriptors and distance computation. This allowed us to accelerate the process of
computation and reduce the data transfer times since there is no need to transfer intermediate data
from CPU to GPU memory.

3.2.1. CUDA Implementation

The API CUDA is used for exploiting NVIDIA cards for image indexation and retrieval method.
Our CUDA implementation is summarized by two steps:

1. CUDA-based image indexation: we used the GPU module of OpenCV library (OpenCV GPU
Module, https://docs.opencv.org/2.4/modules/gpu/doc/introduction.html) for implementing
the functions of pre-processing and SURF descriptor. The CUDA implementation of SIFT
descriptor is provided from [36]. These GPU functions consist of applying the operations of
features extraction in parallel using the same number of CUDA threads as the number of image
pixels. With this, each CUDA thread can apply its treatment on one pixel value and all the CUDA
threads are launched in parallel. Since the indexation phase requires the transfer of all images
(database), we use the CUDA streaming technique in order to overlap image data transfers by
CUDA functions execution.

2. CUDA-based image matching: the query image is also analyzed within the above-mentioned
CUDA functions (pre-processing, SIFT and SURF descriptors). In addition to these functions,
this step requires the computation of distance between the query image features and the database
features. This distance, computed within FLANN-based matcher and Brute force matcher, is also
implemented using the GPU module of OpenCV library.

3.2.2. OpenCL Implementation

The OpenCL framework is used for exploiting ATI/AMD graphic cards for our image indexation
and retrieval method. Our OpenCL implementation is also summarized by two steps:

1. OpenCL-based image indexation: we used the OpenCL module of OpenCV library (OCL
module, https://docs.opencv.org/2.4/modules/ocl/doc/introduction.html) for implementing
the functions of pre-processing and SURF descriptor. The OpenCL based implementation of
SIFT descriptor is provided from [37]. This implementation is so similar to the corresponding
CUDA version. The main difference between CUDA and OpenCL methods is that with OpenCL,
we have to create a context in order to specify the device. In this way, the same code can be used
for programming either CPU or GPU. Notice that in this case, we do not overlap data transfers
by execution since the streaming option is not provided in OpenCL.

2. OpenCL-based image retrieval: this step is also implemented using the OpenCL module of
OpenCV library for extracting features (pre-processing, SIFT and SURF descriptors) of the query
image. The distance is ported on OpenCL using the Brute force matcher.

The above-mentioned CUDA and OpenCL implementations are used to provide a portable
GPU-based method of image retrieval and indexation. Indeed, the program starts by detecting the type
of available GPU. In case of NVIDIA cards, CUDA implementations are called. Otherwise, the OpenCL
implementations are called for exploiting ATI graphic cards. In this case, an OpenCL context is created
for specifying the GPU for computation.

https://docs.opencv.org/2.4/modules/gpu/doc/introduction.html
https://docs.opencv.org/2.4/modules/ocl/doc/introduction.html
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4. Cloud-Based Hybrid Multimedia Retrieval

To ensure good performance of our cloud-based application, we have used a virtual machine
(VM) that allows the access to our method of image indexation and research. As shown in
Figure 2, the related web address is: https://www.multimedia-processing.com/mmr.php. Users
are invited to test the application within this address. This application is developed using PHP (PHP,
https://www.php.net/) and Bootstrap (Bootstrap, https://getbootstrap.com/) that allowed to have a
multi-platform website running even on mobile devices (smartphone, tablet, etc.). The access to our
cloud-based application is secured within HTTPS protocol.

Figure 2. (a) Query image and algorithm selection. (b) Cloud-based multimedia retrieval result (top 6).

Otherwise, we used the docker framework in order to provide a multi-user exploitation where
different users can run the same application simultaneously (Figure 3). Docker framework allows
to deploy the applications without the need to install operating systems. Notice that docker is an
open source platform released in 2013 and used for the creation, deployment and management of
applications. Docker is mainly based on images and containers where images allow us to define the
precise software packages (applications, libraries, configurations, etc.). Images can be also created
by combining or modifying other standard images downloaded from public repositories. On the
other hand, containers present instances of images that can be executed from each user (one user can
execute one container). Docker containers are isolated and are run on single operating systems which
makes them so lightweight than virtual machines. To summarize, docker containers present an open
source software platform of development. Its main advantage is the ability to package applications in
containers, which allows them to be portable among any system running the Linux operating system
(OS). With docker, we generated and configured an image including the operating system (Ubuntu) and
the required library (OpenCV) for image feature extraction. This image is called “basic-docker-image”
in our case. Then, we generated a second image “nvidia-docker” that allows to exploit NVIDIA
GPUs within the GPU module of OpenCV and CUDA. Finally, we have generated a third image
“opencl-docker” that allows us to exploit ATI/AMD GPUs within the OpenCL module of OpenCV and
OpenCL. The process of exploiting our cloud application is summarized within four steps:

https://www.multimedia-processing.com/
https://www.php.net/
https://getbootstrap.com/
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• Web selection: the user selects the application of image retrieval within the platform.
• Input parameters uploading: the user provides the input parameters (the query image, the type

of algorithm and preferred hardware) that will be sent to the web server.
• Cloud-based execution: at this moment, the cloud platform generates the related docker container

(basic, nividia or opencl) with all the parameters in order to execute the application. Notice that
in case we have many users, the platform creates a container for each user.

