
computers

Article

Evaluation of Self-Healing Systems: An Analysis of the
State-of-the-Art and Required Improvements

Sona Ghahremani * and Holger Giese

Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam, Germany;
holger.giese@hpi.de
* Correspondence: sona.ghahremani@hpi.de

Received: 12 January 2020; Accepted: 14 February 2020; Published: 27 February 2020
����������
�������

Abstract: Evaluating the performance of self-adaptive systems is challenging due to their interactions
with often highly dynamic environments. In the specific case of self-healing systems, the performance
evaluations of self-healing approaches and their parameter tuning rely on the considered characteristics
of failure occurrences and the resulting interactions with the self-healing actions. In this paper, we
first study the state-of-the-art for evaluating the performances of self-healing systems by means of a
systematic literature review. We provide a classification of different input types for such systems and
analyse the limitations of each input type. A main finding is that the employed inputs are often not
sophisticated regarding the considered characteristics for failure occurrences. To further study the
impact of the identified limitations, we present experiments demonstrating that wrong assumptions
regarding the characteristics of the failure occurrences can result in large performance prediction
errors, disadvantageous design-time decisions concerning the selection of alternative self-healing
approaches, and disadvantageous deployment-time decisions concerning parameter tuning. Furthermore,
the experiments indicate that employing multiple alternative input characteristics can help with reducing
the risk of premature disadvantageous design-time decisions.

Keywords: self-healing; failure model; performance; simulation; evaluation

1. Introduction

A self-adaptive system (SAS) is capable of modifying itself at runtime in response to the changes
of the environment and the system itself. Violations of certain functional and nonfunctional goals
trigger the self-adaptation [1]. Equipping the software system (adaptable software) with an external
adaptation engine, such as a MAPE-K feedback loop, enables the realization of self-adaptive capabilities.
The evaluation of self-adaptive systems is not trivial. On one hand, these systems often have a complex
structure due to an additional control layer. The system is also subject to changes in unforeseen ways
as a result of the adaptation [2]. On the other hand, these systems are designed to be operated in highly
dynamic environments, and therefore require continuous monitoring of their behavior and execution
environment [3].

A self-healing system (SHS) can discover and diagnose the runtime disruptions such as failures and
react to them by dynamically adapting and reconfiguring the system. Self-healing systems are usually
characterized by restrictions (e.g., adaptation is only needed if failures occur) [4]. In the specific case of
SHS, the evaluation of the performance of the alternative self-healing approaches and their parameter

Computers 2020, 9, 16; doi:10.3390/computers9010016 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0003-0697-9195
https://orcid.org/0000-0002-4723-730X
http://dx.doi.org/10.3390/computers9010016
http://www.mdpi.com/journal/computers
https://www.mdpi.com/2073-431X/9/1/16?type=check_update&version=2

Computers 2020, 9, 16 2 of 32

tuning relies on the considered characteristics of failure occurrences and the interaction between the
occurrence of failures and the self-healing approach.

Over the last few decades, a huge body of work on engineering SAS including SHS has been developed
by researchers and engineers. As distinguished in [3], during the lifetime of a SAS in general, evaluation
concerns design-time, deployment-time, and runtime decisions. As a first step in evaluating a SAS,
the quality of the employed self-adaptive approaches is investigated. The choice of the proper adaptation
approach is a design-time decision. The quality of the design-time decisions significantly influences
the overall quality attributes of SAS [5,6]. Performance and optimality are the main quality attributes
meaningful for evaluation of SAS. The studies focusing on evaluation at this level are concerned with early
stage performance of the system during the development process.

The second group of evaluation attempts for SAS are concerned with investigating the performance
achieved through self-adaptivity. This group does not directly study the self-adaptation approaches, but
monitors the SAS at deployment-time or runtime in its fully operational mode and analyses the quality
of adaptation after each adaptation cycle. This step requires exposing the SAS to a wide spectrum of the
potential inputs and investigating the quality of its behavior. Runtime and deployment-time adjustments
to the self-adaptation approaches such as parameter tuning are subject to this class of evaluation.

The two groups of the studies on evaluation of SAS require sound and reproducible experiments
on the system, under controlled and customizable conditions. Simulators allow evaluating the system
under controlled and reproducible conditions. This enables the comparison of multiple solutions under
similar circumstances.

For the evaluation of SHS, the possibility to inject failures is critical for simulated experiments [7].
The reason is that failures are rare events, and therefore testing for them in the operational environment
requires long measurements and is often not feasible. Moreover, testing for failures in the operational
environment is often also not desirable due to the possibly negative consequences. However, using
simulators comes with the problem that the simulated model and its characteristics always only mimic
the behavior of the real system to a limited extent, and therefore conclusions that are made based on
simulation may lack generality [8].

In this paper we at first study the state-of-the-art for evaluating the performance of SHS by means of
a classification of the approaches concerning their considered input and a systematic literature review,
both of which refine our findings presented in [9]. Furthermore, we extend the considerations of [9], by
also analysing the identified classes of approaches employing specific input types and discussing their
limitations. Our systematic literature review conducted in [9] and extended in this work reveals that
while majority of the existing work on performance evaluations of SHS use simulation-based evaluation
schemes (97%), often the characteristics considered for the occurrences of failures in these studies are
not sophisticated, and thus the validity of the outcome is often not clear. Workload related metrics such
as response time, throughput, and working versus adaptivity time need to be measured to analyze the
performance for SAS [10].

The input for a SHS is a trace of failure occurrences (i.e., failure trace). Employing customizable failure
traces with statistical parameters provides a workload with controllable volatility for SHS. Only employing
such input traces (i.e., failure traces) can enable thorough and credible evaluation of SHS (see [11]).

We further study the impact of the identified limitation concerning the characteristics of the
occurrences of failures via four hypotheses. The proposed hypotheses indicate that: (I) Incorrect
assumptions regarding the characteristics of the input trace can result in large prediction errors for
the performances of self-healing approaches. (II) Employing the wrong characteristics for the occurrence
of failures can result in disadvantageous design-time decisions concerning the selection of alternative
self-healing approaches and (III) disadvantageous deployment-time decisions concerning parameter

Computers 2020, 9, 16 3 of 32

tuning. Finally, (IV) employing multiple alternative input traces with volatile characteristics of the
occurrence of failures can reduce the risk of premature disadvantageous design-time decisions.

