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Abstract: Petri net is a highly useful tool for modeling of discrete-event systems. However, Petri net
models of real-life systems are enormous, and their state-spaces are usually of infinite size.
Thus, performing analysis on the model becomes difficult. Hence, slicing of Petri Net is suggested
to reduce the size of the Petri nets. However, the existing slicing algorithms are ineffective for
real-world systems. Therefore, there is a need for alternative methodologies for slicing that are
effective for Petri net models of large real-life systems. This paper proposes a new Modular Petri
Net as a solution. In modular Petri net, large Petri net models are decomposed into modules.
These modules are compact, and the state spaces of these modules are also compact enough to be
exhaustively analyzed. The research contributions of this paper are the following: Firstly, an exhaustive
literature study is done on Modular Petri Nets. Secondly, from the conclusions drawn from
the literature study, a new Petri net is proposed that supports module composition with clearly
defined syntax. Thirdly, the new Petri net is implemented in the software GPenSIM, which is crucial
so that real-life discrete-event systems could be modeled, analyzed, and performance-optimized
with GPenSIM.

Keywords: Modular Petri Net; discrete-event simulation; GPenSIM

1. Introduction

Petri nets have been used for modeling, simulation, performance analysis, and control of
discrete-event systems. The wide acceptance of Petri nets is due to its well-known properties such
as graphical (visual) representation that closely resemble real-life objects and formal & well-defined
semantics [1–3]. Petri net has a strong yet simple mathematical background which is limited to linear
algebraic techniques and graph theorems. The background mathematics enable thorough system
analysis (such as state-space analysis, performance bottlenecks, and deadlock avoidance) [4]. A large
number of Petri net software tools are also available, some of them for specific purposes and some
for general simulations (e.g., CPN and GPenSIM) [5,6]. There are several Petri net extensions also
in use. Some of these extensions increase the modeling power while preserving its analytical power
(e.g., Colored Petri Nets). While some other extensions make a trade-off (e.g., state machines and
marked graphs increase the analytical power while slightly reducing the model power) [7]. This paper
is on modular Petri nets, for partitioning Petri net models into modules for ease of model building and
ease of analysis.

In this paper: Section 2 presents a thorough literature review on modular Petri nets. Section 3
explores the topic of independent module development. The ideas gathered from the first two sections
are used in Sections 4 and 5 for the design of modular Petri nets. Section 6 specifies the new Modular
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Petri nets, and the formal definitions are given in Section 7. Section 8 presents an application example.
Finally, Section 9 is for discussion.

2. Literature Review on Modular Petri Nets

The classic Petri net (aka P/T Petri net) does not provide any support for modularization. Modular
model building with Petri nets has a short history, starting with works in the late 1990s. This
section presents a literature review on this topic. The conclusions drawn from the literature study is
summarized at the end of this section. These conclusions are the basis for the new design of Petri Net
modules presented in this paper.

2.1. The Problem with Petri Net Models

There are some problems associated with modeling real-life discrete-event systems with Petri nets:

• Petri net models of real-life systems are huge: Even for simple systems, the Petri net models of
these are not small or compact [8].

• Slowness in simulation: During simulations, the tokens in a Petri net have to go through every
transition and place on their path. Also, the transitions have to be checked for their enabledness
and the other firing conditions from the environment. This makes the simulations run slowly.
Also, the enormous sizes of Petri nets contribute to slowness in simulation.

• Difficulty in analyzing the model: Again, due to the huge size of the model, analyzing the model
for its structural and behavioral properties become a time-consuming task.

• “State Explosion”: The most important and useful property of Petri nets is their explicit state space.
The state space is automatically generated, showing every possible state that can be eventually
reached from an initial state. However, for real-life systems, the state space is huge if not of
infinite size. Drawing any conclusions (e.g., model checking) from the huge or infinite state space
is often difficult if it is possible at all [9–11].

Literature study provides some slicing algorithms to reduce the size of Petri nets as well as the
state space. However, these slicing algorithms though works on small hypothetical example, have
little or no effect on real-life discrete-event systems [12].

2.2. Literature Review on Modular Petri Nets

In the following subsections, a thorough literature study is done to find whether modules and
modular Petri nets can become a solution to the problems listed above.

2.2.1. First-Generation Works: Ease of Modeling

Refs. [13,14] provide, already in the 1990s, a powerful technique for compression of Petri net
modules. According to the reduction theorem by [13,14] , if a module is an event graph, and it has
transitions as input and output ports, then the module can be compressed into a much smaller module.
Refs. [13,14] prove that an event graph that possesses only transitions as input and output ports,
then it can be represented by a compact module in which the all internal transitions are removed, and
also some internal places are removed. Hence, the whole model becomes modules that are compact
and connected together by a few buffering places (since the input and output ports are transitions, the
connection between the modules must be places). Also, by the reduction theorem, the liveness and
boundedness properties of the original modules are preserved.

Ref. [15] is one of the early works on modular Petri nets. Ref. [15] is concerned about a particular
environment, which is the modeling and simulation of interfacing techniques in circuit boards. The
paper proposed interfacing at every module-level rather than keeping interfacing techniques in one
specific module, which was the norm at that time. The paper state that keeping all the interfacing in
one module makes communication between the modules unnecessarily complicated. This paper also
proposed designing modules with two-level, the lower-level is for transmission and synchronization
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of signals, and the higher-level for communication of messages, resulting in a new communicating
Petri net model.