• Results presentation: at the end of the process of research, all the containers will be removed by
the cloud platform and show the results to the user. Figure 4 illustrates the general architecture of
our cloud platform.

Figure 3. Multi-user execution.

Figure 4. The cloud-based platform.
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5. Experimental Results

The tests were run on the following local hardware:

• CPU: Intel Core (TM) i5, 2520M CPU@ 2.50 GHz, RAM: 4 GB;
• GPU NVIDIA: GeForce GTX 580, RAM: 1.5 GB, 512 CUDA cores.

The cloud-based implementation was executed using two virtual machines provided from the
Google cloud platform:

• CPU: Intel(R) Xeon(R) CPU E5-2650L v4 @ 1.70 GHz, RAM: 1 GB
• GPU: 4 GPU Nvidia GTX 980, RAM: 4 GB

Experimentations have been conducted using three image databases:

1. Wang databse (Wang database, http://wang.ist.psu.edu/docs/related/): 10,000 low resolution
images of size 128 × 85 classed in 100 categories, where each class contains 100 images;

2. Corel-10k database (Corel-10k database, http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx):
10,000 images of size 192 × 128, classed in 100 categories, where each class contains 100 images;

3. GHIM-10k database (GHIM-10k database, http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx):
10,000 images of size 300 × 400, classed in 20 classes where each category contains 500 images.

In terms of accuracy, the proposed method of image indexation and research provided an accurate
result. As shown in Figure 5, our method outperformed the state of the art algorithms, within the three
databases, in terms of recall and precision (R/P) when selecting the most similar 50 images (top 50).
This high accuracy was due to the combination of SIFT and SURF descriptors that allowed to detect
more features. Moreover, the pre-processing step allowed to improve the quality of detected features.
We note more accurate results with the Wang database since it presents low resolution images. We plan
in the future to improve the obtained accuracy by combining these features with deep learning features.

Otherwise, our CUDA and OpenCL implementations allowed us to provide an accelerated method
which can exploit both NVIDIA and ATI graphic cards. This acceleration allowed us to reduce both
indexation and research phases, as shown in Table 1. Notice that the use of GPU offered low acceleration
in case of processing low resolution videos. This was due to the weak exploitation of graphic processing
units. Indeed, GPUs were more adapted for massively parallel applications. We note also that
CUDA offered better performance than OpenCL since CUDA presented the most performant GPU
programming language. Moreover, unlike CUDA, OpenCL did not offer the possibility to overlap
data transfers by kernels executions. Notice that the OpenCL performance were obtained using a GPU
NVIDIA. This allowed us to obtain a fair comparison of performance. Our OpenCL implementation
was developed in order to offer a portable solution for image indexation and research.

Finally, the cloud-based implementation offered the same accuracy since the same algorithm
is applied on a cloud platform. The performance was slightly reduced, which was due to the
transfer times between local and cloud machines. Notice that GPU version (in cloud) provides
also better performance than CPU and mainly when using CUDA. This cloud version allowed us to
provide a solution for users without the need to download, install and configure the related hardware
and software.

Table 1. GPU performances and acceleration of image retrieval steps (image of 1920 × 1080 pixels).

Algorithm 2 CPU
GPU (CUDA) GPU (OpenCL)

Time Acc (x) Time Acc (x)

Pre-processing 0.24 s 0.002 s 120× 0.003 s 80×
SURF descriptor 0.54 s 0.120 s 4.50× 0.15 s 3.60×
SIFT descriptor 0.69 s 0.130 s 5.31× 0.16 s 4.31×

http://wang.ist.psu.edu/docs/related/
http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx
http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx
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(a) Recall/precision of SURF algorithm.

(b) Recall/precision of SIFT algorithm.

(c) Recall/precision of SIFT + SURF algorithms.

Figure 5. Recall/Precision of SIFT and SURF algorithms for the top 50.

6. Conclusions

In this paper, we have presented a cloud-based application of image indexation and matching
that allows to exploit both nvidia and ATI graphic cards. The proposed application offers three
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main benefits: (1) efficient image retrieval thanks to the combination of SIFT and SURF descriptors;
(2) simple, easy and multi-user exploitation within the cloud platform; (3) fast execution as a result
of the parallel implementation exploiting nividia and ATI graphic cards. Experimental results
demonstrated the efficiency of our solution in terms of recall/precision, computation time and
multi-user exploitation. As future works, we plan to exploit deep learning methods in order to
improve that quality of training, indexation and matching. We plan also to apply the same process for
content-based video retrieval.
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