The case study employed throughout this paper is mRUBiS [12], an instance of the common RUBiS
that is frequently used for validating self-adaptation mechanisms [13]. mRUBiS is an online marketplace
hosting an arbitrary number of shops. Each shop contains 18 components of different types. Components
of a shop can adapt and be configured independently of each other. Self-healing capabilities are added to
mRUBiS via running a MAPE-K feedback control loop. We investigate the proposed hypotheses through a
set of empirical experiments on mRUBiS. We explore a set of self-healing approaches in combination with
multiple failure traces to demonstrate the validity of the hypotheses via several test cases.

The empirical assessments of the proposed hypotheses confirm that inaccurate assumptions regarding
the characteristics of the input failure trace of a SHS at design-time can result in up to 138% performance
prediction error of the self-healing approaches and up to 51% performance loss, as they might result in
disadvantageous and premature choices of self-healing approaches. The experiments further demonstrate
that tuning the optimization parameter of the self-healing approaches based on incorrect assumptions
regarding the characteristic of the input trace at deployment-time can cause up to 575% performance loss
for the SHS. Finally, the empirical assessment of the hypotheses suggests that employing multiple input
traces to steer the choice of self-healing approaches at design-time reduces the risk of premature wrong
decisions by 48%.

This paper extends our previous work [9] with the following novel contributions: (I) We extend
the study of the state-of-the-art for evaluating the performance of SHS by providing a classification of
different input types for simulated SHS. (II) For each recognized input category for a simulated SHS, we
analytically discuss the validity scope and limitations of the generated output. (III) We demonstrate the
potential impacts of insufficient considerations of the input trace characteristics on the performance of SHS
and the risk of making disadvantageous premature decisions via proposing and empirically validating
four hypotheses.

The paper is structured as follows: The problem space of evaluating SHS together with a classification
of the input types for simulated SHS is discussed in Section 2. Section 3 presents the state-of-the-art on the
performance evaluation for SHS. In Section 4 we analytically discuss the legitimacy of the claims regarding
the evaluation of SHS. We also discuss for each input type of SHS, the feasibility of different output types.
Section 5 presents four hypotheses regarding the impact and importance of proper consideration of input
characteristics for performance evaluation of SHS. The section provides an empirical validation of the
hypotheses on several variations of simulated SHS together with the threats to the validity of the results.
A discussion of the findings together with suggestions for required improvements in evaluation of SHS is
presented in Section 6. Section 7 concludes the paper and provides an outlook for the planned future work.

2. On the Evaluation of SHS

A SHS is a reactive system that responds to external stimuli or failures (i.e., input) with repair actions
in form of system reconfigurations. In the dependability literature, such component failures are named
faults, while only failures of the overall system are named failures (see [14]). For simplicity, we employ
here the terminology of [11] where this distinction is not made. In the following we describe the problem
space for evaluation of SHS and provide a classification of potential input types for simulated SHS.

2.1. Problem Space of SHS Evaluation

Figure 1 extends the generic diagram of the system under evaluation presented in [15] and sketches
the three main elements of the SHS under evaluation: (1) the input of the SHS, (2) the adaptable system
together with the adaptation engine forming the system under evaluation, and (3) the output of the SHS.

Computers 2020, 9, 16 4 of 32

There are four elements shaping the problem space of the SHS and its evaluation [16]: failure model,
system response, system completeness, and design context.

Figure 1. Elements of SHS under evaluation.

The failure model captures the hypotheses concerning the relevant failures, their characteristics, and
their distribution. This corresponds to input (i.e., failure trace) in Figure 1. System response (output in
Figure 1) captures the ability of the system for fault detection, the response of the system to the detected
faults, and the correctness assurance for the system response (see [16]). System completeness reflects the
completeness of the system architecture, evolution, self-knowledge, and designer knowledge. Design
context refers to other factors that influence the scope of self-healing, such as user involvement, system
scope, abstraction level, and behavioral predetermination.

The failure model and system response play substantial roles in particular for evaluation of SHS [17].
To evaluate the output or system response of SHS via simulated experiments, it is required that the simulator
reflects properly whether a chosen repair activity leads to the expected effects. System performance
is reported to be one of the most common quality attributes that is measured as system response for
evaluation of SHS and SAS in general [5,6]. The performance of a system can be realized via various
metrics capturing the quality of the service provided by the system [18]. Robustness claims for the
performance measurements, or in general any output measurements of a system under evaluation are
only justified if the system is evaluated in the presence of various volatile input conditions [19].

For a SHS under evaluation, a representative input refers to a (set of) failure trace(s) with volatile
characteristics thoroughly describing properties of the potential operational environment of the SHS.
Input of a SHS under evaluation is considered to be reliable if it prevents disadvantageous decisions
at design-time or deployment-time that are purely made based on the assumptions regarding the
characteristics of the input.

To achieve a proper failure model, the simulator is required to faithfully reflect both the characteristics
of the failures and of the failure occurrences (i.e., failure profile). Defining a failure model is necessary for any
SHS [7]. Koopman [16] outlines characteristics such as failure occurrence duration, failure manifestation,
failure source, granularity, and failure profile expectations—the elements that should be captured by a
failure model for a SHS.

As studies of failure occurrences observed for real systems indicate, failures are often not
independently occurring but correlated in time or space (referred to as failure bursts) [11]. A failure
profile can be characterized via the attributes such as failure group size, inter arrival time, and failure exposure
time, as shown in Figure 2.

Failure group size (FGS) is the number of time or space correlated failures that occur approximately at
the same time or within a short time span. Inter arrival time (IAT) is also known as mean time between
failures (MTBF). IAT represents the time between two occurrences of failure groups or bursts. Failure

Computers 2020, 9, 16 5 of 32

exposure time (FET) is the time window during which time or space correlated failures affect the system.
Thus, each burst occurs within the FET.

Figure 2. Characteristics of a failure profile.

The granularity and the magnitude of the failures are also enumerated as features that shape a failure
model [16]. To obtain a failure profile, intensive studies of the considered (simulated) system over a
considerably long period (months or years) are required.

2.2. Classification of Input Types for Simulated SHS

A SHS under evaluation can be either simulated or executed. The execution of a SHS is either in its
planned operational environment or in an artificially synthesized one. When operating the system in its
planned operational context, it is often not possible to observe all the relevant system characteristics.
The environment characteristics also cannot be influenced. Furthermore, certain changes such as
component failures directly affect the operational system, and therefore, are costly. Consequently, the
community usually employs simulators to mimic the environment and sometimes even the characteristics
of the SHS [6].