Refs. [16,17] introduced “Object-oriented Petri Nets”, to reap the benefits of object-oriented
programming also in the modeling of discrete-event systems. These works proposed an object-oriented
model building approach in which the generic Petri net modules are declared as classes. Then, from the
classes, the specific instances of modules are developed for modeling specific problems.

Ref. [18] proposed a dual approach for dealing with modular systems. This paper proposed
a strategy for identifying specific users and modules that only capture the logic interested to those
particular users. In other words, the proposal was for a partition of a large model into separate modules
that consist of model logic that will be of interest to those in specific interest areas.

Ref. [19] took flexible manufacturing systems as systems with specific subsystems (called subnets).
The subnets are identified as transportation of raw material & resources, machining subnets, and
finishing subnets.

The contributions of the first generation works are summarized in Table 1.

Table 1. First-generation works on ease of modeling.

Work Topics

Savi & Xie (1992) [13] and Claver et al. (1991) [14] Module compression.
De & Lin (1994) [15] Clear-cut interfacing.
Wang (1996) [16] and Wang & Wu (1998) [17] Object-oriented Petri Nets.

Lee et al. (1998) [18] Decomposing a Petri net into
modules based on functionality.

Xue et al. (1998) [19] Flexible manufacturing systems as
systems with specific subsystems.

2.2.2. Second-Generation Works: Analysis

The first-generation works given in the previous sub-section are on reaping the benefits of the
modular model building also with Petri nets. The second-generation works focused on easing the
analysis of huge and complex Petri nets.

Ref. [20] presented a modularization of Petri nets using fusion places and fusion transitions.
Fusion places and fusion transitions are special types of places and transitions, respectively.
These places and transitions are only to partition a Petri net model into modules and analyze them
individually, due to the firings of the local (members of the module) transitions. For example, the state
spaces of the individual modules can be obtained by the firing of the local transitions, starting with the
initial markings on the local places. Then, from the individual state spaces, the overall state space of
the model can be obtained by putting together the individual state spaces along with the additional
state spaces (known as the “synchronization graph”). Synchronization graph connects the individual
state spaces by the firing of the fusion transitions. The novelty of Ref. [20] is that the authors prove
that the modularization preserves the main properties of the model (e.g., the place invariants) while
removing the need for generating the overall state space which usually suffers state explosion. Ref. [20]
also prove that the state space built by the modular approach is much smaller than the state space
obtained from the holistic model.

Though fusion places and fusion transitions seem very useful for modular model building, they
are against the fundamental concept behind modularization, namely “data hiding”; see the discussion
in Section 3.

Ref. [21] focused on reusable generic modules. This work believes that manufacturing systems
consist of specific building blocks such as production line, assembly, disassembly, and parallel
machining elements. Once these blocks are developed as generic modules, then by customizing
these blocks to suit any specific needs, a model of the system could be built and analyzed.
Thus, Ref. [21] reinforce the classical benefits of modularization such as speed and easiness of
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modeling, and easy adjustment to suit specific needs, as well as analysis. The authors earlier works,
such as Ref. [22] also focused on customizing generic modules with fuzzy logic to confront uncertainty
in the modeling process.

Ref. [23] proposed “reconfigurable modules” to tackle uncertainties associated with models.
This work states that reconfigurable modules support model development, design variations, and
cooperative model development. By reconfiguration, this work classifies the uncertainties into two
groups variations and ambiguity. Variation in a process means, for example, an operation may take
two to three minutes. Ambiguity in a process means, for example, the operation may happen or not
depending on certain conditions. Ref. [23] used stochastic modules for tackling variations and fuzzy
logic for ambiguity, resulting in a new type of Petri net called a Fuzzy Colored Petri Net with Stochastic
time delay (FCPN-std).

Ref. [24] discusses the managerial implications of modularization. This work discusses some
issues in modularization, such as the use of “blocks“ (modules) for easing the design process and the
possibility of reusing the blocks. Also discussed is the issue of redesigning the model by trying out
different combinations of modular blocks.

The contributions of the second generation works are summarized in Table 2.

Table 2. Second-generation works on analysis of modular Petri Nets.

Work Topics

Christensen & Petrucci (2000) [20] State space analysis.
Tsinarakis et al. (2005) [21];
Tsourveloudis et al. (2000) [22] Reusable module for ease of analysis.

Lee & Banerjee (2009) [23] Reconfigurable modules to tackle uncertainties
associated with models.

Latorre-Biel et al. (2017) [24] Managerial implications of modularization.

2.2.3. Third-Generation Works: Applications & Tools

Ref. [25] presents a tool known as “Exhost-PIPE,” for modular timed and colored Petri nets.
With the tool, the work shows how a multi-agent environment (e.g., a swarm robot or an aircraft crew)
can be modeled and simulated. Ref. [26] presents a modular Petri net model for modeling and
simulation of molecular networks. In this work, proteins are represented as Petri net modules.
Each module has an interface to access publicly available information about the intra-molecular
changes; thus, the modules can update themselves independently. This work presents the design of
the interface, the formalized language for modular communication, and the Petri Net model of the
molecular network.

A modular Petri net model of the “Spanish National Health System” is described in [27,28].
Refs. [27,28] show the largeness and complexity of the Spanish Health System. These works show
that without a modular approach, it would not be able to model and analyze such a large and
complex system. In the modular model, each module is independently modeled, keeping the
state-machine Petri net as the backbone for modeling the medical protocols. The modules can load the
medical resources themselves. Ref. [29] presents a modular p-timed (timing associated with places)
Petri net model for analyzing traffic signal control of a network of intersections. This work also shows
a light-weight approach for model checking with linear time logic (LTL) based specifications.