Figure 3 presents a classification of the possible input types for simulated SHS. The tree structure
depicts the identified types ranging from the most naive on the left to the most complex on the right side of
the tree (both outlined with dash lines). As stated in [14], the construction of the test inputs (i.e., synthetic
failure model) for a simulated system can be either deterministic or probabilistic. A deterministic failure model
defines the characteristics of the failure profile with scalar values and therefore, generates traces with
deterministic characteristics for occurrences of failures. A probabilistic failure model employs probability
distributions to characterize a failure profile. Such a statistically defined failure model is either an outcome
of fitting statistical models to recordings of real data (fitted to real data) or does not fit parts (or any) of the
failure profile attributes to real data (i.e., not fitted to real data).

A probabilistic failure model that is not fitted to real data is constructed based on artificially synthesized
probability distributions. Characteristics of failure occurrences such as FGS, IAT, and FET are defined
based on probability distributions. However, the employed distributions are not based on real data.
Random or uniform distribution of failures are examples of such probabilistic traces.

A probabilistic failure model which is fitted to real data characterizes the occurrence of the failures
with respect to multiple attributes as shown in Figure 2. The failure occurrence characteristics are obtained
via fitting statistical distributions to real data. As a result, traces generated from these failure models are
considered more representative of real world failure traces compared to the alternatives, which are either
probabilistic traces not fitted to real data or deterministic traces.

Computers 2020, 9, 16 6 of 32

Figure 3. Classification of input types for a simulated SHS.

Between the probabilistic failure models not fitted to real data and ones that are fully fitted to real data
there is a wide range. The spectrum starts from failure models that are fully artificial and none of the
failure occurrence characteristics are extracted from or fitted to real data. In between are the traces whose
characteristics are partially manually defined and partially fitted to real data. An example is a failure
model which fits the failure density (i.e., the overall number of the failures in the trace) and FGS to real
data but the values for IAT are defined manually. On the other end of the spectrum are models that fit all
the possible failure occurrence characteristics to real data.

Finally, a recorded real failure trace in Figure 3 refers to a continuous recording of failure occurrences
in a real system. The trace captures the realistic characteristics of the failure occurrences. A simulated
experiment can be steered via injecting failures accordingly by replaying the trace.

3. State-of-the-Art

A systematic literature review (SLR) on the state-of-the-art in evaluating the performance of SHS is
presented in [9]. This section complements the findings of [9] by mapping the results of the conducted
SLR to the classification of the input types for simulated SHS presented in Section 2.2. To that end,
the classification of the investigated studies in [9] is modified accordingly to be aligned with the improved
classification of the SHS input types proposed in this paper. The conducted research method in this part
follows the standard practice in systematic literature reviews [20].

3.1. Research Questions

This literature review attempts to answer the two research questions (RQ):
RQ1: What is the state-of-the-art in evaluating the performance of SHS?
RQ2: How are the failure traces designed for the evaluation of SHS?

3.2. Selection Method

The adopted scheme to search the literature and the selection criteria for the analyzed studies are
specified in the following.

3.2.1. Search Term and Query String

We aim to identify studies in the context of SAS, focusing on self-healing behavior. To this end, we
used the term “self-healing” as the query string. To make sure that all the relevant studies on SHS are
covered, we extend the search to the metadata (i.e., title, abstract, and keywords).

Computers 2020, 9, 16 7 of 32

3.2.2. Searched Databases and Venues

To study the state-of-the-art in evaluating the performance of SHS, we investigated the papers
published in the main conferences and journals in the areas of autonomic, self-adaptive, self-organizing,
and self-managing systems. Therefore the searched venues are the TAAS journal and the conferences
ICAC, SASO, and SEAMS along with their companion workshops. We carried out automatic searches on
the ACM DL and IEEE Xplore databases. We set no limit on the publication year, even though the concepts
of autonomic computing and self-* systems have developed only since 2002.

3.2.3. Inclusion and Exclusion Criteria

The scope of our literature review is restricted to performance evaluation of SHS. Table 1 enumerates
the considered inclusion criteria (IC) and exclusion criteria (EC) along with the number of the studies
satisfying each criterion. After retrieving the preliminary search results from the explored databases, each
paper is analyzed against the IC and EC listed in Table 1. A paper is considered in our literature review if
it satisfies all IC and no EC.

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria # of Studies

IC-1: There is an implementation for a SHS 41
IC-2: The performance of SHS is measured 39

Exclusion Criteria

EC-1: There is no implementation of a SHS 36
EC-2: The performance of SHS is not measured 2
EC-3: A more complete version of the study is selected 3

Total included studies (satisfying all IC and no EC) 36

3.3. Selected Studies

The search on the databases was conducted on 1 March 2019. The preliminary search resulted in
a total number of 77 studies. Table 2 shows the distribution of the search results among the considered
venues before and after applying the IC and EC.

Table 2. List of venues and search results.

Venue Initial # of Studies # of Studies after
Applying IC and EC

ICAC & Workshops 36 14
SASO & Workshops 20 7
SEAMS 19 14
TAAS 2 1

Sum of tudies 77 36

Each study is evaluated against the IC and EC listed in Table 1. In summary, 36 studies satisfy all IC
and no EC, which are included in the literature review.

3.4. Results

For our literature review, we selected 36 papers that provide a performance evaluation for SHS. In the
following we reflect on the analyzed studies to answer the research questions.

Computers 2020, 9, 16 8 of 32

3.4.1. RQ1

RQ1: What is the state-of-the-art in evaluating the performance of SHS?
97% of the analyzed studies employ simulators to mimic a real SHS in their performance evaluations.

We identified a single study (3%) that executes a real system to evaluate the performance of SHS [21]. This
is inline with the related finding of [6], which suggests that simulation-based experiments are the most
dominant approach employed for the evaluation of SAS in general.

3.4.2. RQ2

RQ2: How are the failure traces designed for the evaluation of SHS?
The selected studies are further analyszed regarding their choices on designing the input for SHS.
Figure 4 summarizes the design choices of inputs for the evaluation of SHS in the reviewed studies.

Our SLR revealed eight studies (22%) that do not report on the employed trace for the occurrences of
failures in their evaluations of SHS [7,22–28]. Therefore, we only have data for 78% of the investigated
papers. A large proportion of the reviewed papers, 16 studies (44%), employ single deterministic traces to
steer the failure injection in the simulated experiments [17,29–43]. In these studies the characteristics of the
failure occurrences such as FGS and IAT are not determined by a probability distribution but determined
for each occurrence explicitly as scalar values (see Section 2.2). FET is not recognized as a dimension for
characterizing the employed failure traces.

Figure 4. Choice of input for SHS among the studies.

Six studies (17%) use a naive variation of probabilistic failure models not fitted to real data, which is random
occurrences of failures to characterize the input for the SHS [44–49]. In these studies, the number of the
failures (i.e., FGS) is deterministic, but the IAT and FET are randomly defined. We identified three studies
(8%) that use recorded real failure traces as input for simulated SHS. In [50–52], manually adjusted recordings
of the real-world failure traces are injected to the simulated SHS. However, a representative model of the
nature of the source trace including FGS, IAT, and FET of the failure occurrences is missing from [50–52].
The FGS, IAT, and FET of the failure occurrences are cleary defined via statistical distributions in [53,54].
A probabilistic failure model not fitted to real data is used in [53] to generate multiple failure traces, and [54]
employs multiple failure traces generated by probabilistic failure model fitted to real data.

Our literature review identifies a single paper using a real system for the evaluation of SHS [21].
In this paper, failures are not artificially injected to the system and occur as the real system equipped with
self-healing properties is executed in its real operational environment. This scheme for the evaluation
results in long experiments since the failures occur infrequently. The experiments in [21] however lack

Computers 2020, 9, 16 9 of 32

reproducibility and controllability, since they are not conducted under controlled conditions, and the
feasibly of reproducing the exact failure traces is not investigated.

4. Analytical Assessment

In the following we analytically assess the scope of credibility and trustworthiness of SHS evaluation
for each of the input types classified in Figure 3. For each recognized input type, we discuss which claims
regarding the input and output of the SHS are justified and whether the evidence suffices for qualitative
and (or) quantitative evaluation of the output.

4.1. Deterministic Failure Model

A deterministic failure model and the resulting deterministic traces do not aim to be generic and only
provide minimal coverage of the input space for SHS, and hence fail to suffice for a quantitative evaluation
of the SHS. As discussed in Section 2.1, a representative input space for SHS includes employing multiple
arbitrarily long failure traces with volatile characteristics regarding failure occurrences. Employing
multiple deterministic traces does not improve the evidence regarding generality and robustness, since they
cannot provide more than only partial coverage of the SHS input space. The coverage of the input space is
limited to the variants of the considered deterministic traces and is not extendible. Therefore, such traces
are not representative.

Deterministic traces support qualitative evaluation only for the considered fraction of the input space
and do not suffice to address generic claims on quantitative evaluation of the SHS. However, multiple
arbitrary long deterministic traces with volatile characteristics can support qualitative evaluation for
the segments of the input space covered by the traces. On the other hand, multiple deterministic traces
with volatile characteristics cannot be considered reliable to steer the design-time and deployment-time
decisions, because they only describe limited instances of the possible futures for a SHS under evaluation.

4.2. Probabilistic Failure Model

Probabilistic failure models employ statistical distributions to define the characteristics of failure
occurrences, allowing the generation of multiple arbitrarily long failure traces with desired characteristics.
This provides a reasonably good coverage of the potential input space of the SHS and supports qualitative
evaluation of the SHS. As a result, employing probabilistic failure models to generate input traces for a SHS
under evaluation allows robustness testing for performance measurements and can be considered reliable
to steer the design-time and deployment-time decisions.

As discussed in Section 2, probabilistic failure models vary from not fitted to real data to those which
are fully fitted to real data. As the choice of input for SHS changes from probabilistic failure models not
fitted to real data towards the ones fitted to real data, the failure models and resulting failure traces are
more representative of the real operational environment of the SHS under evaluation. This improves the
credibility of the quantitative evaluation of the simulated SHS.

A probabilistic failure model that is fully fitted to real data obtains all the possible characteristics of
the failure occurrences from fitting statistical distributions to real data. The quality of such models
and resulting traces rely on the amount and the quality of the real data used to derive the probabilistic
distributions. In addition, if the probabilistic failure model is not fully fitted to real data, the extent and the type
of the manually defined characteristics of the failure occurrences influence the quality and credibility of
the input.

Any probabilistic failure model that manually defines parts or all of the failure occurrence characteristics
is not fully representative of the potential spectrum of the SHS input space, because certain characteristics
are either not captured at all or are not necessarily representative of real failure traces. Therefore,

Computers 2020, 9, 16 10 of 32

probabilistic failure models not fully fitted to real data fail to support any claims of being representative
of a real operational environment for a SHS which is key for the credibility of the quantitative analysis of
the simulation-based outputs.

A probabilistic failure model fitted to real data on the other hand, as discussed in Section 2, fully captures
the characteristics of the failure occurrences and is representative of the real operational environment for
the SHS. Employing multiple traces generated from a probabilistic failure model fitted to real data as input
supports credible quantitative and qualitative evaluation of the SHS, since all the characteristics of failure
occurrences are represented via statistical distributions and can be tuned to cover a large spectrum of the
input space for SHS.

4.3. Recorded Real Failure Trace

While playing back a recording of a real failure trace as input for a simulated system improves the
credibility of the simulation-based experiments, the resulting output of a single recorded real failure trace
lacks generality. Employing a single recorded real failure trace as input for SHS evaluation only supports
single experiment run and does not support any claim on certain qualitative evaluation metrics, such as
resilience, reliability, and robustness testing [3]. While such a trace contains realistic characteristics of
occurrences of failures, it only captures one possible future for the simulated SHS and fails to cover a large
and representative spectrum of the input space. We argue that in this case the output of the SHS under
evaluation is inconclusive and cannot support any qualitative evaluation on the performance, since it lacks
generality. Therefore, multiple recorded real failure traces with different characteristics which evaluate the
performance of the SHS for multiple future operation contexts are required. This supports the required
number of the experiments to obtain robust results.

To collect multiple representative recordings of real traces, the real system needs to be monitored
for a considerably long time to identify all the correlations between the failures. Therefore, since failures
are often rare events and do not occur frequently, having access to multiple recorded real failure traces for a
simulated system is often not feasible or very costly to obtain.

Among all the possible variations of the input types for evaluation of simulated SHS (see Figure 3),
multiple recorded real failure traces or multiple failure traces generated from probabilistic failure models
which are fully fitted to real data can provide a representative input set for evaluation of the SHS that can
be tested for robustness of the results. A representative recorded real failure trace or a probabilistic failure
model which is fitted to real data allow deriving simulated behavior which mimics the characteristics of
failure occurrences in a real system. Therefore, when conducting simulated experiments for SHS, only
the two input types would allow justifying general claims regarding certain quality attributes including
performance, throughput, robustness, etc. Any other input type for the simulated SHS does not result
in conclusive output for the purpose of quantitative evaluation. Qualitative evaluation of SHS can be
supported if the employed failure traces(s) provide good coverage of the input space of SHS. However, as
discussed earlier in Section 2, the effort to obtain multiple recordings of real systems can be very high or
even infeasible. A trade-off solution can be employing probabilistic failure models which are fully fitted to
real data.