Ref. [30] tries to model non-linear process planning (NLPP) in manufacturing systems with
a modular Petri net known as Object Observable Petri Net (OOPN). The approach presented in
this paper uses three steps. In the first step, the system resources are grouped into two groups:
(1) processing resources (e.g., machine tools); and (2) part-flow resources (e.g., conveyor belts
and buffers). It is an assumption in the approach that any machining activity uses at least one system
resources. In the second step, the model is divided into modules, each module composed of resources
with limited capacity. In the final step, each module is converted into a resource operation template
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(a Petri net module) adhering to the resource constraints. Ref. [30] uses transitions as the input and
output ports for communication between the modules, and thus the communication of a module with
the outside world is streamlined through the input and output ports. Though the approach presented
in this work is straightforward, and the resulting modules are simple and elegant, the overall model
becomes huge. It is also not clear whether a tool (software) is available that can automatically perform
the steps involved, or even development of such as a tool is feasible. Without a software tool, it will
be impossible to model, even the simplest manufacturing system, with the approach proposed in
this paper.

Ref. [31] shows a modular Petri net based approach for detection and elimination of redundancy
in virtual enterprises. In the modular Petri net, each module represents one participating enterprise.
The participating enterprises on the upstream are raw-material suppliers, part-suppliers, and
transporting agents. On the downstream, distributors and sales agents are the participating enterprises.
It is noteworthy that all these Petri net modules are event graphs. An event graph is a P/T Petri net in
which each place has precisely one input transition and one output transition. Also, the interfaces of
the modules are input and output ports that are transitions.

The approach by [31] is elegant as it introduces a clear-cut input and output ports that
are transitions. The approach also proposes the use of colored Petri nets. Otherwise, it will be
impossible to route a token from a buffering place to the correct module should more than one module
is output to that buffering place. Also, forcing all the modules to be devised as event graphs can put a
lot of strain on the modeler. This is because “the choice“ cannot be modeled in an event graph, and a
place gathering tokens from different transitions is also not possible.

Ref. [32] presents a framework for performance evaluation of the intermodal transportation
chain in Freight Transport Terminals. The framework is based on a modular timed Petri Nets.
In this timed Petri net, places represent resources, capacities and conditions, whereas transitions
represent activities such as inputs and flows into the terminal. Finally, tokens represent intermodal
transport units. This work uses Generalized Mutual Exclusion Constraints (GMECs, [33]) for realizing
the control elements, and the software HYPEN [34] for simulation. Ref. [35] models and analyzes
Web service composition. The reason for the analysis is to guarantee the timely completion of the
web service. Hence, temporal constraints are emphasized in this work. The problem of state-space
explosion is also addressed in this work, albeit not in a transparent manner. This work claims that
the model is modular by showing some modules. However, the issue of modularity is not discussed
in detail.

The contributions of the third generation works are summarized in Table 3.

Table 3. Third-generation works on tools and application of modular Petri nets.

Work Topics

Bonnet-Torres et al. (2006) [25] Tool: Exhost-PIPE Application: Modeling Multi-Agent environment.

Blatke et al. (2011) [26] Tool: Formal language for modular communication Application:
Modeling Molecular Networks.

Mahulea et al. (2012) [27]
Mahulea et al. (2018) [28] Application: Modeling Spanish National Health System.

Du et al. (2013) [35] Application: Web Service Composition
Dotoli et al. (2016) [32] Application: Evaluation of Intermodal Freight Transport Terminals

Dos & Vrancken (2012) [29] Tool: Modular Place-Timed Petri net Application: Traffic signal
control of network of intersections.

Slota et al. (2016) [30]
Tool: Object Observable Petri Net
Application: Modeling non-linear process planning in
manufacturing systems.

Davidrajuh (2013) [31]
Tool: GPenSIM (earlier version)—modules with clear-cut input and
output ports Application: Elimination of redundancy in
virtual enterprises.



Computers 2019, 8, 83 6 of 22

2.2.4. Fourth-Generation Works: Independent Modules for Modeling Smart Manufacturing

In the era of Smart manufacturing and Industry 4.0, manufacturing systems are composed of
interoperable intelligent systems. These intelligent systems are independent and exchange a great
amount of data in real-time with their counterparts that are located in geographically separated areas.
Finally, smart manufacturing happens via the events that are triggered by networked sensors [36–38].

Ref. [39] is a recent work that develops a modular Petri net for modeling “the availability of risks
of IT threats” in Smart Factory Networks (SFN). First, the model is divided into two blocks, one for the
information and control network (IN block), and the other for production network (PN block).

The IN block is hierarchical, consisting of three layers. A server is placed on the top layer, which
is connected to many IT-service nodes in the middle layer. Each of the IT-service nodes is connected
with several machine-control nodes in the bottom layer. These machine-control nodes are the ones
that directly interact with the nodes in the PM block. The IN block is hierarchical in a sense each node
is connected with several nodes in the lower layer (1:n connection). Whereas a node is connected
with only one node in the layer above, forming a tree-like structure. All the nodes in the IN layer
(called information component—IC) are the same, simple, and generic Petri net modules.

The PN block consists of nodes (called production machine components—PM) that are connected
in a way to represent the logical production and flow of manufactured items. The PM components are
also simple and generic Petri net modules. This means, the whole model can be developed with just
two simple Petri net modules: one IC module for the nodes in the IN block, and PM module for nodes
in the PN block.