5. Empirical Assessment

In this section we present four hypotheses on the importance of input considerations for
design, deployment, and evaluation of SHS. We validate the proposed hypotheses via a set of
empirical experiments.

Computers 2020, 9, 16 11 of 32

5.1. Case Study

The empirical experiments are conducted employing a simulator of mRUBiS—an online marketplace
that hosts an arbitrary number of shops, each consisting of 18 components [12]. Each shop can be
configured differently and runs isolated from the other shops. mRUBiS is a variant of the common RUBiS
that is frequently used for testing and validating self-adaptation mechanisms [13].

We are particularly interested in self-healing, i.e., to automatically repair runtime failures; therefore,
we equip mRUBiS with a MAPE-K feedback loop (adaptation engine in Figure 1). The simulator is also
equipped with failure injection capabilities; hence, it is suitable for injecting failures according to different
distributions. The simulator emulates failures in mRUBiS which are detected later on via the self-healing
properties enabled by the MAPE-K feedback loop. The variant of the applied mRUBiS hosts 100 shops.
Overall, the simulator includes 1800 components.

5.2. Measurements: Utility and Reward

As a measure of performance for the self-healing approaches, we consider the accumulated utility
of the SHS over time (i.e., reward) [55]. To compute the utility values for the SHS, a utility function is
required to express how well each configuration of the system in its domain satisfies the functional and
non-functional goals of the system [56]. Then, the utility can be accumulated over time to determine the
obtained reward.

In general, for a software system, utility can be obtained from service level agreements (SLA), learned,
or analytically constructed [54]. In our experiments we employ the analytical scheme proposed in [43,57]
to determine the utility of dynamic software architectures. However, the specific choice of the utility
function elicitation method is not important here, as it is the same for all the considered alternative
self-healing approaches in this study. The employed utility function evaluates the system configuration
after each adaptation (i.e., repair of runtime failures). The utility and the reward of the system are measured
independently from the employed self-healing approaches.

In mRUBiS—our employed case study—the overall utility of a shop is the sum of the sub-utilities of
all the components in the shop. The utility of the system is the sum of the utilities of all shops.

5.3. Spectrum of Considered Self-Healing Approaches

Self-healing approaches can be categorized in various ways. In our empirical experiments we structure
the spectrum of the considered self-healing approaches with respect to their employed planning schemes.
The spectrum is limited to three self-healing approaches developed in our former work [43,58]:

Static. In this approach, the cost and the benefit of the repair actions are estimated at design-time.
Based on these static estimates, the repair actions for each type of failures are assigned statically. The drop
of the system utility caused by each type of failure is estimated at design-time, which leads to a fixed order
in which the failure types are addressed by this approach. Since the approach is purely static, it does not
add any runtime overhead due to planning for the repair of the failures (see [43,58]).

Solver. This approach employs a costly runtime optimization to maximize the overall utility of
the system during the planning phase. Since the approach uses a constrain solver to optimize the
objective function, we refer to it as the solver approach. The approach uses the utility function as
the objective function to form an ordered sequence of repair actions. The tasks of assigning proper
repair action to each failure and prioritizing them for execution are defined as optimization problems.
As shown in [58], the approach is an optimal (concerning system utility) but expensive heuristic employing
optimization-based planning, and suffers from a large runtime overhead.

U-driven. This is an optimal and cost efficient approach employing utility-driven planning.
The impacts of different repair actions are computed at runtime by employing a utility function. Following

Computers 2020, 9, 16 12 of 32

greedy decision making, the repair actions resulting in the largest impacts on the overall utility are chosen
to be applied first. The order in which failures are resolved and the proper repair actions to resolve them
are decided based on the runtime observations regarding the affected components and the utility drops
caused by the failures.

5.4. Execution Horizon

The execution horizon is an ordered list of planned repair actions chosen for execution during the
current self-healing loop. The size of the execution horizon, k, is a parameter that is relevant for model
predictive control [59], sequence planning [60], and the planning phases of various approaches (e.g., [61])
that employ scheduling strategies for the potential adaptation steps. Therefore, inspired by the model
predictive control, we impose the execution horizon as an optimization parameter of the self-healing
approaches which affects the performance of the SHS.

The planing horizon is a list of all the repair actions assigned to all the observed failures before the
current self-healing loop. During the planning phase of a self-healing loop, the self-healing approach
assigns the proper repair actions to the detected failures. The assignment and ordering of the repair actions
is steered based on design-time or runtime estimates of the impact of the repair actions (see Section 5.3).

An execution horizon of size k, however, only considers the first k repair actions in the planning
horizon for execution in the current self-healing loop (see Figure 5). After repairing the k corresponding
failures, the current self-healing loop ends and the remaining unresolved failures are considered together
with the newly occurred failures in a subsequent self-healing loop. For example, if the execution horizon
is of size one (i.e., k = 1), only the first planned repair action is executed and the re-planning is initiated in
the subsequent self-healing loop based on the new observations and remaining unresolved failures.

Figure 5. Planing and execution horizon.

The advantage of execution horizon of size one (or small sizes in general) is that the self-healing
approach utilizes the most recent failures immediately, as opposed to ignoring them until the execution of
all the planned repair actions ends. The disadvantage of applying a small size for the execution horizon is
that the repair of several failures (that are in the planning horizon and not in the execution horizon) is
delayed to the subsequent loop(s). This delays the potential improvements of the utility as a result of the
repair action executions. In cases where the planning phases of the self-healing approaches have large
runtime overheads (e.g., the solver approach in Section 5.3), the resulting delay in the respective utility
improvements can be considerably large and cause sever performance loss for the SHS.

5.5. Selected Traces for Failure Occurrences

As revealed by the foundational work on characterizations of failure occurrences in computer
systems [62–64], failures often have a bursty character. Studies of failure traces observed for real systems
indicate that failures are often not occurring independently, but correlated in time or space (referred to as
failure bursts) [11]. This phenomenon occurs due to failure propagation in the system where the occurrence
of a single failure triggers a sequence of failures in other parts of the system within a short time span.
Numerous fault tolerant algorithms [65,66] make the strong assumption that failures occur independently.

Computers 2020, 9, 16 13 of 32

However, bursty failure traces do not act in accordance with this assumption. The occurrence of failure
bursts often makes the availability behavior of different system components correlated. Ignoring the
bursty character of the failure occurrences results in overestimating the transient reward rate by an
order of magnitude [67]. This is the case even when only as few as 10% of the failures conform to a
bursty distribution.

To investigate the impact of the input characterization on the performance of SHS, we employed
several failure traces with volatile characteristics covering a large spectrum of the potential input space of
a SHS. In the employed traces, the characteristics of the failure occurrences are described via IAT, FGS,
and FET. In failure traces where the distribution of the failures within each burst is not characterized,
we assume a failure propagation following a normal distribution, as shown in Figure 2. Following our
discussions in Section 4, we limit the scope of the employed input types to probabilistic failure models. We
expose the simulated SHS to variants of failure traces generated from probabilistic failure models which are
either fully fitted to real data or partially fit the characteristics of the failure occurrences to real data.

5.5.1. Probabilistic Failure Model Fitted to Real Data

In the following we describe the Grid’5000 failure model, one of the probabilistic failure models
presented in [58] which is fully fitted to real data and employed in the experiments of this study.

Grid’5000 is an experimental grid environment of over 2500 processors with 1288 nodes [68]. The data
recorded for Grid’5000 failure model are gathered over 1.5 years of monitoring [69]. Gallet et al. [11]
provide statistical distributions for different characteristics of a failure model fitted to the collected data
of the grid environment. Table 3 lists the distributions proposed by [11] for IAT and FGS along with the
considered FET.

Based on the probabilistic distributions for IAT and FGS and the values for FET, we can derive a failure
trace(s) with an arbitrary length. For the experiments, we generated the failure trace Grid’5000 with n = 50
failure bursts spread over 24 h. As depicted in Table 3, the overall number of the failures (i.e., failure
density) in the generated Grid’5000 trace is 1116 (specifically, failures which affected the SHS under
evaluation within 24 h). Figure 6 shows the distribution of the FGS values in the generated Grid’5000 trace.

Figure 6. Failure group size (FGS) distribution in Grid’5000 trace and considered areas for extracted
probabilistic failure models.

Computers 2020, 9, 16 14 of 32

Table 3. Characteristics of the employed probabilistic failure models.

Grid’5000 Uniform Single Smallburst Bigburst

FGS LOGN(1.88, 1.25) N(15.15, 5.63) 1 N(32.45, 7.41) N(238, 97.3)
IAT (s) LOGN(−1.39, 1.03) 864 77.4 N(1112.4, 500.61) N(3521.4, 5418.6)
FET (s) 250 50 N/A 100 250

Number of Bursts 50 100 1116 75 6
Duration (h) 24 24 24 24 24
Failure Density 1116 1116 1116 1116 1116

5.5.2. Probabilistic Failure Models Partially Fitted to Real Data

We manually modified the parameters of the Grid’5000 failure model provided by [11] to obtain
failure models with volatile characteristics. The resulting failure models are intended to provide a wide
and representative coverage of the potential input space for the SHS. They also allow us to study the
impact of extreme characteristics of failure occurrences on the performance of SHS.

Uniform, Single, and Bigburst failure models are the three probabilistic failure models partially fitted
to real data presented in [58] which are also considered in the experiments of this study. We extend the
set in this paper by adding one more failure model to the set, referred to as Smallburst. In the following
we describe the characteristics of the employed probabilistic failure models which are partially fitted to
real data.

Uniform is a probabilistic failure model employed to generate a trace of failure bursts uniformly
distributed within 24 h. In the Uniform model, the failure density and FET are fitted to real data, since the
model preserves the failure density and FET of the original Grid’5000 failure model. The FGS and IAT are
defined as following:

Using statistical bootstrapping, a normal distribution is extracted from the set of FGS values (referred
to as set F) in the Grid’5000 trace [70,71]. Then, set F is randomly re-sampled to multiple sample sets. F′ is
the set comprising the mean values of each sample set. A normal distribution N(µF′ , 2σF′) is then used to
generate FGS values for the Uniform trace. The outcome is a set of uniformly distributed values within a
certain margin extracted from set F. Applying this distribution, a sequence of normally distributed values
for FGS within the desired margin is generated.

The number of the bursts in the Uniform trace is double the number of the bursts in the Grid’5000
trace (i.e., 50× 2), since the average of the FGS in the Uniform failure model is approximately 50% smaller
than in the Grid’5000 failure model. Therefore, in the Uniform trace, the overall number of the failures
occurring within 24 h (i.e., 1116) is distributed among 100 bursts. Figure 6 sketches the portion of the
original FGS values from the Grid’5000 trace that are present in the Uniform trace.

The IAT of the occurrences of failures in the Uniform failure model is the average of IAT values in the
Grid’5000 failure model. As a result, the employed Uniform trace is a sequence of bursts with normally
distributed FGS values which occur in equal intervals. Table 3 presents the characteristics of the Uniform
failure model.

Single is a failure model generating failure traces where failures are not correlated and arrive
individually, not in groups. Our SLR in Section 3 revealed that most of the existing work investigating the
performance of SHS employ naive failure traces similar to traces generated by the Single failure model
(see [29,31–33,35,72]).

In the generated Single failure trace for our experiments, individual failures are randomly distributed
within the 24 h. The Single trace preserves the failure density of the original Grid’5000 model. In order to
obtain the Single trace, the number of the failure groups is exactly equal to the failure density, 1116, since

Computers 2020, 9, 16 15 of 32

each failure group includes exactly one failure (i.e., FGS = 1), as shown in Figure 6. Table 3 presents the
characteristics of the Single failure model.

Smallburst is a failure model representing correlated arrival of failures (i.e., bursts), but the sizes of
the bursts are scaled down compared to the original Grid’5000 failure model. To construct the Smallburst
failure model, we employed statistical bootstrapping on traces generated from the statistical distributions
of Grid’5000 presented in Table 3. As depicted in Figure 6, the targeted FGS in this failure model is
distributed approximately between 25 to 40 failures during each burst. To this end, only portions of the
generated Grid’5000 trace with FGSs between 25 and 40 are re-sampled for statistical bootstrapping.

Similarly to the previous failure models, the Smallburst failure model also preserves the failure
density of the original Grid’5000 failure model. The FGS values in the Smallburst failure model are
on average smaller than the ones in the Grid’5000 failure model. Therefore, to obtain the same failure
density, the number of the bursts in the generated Grid’5000 trace (i.e., 50) and the IAT values decrease
accordingly. IAT values for the Smallburst failure model are extracted via bootstrapping from the randomly
re-sampled IAT values of the generated Grid’5000 trace and then adjusted manually to sum up to 24 h.
The characteristics of the Smallburst failure model are depicted in Table 3.

Bigburst failure model represents the other end of the spectrum of failure occurrence characteristics
(compared to the Single failure model) and generates only large failure bursts. Similar to the scheme
employed for Uniform and Smallburst failure model, to construct the Bigburst failure model, statistical
bootstrapping of the probabilistic distributions in Grid’5000 is applied. To obtain large FGS values, only the
part of the set F (i.e., FGS values in the generated Grid’5000 trace) above a certain threshold (FGS ≥ 100) is
re-sampled for bootstrapping. This is depicted in Figure 6.