Perhaps the approach may solve the prescribed problem (namely, “modeling the availability
of risks of IT threats in Smart Factory Networks”). However, the resulting model will be huge.
This is because two types of simple generic Peti net modules are repeatedly used to compose any
eventual functionality. Besides, the approach uses many Petri net extensions such as inhibitor arcs,
reset arcs, and testing arcs. Though the use of these arcs paves a compact module, it prohibits the
use of the readily available techniques and algorithms (e.g., for reachability tree). Unique algorithms
have to be developed for the analysis of models developed by this approach. However, the availability
of such special algorithms and the need for it is not discussed in [39]. The usefulness of this paper
is the introduction of a separate hierarchical block (the IN block) that function as the inter-modular
connector of the modules in the PM block.

2.3. Conclusions Drawn from the Literature Study

The following conclusions can be drawn from the literature study on the works on modular Petri
nets. These conclusions will be used in the latter sections on the design of a new modular Petri Net.

• Advantages of modularizing: Literature study reveals that modularization is to reap the benefits
such as flexibility (ability to add or change functionality), comprehensibility (readability of the
models), reduction in the development time, and robustness (less prone to error).

• On the modularity of systems: Petri net models of real-life discrete-event systems are large
and complex. However, these large and complex systems can be modeled as modular models.

• On the scope of a module: A module can trap a specific type of model logic for particular users.
• On interfacing the modules: Old fashioned monolithic pathways (based on master or supervisor)

interfacing is not appropriate for inter-modular communication. Interfacing must be at
every module level, making the module independently react with the rest of the system and
the environment.

• On the design of modules: Timed P/T Petri Net can serve as the skeleton of the module. Timed
colored Petri nets are for embedding more detailed data on tokens.

• Attacking ambiguities in the model: Some of the ambiguities can be realized as logical conditions,
and can be kept away from the Petri net model (e.g., as logic conditions in processor files).

• On the synchronization of modules [20,30,40–42]:
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– Fusion places: The fusion places are for modeling convenience as they are aliases for a place;
the fusion places are to eliminate arcs crisscrossing the model. If the fusion places are put in
different modules, since they represent the same place, these will be used to synchronize
the modules.

– Substitution transition: A substitution transition is for information hiding; a substitution
transition represents a complete Petri net module consisting of many places and transitions.
Thereby, a substitution transition hides the lower-level details of a module on a higher-level
(overall) model.

– Fusion Transitions: A fusion transition (some times referred to as “shared transition”) is
to allow synchronization of Petri net modules. The shared transitions reside in different
modules, but they represent the same transition. Thus, the shared transitions synchronize
the modules.

– Communication of a module with the outside world must be streamlined through input and
output ports; transitions can be used as ports.

3. Towards the Design of a New Modular Petri Net

Table 4 summarizes the history of research and development on modular Petri nets. It started with
ease of modeling with modules and then advanced to the analysis of large Petri nets with modular nets.
Then, the tools were made available, and some applications began to appear. Finally, the modular
approach is tried for reducing the complexities in cyber-physical systems in Industry 4.0.

Table 4. The literature on Modular Petri Nets.

Generation Topics

First Generation Ease of modeling.
Second Generation Analysis of large Petri Nets.
Third Generation Tools for modeling modular Petri nets, and applications.
Fourth Generation Modules: Modeling large discrete-event systems with modules.

This paper is to design a modular Petri net belonging to the fourth generation, that is capable of:

• Independent development of modules and analysis (to reduce the complexity of development
and analysis of the overall model).

• The modules must be capable of running independently, presumably on different processors
(CPU, to reduce the computation time).

Independent Development of Modules and Analysis

Let us study the modular approach realized with fusion places and fusion transitions in Ref. [20].
To understand how the methodology works, let us consider the example of a resource allocation system
(RAS) given in ref. [20] and also shown in Figure 1.

As the example of fusion places based modular model building, the RAS is remodelled into a
two-modules based modular system shown Figure 2.

In the modular RAS shown in Figure 2, the two modules A and B are synchronized by the
fusion places RX and RY. By the definition of fusion places, the places RX in the different modules
is the same. If any changes happen to a place RX in one module, the other RX in the other module
will be also affected. This kind of sharing of local members of modules between the modules hampers
independent module development.

Let us assume that independent groups develop these two modules. However, due to the sharing
RX and RY, the developers of module A should always be aware of RX and RY in module B, making
the development less independent. The exposure of internal details to the outside world is also against
the concept of “data hiding”, which is an important concept in modularity.
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Figure 1. Resource Allocation System [20].

Modular model development using fusion transition works very similar to fusion places, and the
only difference is that the (fusion) transitions are shared rather than the places. Hence, here too, the
modular model building is prone to internal data exposure, hindering data hiding and independent
model development.

Figure 2. Modularization using fusion places [20].

Can the modules that are shown in Figure 2 be improved to become more “modular,” following
the better practices of module making?
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The subsequent sections present the complete design details of a new modular Petri net. As a
quick introduction, Figure 3 shows a modular version; in this modular model, RAS is composed of
two modules, module-A and module-B, and the Inter-Modular Connector (IMC) that consists of just
the three places representing the resources RX , RY, and RZ. The modular model supports data hiding,
clear-cut interfacing, and suited for parallel execution:

• Interface to the module: Module-A possesses input ports (A1, tD1, and tD2) and output ports
(A4) that function as the input and output interface of the module. The input and out ports have
global visibility and can be accessed like global variables.

• Data hiding: Module-A also possesses local members (transitions A2 and A3, and places pA12,
pA23, pA34, pD1, and pD2) that have local (modular) visibility, thus can not be seen or accessed
outside the module.