The Bigburst failure model also preserves the failure density of the Grid’5000 failure model. To keep
the same failure density, since the Bigburst failure model only includes large bursts, the number of the
bursts decreases respectively compared to the Grid’5000 failure model. This results in an increase of the
IAT values for the Bigburst failure model. IAT values for the Bigburst failure model are extracted via
bootstrapping from the randomly re-sampled large IAT values of the Grid’5000 trace (IAT ≥ 1000 sec).
The characteristics of the Bigburst failure model are depicted in Table 3.

5.6. Hypotheses and Validation

In the following we introduce four hypotheses to be empirically assessed. The objective of the
hypotheses is to steer the evaluation of SHS towards making the right decisions both at deployment-time
and design-time. As discussed in Section 1, through these hypotheses we investigate the potential impacts
of design-time decisions (choice of the self-healing approaches) and deployment-time decisions (tuning
execution horizon size) on the performance of SHS.

We show that wrong assumptions concerning the characteristics of the input trace could steer the
design-time and deployment-time decisions towards the incorrect direction and eventually result in sever
performance loss. Our empirical assessments of the hypotheses confirm that while the magnitude of the
impacts could be considerably large, such effects can only be captured in the presence of multiple input
traces covering a vast spectrum of failure occurrence characteristics.

Hypothesis 1. The choice of the input has an impact on the predicted performance of SHS. Wrong assumptions
regarding the characteristics of the input trace can result in large performance prediction errors for the
self-healing approaches.

Hypothesis 2. The choice of the self-healing approach has an impact on the performance of SHS. Wrong assumptions
regarding the characteristics of the input trace can result in disadvantageous choice of the employed self-healing
approach at design-time, and thus can cause sever performance loss.

Computers 2020, 9, 16 16 of 32

Hypothesis 3. Tuning the optimization parameter of the parameterized self-healing approaches (e.g., size of the
execution horizon) has an impact on the performance of SHS. Wrong assumptions regarding the characteristics of the
input trace can result in disadvantageous choice of the employed execution horizon size for the self-healing approach
at deployment-time, and thus can cause sever performance loss.

Hypothesis 4. In cases where no accurate information about the real operation environment of the SHS is available,
employing multiple input traces to steer the choice of self-healing approaches at design-time reduces the risk of
premature wrong decisions.

5.6.1. Validation of Hypotheses

In the following, we conduct a set of experiments to empirically validate the proposed hypotheses.
We acknowledge that in this study we investigate the validity of the hypotheses only by employing the
available single case study, failure traces, and self-healing approaches. Thus, we can only employ these
elements to demonstrate the existence of evidence supporting the proposed hypotheses, but we cannot
demonstrate that this applies to all or the majority of cases.

As discussed in Section 5.2, we consider the accumulated reward (i.e., utility over time) as a
measure of performance for the SHS. For each failure trace generated from the failure models presented
in Table 3, we equip mRUBiS (i.e., a simulated SHS introduced in Section 5.1) with one of the three
available self-healing approaches (see Section 5.3). The employed traces have equal failure density
(i.e., 1116 failures overall) to preserve comparability of the results and describe occurrences of the
failures for 24 h (see Section 5.5). However, while the failure traces last for 24 h, the self-healing
period in the worst case occupies only 12% of the considered period. For each combination of the
available self-healing approach and failure trace, the self-healing period indicates the time each approach
requires to repair all the detected failures. Our measurements reveal that the solver approach presents
longer self-healing periods on average, as it often suffers from large runtime overhead due to its costly
optimization-based planning (see Section 5.3). The measurements are the average of 1000 simulation runs
for each trace-approach combination (The experiments and simulations have been conducted on a machine
with OS X 10.14, Intel processor 2.6 GHz core i5, and 8 GB of memory.).

5.6.2. Validating Hypothesis 1

To investigate Hypothesis 1, we study the impact of the employed input on the performance of SHS.
Table 4 presents the accumulated reward values obtained by each of the self-healing approaches in the
presence of the employed failure traces during 24 h.

Table 4. Reward values of self-healing approaches for different failure traces in 24 h.

Failure Trace
Reward

U-Driven Solver Static

Single 1.99× 109 1.99 × 109 1.64× 109

Uniform 1.95× 109 1.95× 109 1.60× 109

Smallburst 1.93× 109 1.79× 109 1.65× 109

Grid’5000 1.96× 109 1.53× 109 1.68× 109

Bigburst 1.77× 109 8.35× 108 1.70× 109

A representative failure trace supports accurate assumptions regarding the characteristics of the
SHS input in its operational environment. This results in realistic predictions for the performance

Computers 2020, 9, 16 17 of 32

of self-healing approaches. These predictions can potentially steer the design-time choice of the
self-healing approach.

Hypothesis 1 implies that in cases where the employed trace is not representative of the SHS input
space (leading to wrong assumptions regarding the characteristics of the input trace), it can result in
performance prediction error. To validate Hypothesis 1, using Equation (1), we compute the prediction
error of the self-healing approaches in case of wrong assumptions regarding the characteristics of the
input trace. As we are only interested in the magnitude of the error and not whether the prediction is too
optimistic or pessimistic, we present the absolute values of the prediction error in Equation (1).

Prediction Error :=
|Predicted Value− Real Value|

Real Value
(1)

Tables 5–7 depict the performance prediction errors for the u-driven, solver, and static approaches
in the presence of different input traces with equal failure densities (see Section 5.5). As indicated by
the results, the solver approach presents the largest sensitivity to wrong assumptions regarding the
characteristics of the input trace. The performance prediction errors for the u-driven approach vary from
2% to 12%. The larger error values of the u-driven approach are observed for the case when the runtime
(i.e., real) trace is the Bigburst trace and the assumptions suggest different input traces for the predictions.
Similarly, in the solver approach, the large prediction errors are also observed for the Bigburst trace.
The error values for the solver approach are shown to be as high as 138%. Among the three approaches,
the static approach presents less sensitivity to the wrong assumptions regarding the input trace compared
to the other two approaches. The performance prediction errors for the static approach vary from 1% to
6%, where the larger values relate to the Bigburst trace both as the runtime trace and as the trace used
for predictions. Note that in Equation (1), values above 100% for the Prediction Error indicate that the
difference between the Real Value and the Predicted Value is more than twice the Real Value.

Table 5. Performance prediction error of u-driven approach in presence of different failure traces.