• Independent module development: As seen in Figure 3, module-A can be independently
developed, with two drivers replacing the places RX and RY, and two stubs also replacing
the places RX and RY.

Figure 3. Modular Petri net model of RAS: A proposal.

4. Design of Modular Petri Nets

The previous section presented some conclusions drawn from the literature study. Partly based on
these conclusions, and with the addition of new (modern) ideas, this section presents the unique design
of a new Modular Petri Net. At this juncture, it must be emphasized that the approach for modular
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Petri net given in this and the following sections are specially designed for GPenSIM implementation.
The theory given in this paper and its implementation in the software GPenSIM grew together, and
hence the use of GPenSIM terminology (see [43]) in this paper is unavoidable.

4.1. Transitions and Their Visibility

There are two key issues behind the design of a modular Petri net. The two key issues are
(1) Activity-orientedness and (2) Visibility. These two key issues are also discussed in the book on
GPenSIM [43]. The key issues are:

1. Activity-orientedness: When modeling a discrete-event system, transitions are the primary focus.
2. Visibility: Transitions possess different visibility, such as global, modular, and private visibility.

Transitions represent the activities of discrete-event systems, whereas places represent the passive
elements (e.g., buffers). In a discrete-event system, if there is no activity happening now or in future,
then the system is dead. Thus, activities are the heartbeat of discrete-event systems. The places are just
drawn along with the transitions. Hence, the transitions representing activities take the central place
in the design of modular Petri nets, as well as in GPenSIM.

4.2. Visibility of Transitions in a Monolithic Petri Net

In a monolithic (non-modular) Petri net, all transitions have two types of visibility: (1) global
visibility, and (2) private visibility.

4.2.1. Global Visibility

All the transitions in a monolithic Petri net have global visibility. A transition that has
global visibility is accessible in the common processor files COMMON_PRE and COMMON_POST.
Whenever a transition with global visibility becomes enabled, the compiler will automatically check
whether there are any pre-conditions in pre-processor file COMMON_PRE the transition has to satisfy
before starting to fire. If the transition starts firing, when it completes firing, the post-processor
COMMON_POST will be checked for any post-firing actions to be executed.

4.2.2. Private Visibility

Every transition in a monolithic (also in modular Petri net), has private visibility too.
Any transition can have its own processor files, and in this file the transition is accessible, giving
the private visibility. (Transitions in modular Petri net have one more visibility, known as the modular
(or local) visibility, which is discussed later in Section 5.2).

As an example: Figure 4 shows a simple monolithic Petri net in which all the three transitions t1,
t2, and t3 have global visibility and thus are accessible in the common processor files COMMON_PRE
and COMMON_POST. If there are exists processor files t1_pre and t1_post (for the exclusive use of t1),
t2_pre and t2_post (for the exclusive use of t2), and so on, then t1 is accessible in t1_pre and t1_post
files too, giving private visibility (resp. t2 in t2_pre and t2_post, and t3 in t3_pre and t3_post).
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Figure 4. A Monolithic P-T Petri Net.

5. Composition of Modular Petri Nets

A modular Petri net consists of zero or more Petri Modules. The symbol Φ represents a
Petri module. Zero or more Inter-Modular Connectors connects these Petri modules. The symbol Ψ
represents an inter-modular connector.

Figure 5 shows a modular Petri net with two Petri modules “Alfa” and “Beta”, and two
inter-modular connectors (IMC) “Gamma” and “Delta”.

What are IMCs? When a modular model is developed, it happens that there exist one or more
elements that cannot be included in any of the modules. The reason can be that the model logic of the
modules excludes the inclusion, or simply, the element is an inter-module connector. For simplicity,
these “leftover” elements can be grouped into a segment (or segments) and be called an IMC (IMCs).

Figure 5. A Modular Petri Net with two Modules and two IMCs.

5.1. Transitions in Modular Petri Nets

There are four types of transitions in modular Petri nets (see Figure 5):

1. Input Ports: The transitions that function as the input ports of the modules. e.g., tA1 is the input
port of Alfa. tBI1 and tBI2 are the input ports of Beta. Thus,
TIPΦAl f a = {tAI1}
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TIPΦBeta = {tBI1, tBI2}
TIP = TIPΦAl f a ∪ TIPΦBeta

2. Local transitions: The transitions that are internal members (not input or output ports) of modules.
e.g., tAL1 and tAL2, and tBL1 and tBL2 are the local transitions of Alfa and Beta, respectively.
TLΦAl f a = {tAL1, tAL2}
TLΦBeta = {tBL1, tBL2}
TL = TLΦAl f a ∪ TLΦBeta

3. Output Ports: The transitions that function as the output ports of the modules. e.g., tAO1 and
tAO2 are the output ports of Alfa. tBO1 is the output port of Beta.
TOPΦAl f a = {tAO1, tAO2}
TOPΦBeta = {tBO1}
TOP = TOPΦAl f a ∪ TOPΦBeta

4. Inter-Modular transitions: The transitions that are members of Inter-modular connectors. e.g.,
tG1 in Gamma, and tD1 in Delta.
TIMΨGamma = {tG1}
TIMΨDelta = {tD1}
TIM = TIMΨGamma ∪ TIMΨDetla TΦAl f a = TIPΦAl f a ∪ TLΦAl f a ∪ TOPΦAl f a (all the transitions of Alfa)
TΦBeta = TIPΦBeta ∪ TLΦBeta ∪ TOPΦBeta (all the transitions of Beta)
T = TIP ∪ TL ∪ TOP ∪ TIM (the set of all transitions in the Petri net)
Also, T = TΦAl f a ∪ TΦBeta ∪ TIM (the set of all transitions in the Petri net)

There are two types of places in modular Petri nets (see Figure 5):

1. Local places: The places that are local to modules. e.g., pAL1 to pAL5 in Alfa, and pBL1 to pBL4
in Beta.
PLΦAl f a = {pAL1, . . . , pAL5} (local places of Alfa)
PLΦBeta = {pBL1, . . . , pBL4} (local places of Beta)
PL = PLΦAl f a ∪ PLΦBeta (local places of all the modules)

2. Inter-Modular places (PIM): The places that are members of IMCs. e.g., pG1 to pG3 in Gamma,
and pD1 to pD4 in Delta.
PIMΨGamma = {pG1, . . . , pG3} (IM places of Gamma)
PIMΨDelta = {pD1, . . . , pD4} (IM places of Delta)
PIM = PIMΨGamma ∪ PIMΨDetla (IM places of all IMCs) P = PL ∪ PIM (set of all the places in the
Petri net)

5.2. Visibility of Transitions in a Modular Petri Net

Transitions in modular Petri nets have three different visibility, such as global visibility, local
visibility, and private visibility:

1. Inter-modular transitions have global visibility: All the transitions of the inter-modular connectors
(∀t ∈ TIM) have global visibility, thus are accessible in COMMON_PRE and COMMON_POST.

2. Input and output ports have global visibility: All the transitions that are input or output ports of
modules (∀t ∈ (TIP ∪ TOP)) also have global visibility, thus are accessible in COMMON_PRE and
COMMON_POST.

3. Local transitions have modular visibility: Transitions that are local members of modules (∀t ∈ TL)
have local visibility as they are accessible only in their modular processors MOD_PRE &
MOD_POST. For example, transitions tAL1 and tAL2 (tBL1 and tBL2) are local members of
the modules Alfa (resp. Beta), and hence are accessible only in their modular processors
MOD_Alfa_PRE, MOD_Alfa_POST (resp. MOD_Beta_PRE, MOD_Beta_POST).
However, these local transitions are not accessible in COMMON_PRE and COMMON_POST, as
these transitions do not possess global visibility.
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4. Input and output ports have modular visibility too: Transitions that are input or output ports
of modules (∀t ∈ (TIP ∪ TOP)) are also members of their respective modules. Hence, they are
accessible in their respective MOD_PRE and MOD_POST files too. e.g., input port tAI1 is
accessible in COMMON_PRE and COMMON_POST (global visibility). As the input port of Alfa,
tAI1 is accessible in MOD_Alfa_PRE and MOD_Alfa_POST too (modular visibility).

5. Every transition in a modular Petri net (∀t ∈ T) has its private visibility. Any transition, be a
local member, input or output port of a module, or a member of an inter-modular connector, can
have its own processor files. For example, tG1, tAI1, tBO1, tBL2 are are accessible in their own
processor files, such as tG1_pre & tG1_post, tAI1_pre & tAI1_post, tBO1_pre & tOB2_post, and
tBL2_pre & tBL2_post, respectively, if these files exist.

6. The Design of Modules

The important goals of the new design:

• Data hiding: Data hiding inside modules is to abstract away the internal details at higher levels.
• Independent modules: The modules are independent of each other, and have the potential to

become autonomous.
• Synchronization of modules: Synchronization ensures that modules must be able to run on different

processors. e.g., modules are wrapped as agents and run in parallel in a swarm environment.

Because of these goals (data hiding, independence, parallel execution), fusion places and fusion
transitions are not supported in the new design. Fusion places cannot be allowed, as fusion places
allow places in different modules to share internal information. Fusion transitions are not needed
either, as in the new design, synchronization is realized at the input or output ports of modules or
inside the inter-modular connectors (outside the modules).

6.1. Petri Module

In the new design, as shown in Figure 5, modular Petri net model in GPenSIM consists of zero
or more Petri Modules. The Petri modules are self-contained and can be developed in isolation and
independently tested. The inter-modular connector (IMC, for short) is to connect the modules together.

A Petri module has four distinct sets of elements:

1. Input ports TIP: Input port transitions function as the input gates of a module. Only through
these transitions (input ports), tokens can be directed into the module. These input port transitions
have global visibility (accessible in COMMON_PRE and COMMON_POST). Also, due to the
belonging to a module, these transitions have local visibility too (accessible in their own modular
MOD_PRE and MOD_POST).

2. Output ports TOP: Output port transitions function as the output gates of a module. Only through
these transitions (output ports), tokens can be directed away from the module. Just like the
input port transitions, these output port transitions also have global visibility (can be accessed
in COMMON_PRE and COMMON_POST), and local visibility too (accessible in the modular
MOD_PRE and MOD_POST).

3. Local transitions TL: As the local member (internal element) of a module, a local transition
consumes tokens from local input places and deposits tokens into local output places. A local
transition cannot have any direct connection with the external places (places outside the modules).
The local transitions of a module have limited visibility (only modular visibility) as these can be
accessed only in the modular MOD_PRE and MOD_POST. The local transitions are not accessible
in the global COMMON_PRE and COMMON_POST processors.

4. Local places PL: As the local member of a module, a local place feeds tokens to either local
transitions or input and output ports of the module. A local place gets tokens from either
local transitions or input and output ports of the module. A local place cannot have any direct
connection with the external transitions.
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6.2. Inter-Modular Connectors

In the new design, as shown in Figure 5, a modular Petri net model in GPenSIM consists of zero
or more Inter-Modular Connectors (IMC, for short). The IMCs are not modules thus don’t possess the
input and output ports. They possess IM transitions and IM places:

• IM transitions TIM: IM transitions have global visibility and are accessible in the COMMON_PRE
and COMMON_POST processors. Since IMCs are not modules, these transitions don’t have the
modular processors MOD_PRE and MOD_POST.

• IM places PIM: just like the local places inside the modules, the IM places are passive too.

7. Formal Definitions for the New Entities

This section presents the formal definitions for the newly designed entities. Let a Place-Transition
Petri Net PTN be defined as a four-tuple: PTN = (P, T, A, M0).

7.1. Formal Definition of Petri Module

A Petri Module is defined as a six-tuple:

Φ = (PLΦ, TIPΦ, TLΦ, TOPΦ, AΦ, MΦ0),

where,

• TIPΦ ⊆ T: TIPΦ is known as the input ports of the module.
• TLΦ ⊆ T: TLΦ is known as the local transitions of the module.
• TOPΦ ⊆ T: TOPΦ is known as the output ports of the module.
• TIPΦ, TLΦ, and TOPΦ, are all mutually exclusive:

TIPΦ ∩ TLΦ = TLΦ ∩ TOPΦ = TOPΦ ∩ TIPΦ = ∅.
• TΦ = TIPΦ ∪ TLΦ ∪ TOPΦ (the transitions of the module).
• PLΦ ⊆ P is known as the set of local places of the module. Since a module has only local places,

PΦ ≡ PLΦ.
• ∀p ∈ PLΦ,

– •p ∈ (TΦ ∩∅). (input transitions of local places are either the transitions of the module or
none)

– p• ∈ (TΦ ∩∅). (output transitions of local places are either the transitions of the module or
none)
This means, local places cannot have direct connections with external transitions.

• ∀t ∈ TLΦ,

– •t ∈ (PLΦ ∩ ∅). (input places of local transitions are either the local places or none (cold
start))

– t• ∈ (PLΦ ∩∅). (output places of local transitions either the local places or none (sink))

• ∀t ∈ TIPΦ

– •t ∈ (PLΦ ∪ PIM ∪ ∅). (input places of input ports can be local places or places in
inter-modular connectors or can be even an empty set)

– t• ∈ (PLΦ ∪∅). (output places of input ports can only be local places, or empty set)

• ∀t ∈ TOPΦ

– •t ∈ (PLΦ ∪∅). (input places of output ports can be local places or an empty set)
– t• ∈ (PLΦ ∪ PIM ∪ ∅). (output places of output ports can be local places or places in

inter-modular connectors or empty set.
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• AΦ ⊆ (PL × TΦ) ∪ (TΦ × PL): where aij ∈ AΦ is known as the internal arcs of the module.
• MΦ0 = [M(pL)] is the initial markings in the local places.

7.2. Formal Definition of Inter-Modular Connector

An Inter-modular Connector (IMC) is defined as a four-tuple:

Ψ = (PΨ, TΨ, AΨ, MΨ0)

where,

• PΨ ⊆ P: PΨ is the set of places in the IMC (known as the IM-places). ∀p ∈ PΨ,

– •p ∈ (TOP ∩ TΨ ∩∅). (input transitions of IM places are either the output ports of modules,
IM transitions of this IMC, or none)

– p• ∈ (TIP ∩ TΨ ∩∅). (output transitions of IM places are either the input ports of modules,
IM transitions of this IMC, or none)
This means, IM places cannot have direct connections with local transitions, or IM transitions
of other IMCs.

• ∀p ∈ PΨ, ∀i p /∈ PΦi (an IM-place cannot be a local place of any Petri module).
• TΨ ⊆ T: TΨ is the transitions of the IMC (known as the IM-transitions). ∀t ∈ TΦ,

– •t ∈ (PΨ ∩∅). (input places of IM-transitions are either the IM-places of this IMC, or none
(cold start))

– t• ∈ (PΨ ∩∅). (output places of IM-transitions either the IM-places of this IMC, or none (sink))

• ∀t ∈ TΨ, ∀i t /∈ TΦi (an IM-transition cannot be a transition of any Petri module).
• AΨ ⊆ (P× T) ∪ (T × P): where aij ∈ AΨ is known as the connecting arcs of the net.
• MΨ0 = [M(pΨ)] is the initial markings in the IM-places.

7.3. Formal Definition of Modular Petri Net

A Modular Petri Net is defined as a two-tuple:

MPN = (M,C)

where,

• M = ∑m
i=0 Φi (zero or more Petri Modules)

• C = ∑n
j=0 Ψj (zero or more Inter-Modular Connectors)

8. Application Example

In this application example, a modular Petri net model is developed for a system involved in
computing a quadratic function (e.g., f = ax2 + bx + c). This example is an extended version of the
problem stated in [8].

8.1. The Problem: Computing a Quadratic Function

The system possesses three communicating agents such as the client, and the two workers such as
the multiplier and the adder.

1. The client provides the job to compute, providing the values of the parameters involved (such as
a, b, and c).

2. The multiplier performs multiplications. e.g., for an input (a, x, x), multiplier returns (a · x2).
Similarly, if (b, x) is input, multiplier returns (b · x).
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3. The adder computes the arithmetic sums. e.g., for an input (x, y, z), adder returns the sum
(x + y + z).

The Figure 6 shows the sequence diagram describing the sequences of messages and
acknowledgements between the three agents that are involved in performing the job collaboratively.

Figure 6. The messages and interactions between the agents.

8.2. Petri Module of a Communicating Agent

Three main functional entities are usually part of a communicating agent [8]:

1. Observation.
2. Process the inputs and make decisions.
3. Actions.

Thus, the three main functional entities are also represented by some transitions in the Petri
module (Figure 7):

• Transition tCreatMsg is for creating a message, and tDispMsg dispatches the messages. A copy
of the transmitted message is kept in the place pDispdMsg until the acknowledgement for the
message is received.

• Transition tRecvMsg receives the messages. Acknowledgement for the received messages is sent
by tAckMsg. tProcessMsg is for processing the arrived message.

• Transition tRecvAck is for receiving an acknowledgement for the message that was sent earlier.
When an acknowledgement is received then the corresponding message (copy of the message) is
removed from the buffer pDispdMsg.
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Figure 7. Generic Petri module of a communicating agent.

Table 5 explains the functions of the elements of the Petri module for communicating agent.

Table 5. Elements of the generic Petri module for communicating agent.

Element Purpose

tRecvAck Receives acknowledgements.
pRecvdAck Buffer for received acknowledgements.
tProcessAck Processes received acknowledgements.
pSentMsg Buffer for storing sent messages.
tCreatMsg Creates new messages.
pCreatedMsg Buffer for newly created messages
tDispMsg Dispatches messages.
pDispdMsg Dispatched messages are kept until Ack. are received.
tRecvMsg Receives messages.
pRecvdMsg Buffer for newly received messages.
tProcessMsg Processes received messages.
tProcessdMsg Buffer for storing processed messages.
pAckMsg Buffer for keeping Ack. before dispatch.
tAckMsg Sends acknowledgement for the received messages.

8.3. Modular Petri Net Model

The modular Petri net model is shown in Figure 8. Figure 8 shows that the three agents are
represented by Petri modules that are connected via an IMC. All the messages and acknowledgments
are passed between the agents in the form of tokens. The data (the values of the parameters in the
quadratic function a, b, c, and x), the computed values, and the acknowledgements are attached to the
tokens as colors. Thus, a Colored Petri net is the backbone of the model.
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Figure 8. The modular Petri model.

9. Discussion

This paper presents a new modular Petri net that is designed especially for modeling
discrete-event systems that result in large Petri net models. With this modular Petri net, a large model
can be decomposed into modules, and these modules can be developed and analyzed independently.

The design approach presented in this paper advocates the use of transitions as the input
and output ports of modules. The use of transitions as input and output ports provides the
following benefits:

• Active push/pull: Transitions functioning as the input ports can actively pull the tokens from the
outside buffers. Hence, these tokens need not be inserted into the modules, which violates data
hiding. Also, transitions actively pulling the tokens (e.g., messages) into the modules from the
common buffers is a vital mechanism without which modeling intelligent agent will be impossible.
Intelligent agents are supposed to act autonomously. In other words, transitions as input and
output ports of modules enable modeling independent agents in a peer-to-peer topology.
In a similar line, transitions functioning as output ports can flush the output tokens of the
modules into the output buffers. This property is also important for modeling independent and
autonomous modules (e.g., intelligent agents).
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• Compression of model: As discussed in the section on literature study, Savi & Xie (1992) [13]
presents a powerful technique for module compression, only if the module possesses transitions
as input and out ports. However, this technique also demands that the module is modeled as an
event-graph.

The uniqueness of this paper is that not only the theory but also the implementation is presented.
The theory behind the new modular Petri net presented in this paper is fully implemented in the
software GPenSIM. The author of this paper developed GPenSIM. GPenSIM can be downloaded from
the website [44]. Even though GPenSIM is a new simulator, it is being used by some universities
around the world [45–51]. With the facilities for developing modular Petri net models, it has now
become possible to use GPenSIM to model and analyze real-life industrial systems.

This paper is free from any analysis concerning structure and behavior. This is because of
brevity; adding the structural and behavioral analysis of the modular Petri net will make this paper
significantly large. It may even dilute the rich information presented in this paper on the specifications
and definitions. Therefore, a follow-up paper is work-in-progress, which exclusively presents the
structural and behavioral analysis of the modular Petri net.

Limitations of this work: This paper is the first publication which explains the design of
the new Modular Petri net. However, the modular Petri was put to the test on many occasions
before; the new Modular Petri net for used for testing large-scale industrial systems, such as airport
capacity management [52], modeling oil-drilling activities [53], modeling elevator operations [54], and
multi-scale modelling [55]. All these industrial systems were large, and we believe that only with
the new modular Petri net, we were able to model, simulate, and performance analyze these systems.
The following limitation was experienced during the simulations of large industrial systems: larger
the number of modules, slower the simulations will be. Other than simulation time, there were no
limitations observed in terms of the number of places, transitions, or tokens.

Further Work: We identify two issues as further work: (1) distributed modules, and
(2) Control modules.

Distributed modules: One of the goals of developing the new modular Petri net is that the modules
must be capable of running on different processors (CPUs). This property will enable modeling the
cyber-physical systems that possess components that are geographically separated yet integrated
by inter-modular communication. Developing a modular Petri net that enables running modules
on different processors is proposed as the further work of this paper. Control modules: The new
modular Petri net is not designed with any specific applications in mind. It was designed for generic
applications, and to be implemented in the GPenSIM software. However, one of the future goals is
to apply the modular Petri net in supervisory control applications. For example, already established
supervisory control techniques (e.g., [56,57]) can be wrapped as control modules. Hence, the work
towards merging modules with supervisory control techniques is one of the further work of this paper.
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