Failure Trace Used for Prediction
Runtime Trace

Single Uniform Smallburst Grid’5000 Bigburst

Single - 2% 3% 2% 12%
Uniform 2% - 1% 1% 10%
Smallburst 3% 1% - 2% 9%
Grid’5000 2% 1% 2% - 11%
Bigburst 11% 9% 8% 10% -

Table 6. Performance prediction error of solver approach in presence of different failure traces.

Failure Trace Used for Prediction
Runtime Trace

Single Uniform Smallburst Grid’5000 Bigburst

Single - 2% 11% 30% 138%
Uniform 2% - 9% 27% 134%
Smallburst 10% 8% - 17% 114%
Grid’5000 23% 22% 15% - 83%
Bigburst 58% 57% 53% 45% -

Computers 2020, 9, 16 18 of 32

Table 7. Performance prediction error of static approach in presence of different failure traces.

Failure Trace Used for Prediction
Runtime Trace

Single Uniform Smallburst Grid’5000 Bigburst

Single - 3% 1% 2% 4%
Uniform 2% - 3% 5% 6%
Smallburst 1% 3% - 2% 3%
Grid’5000 2% 5% 2% - 1%
Bigburst 4% 6% 3% 1% -

5.6.3. Validating Hypothesis 2

Hypothesis 2 indicates that inaccurate assumptions regarding the input trace characteristics can result
in an incorrect choice of the self-healing approach, and thus loss of performance. In the following we
investigate the extent of the performance loss as a result of wrong assumptions about the characteristics of
the input trace. The u-driven approach is excluded from this set of experiments. As shown in our previous
works [43,58] and confirmed by the results in Table 4, the performance of the u-driven approach is robust
against the changes of the input trace characteristics due to its incremental planning scheme.

To investigate Hypothesis 2, first we identify the best performing approach (excluding u-driven)
for the available input traces. For each input trace, the best performing approach is the one that obtains
the largest reward. As depicted in Table 4, for input traces with smaller FGSs (i.e., Single, Uniform and
Smallburst) the solver approach obtains higher reward values compared to the static approach. While for
traces with larger FGSs (i.e., Grid’5000 and Bigburst) the static approach performs better than the solver
approach, since it does not introduce any runtime overhead (see [43]).

The next step to validate Hypothesis 2 is to study the reward loss due to a wrong choice of the
self-healing approach at design-time. The reward loss of each self-healing approach in the presence of an
input trace is computed according to Equation (2).

Reward Loss :=
Reward− Rewardbest

Rewardbest
(2)

For a given input trace, Rewardbest in Equation (2) represents the achieved reward by the best
performing approach for that trace. The Reward values for each input trace-approach pair are extracted
from Table 4. For each input trace, if the selected approach is the best performing approach, then
Reward Loss equals zero.

Table 8 presents the Reward Loss values for different input traces in case of wrong choices for the
employed self-healing approaches at design-time. The design-time decisions in Table 8 are represented as
(Tracei , Approachj). This indicates that at design-time, Approachj is chosen to be employed on the SHS,
since the input trace is assumed to be Tracei. If these assumptions regarding the characteristics of the input
are incorrect, i.e., the runtime trace has different characteristics than Tracei, then the design-time choice of
the self-healing approach does not best fit the runtime trace and results in reward loss.

Table 8. Reward Loss of self-healing approaches in case of wrong design-time decisions .

Design-Time Decision
(Runtime Trace, Best Performing Approach)

(Single, Solver) (Uniform, Solver) (Smallburst, Solver) (Grid’5000, Static) (Bigburst, Static)

(Single, Solver) 0 0 0 −9% −51%
(Uniform, Solver) 0 0 0 −9% −51%
(Smallburst, Solver) 0 0 0 −9% −51%
(Grid’5000, Static) −18% −19% −8% 0 0
(Bigburst , Static) −18% −19% −8% 0 0

Computers 2020, 9, 16 19 of 32

The results presented in Table 8 reveal that if the choice of the self-healing approach is made based
on unrepresentative input traces, it could lead to considerably large performance loss (up to 51% in
our empirical experiments). As stated in Section 2, reliable input for a SHS under evaluation prevents
disadvantageous decisions at design-time or deployment-time. The results confirm that the characteristics
of the input trace influence the performance of SHS, and therefore should steer the choice for the employed
self-healing approach.

5.6.4. Validating Hypothesis 3

Hypothesis 3 comprises of two parts. The first part of the hypothesis indicates that tuning the
optimization parameter of the parameterized self-healing approaches has an impact on the performance of
SHS. The second part of the hypothesis states that wrong assumptions regarding the characteristics of the
input trace can result in wrong choice of the employed execution horizon size and therefore, can cause
sever performance loss.

To validate Hypothesis 3, first (I) we investigate the impact of the execution horizon on the
performance of SHS. Then, (II) we study the extent of the performance loss caused by the wrong
assumptions regarding the characteristics of the input trace.

I. Impact of the Execution Horizon Size on the Performance of SHS

As discussed in Section 5.4, the size of the employed execution horizon represents an optimization
parameter for the self-healing approaches. This value can be tuned at runtime or deployment-time with
respect to the characteristics of the input trace and the properties of the self-healing approach (e.g., planning
time, etc.).

To investigate the impact of the execution horizon on the performance of SHS, we run each of the
self-healing approaches introduced in Section 5.3 with different sizes for the execution horizon in presence
of the input traces presented in Section 5.5. The Single input trace is excluded from the experiments due to
its naive characteristics. The trace describes only single occurrences of failures, therefore, the notion of an
execution horizon is not applicable.

The variant of the self-healing approach without employing any execution horizon is considered as
the baseline approach. For each combination of input trace-approach, the baseline reward (Rewardbaseline)
is the reward achieved by the baseline approach. For each variant of the input trace-approach pair, we
study the impact of the execution horizon size in relation to the Rewardbaseline as shown in Equation (3).

Reward Delta := Reward− Rewardbaseline (3)

Reward Delta in Equation (3) is a positive value if applying the execution horizon improves the
reward compared to the baseline; otherwise, it is a negative value and indicates performance drop.

For all the combinations of the input trace-approach, values higher than 40 for execution horizon size
do not result in any change in the observed pattern. Therefore, we only report the Reward Delta values
for execution horizon sizes up to 40. In the conducted experiments, the size of the employed execution
horizon is chosen at deployment-time and does not change at runtime.

Figure 7 presents Reward Delta values of the u-driven approach with different execution horizon sizes
in the presence of the four input traces. For each input trace, the best performing variant of the u-driven
approach (i.e., best execution horizon size) is the one with highest Reward Delta value and is hachured in
each chart of Figure 7. As the results in Figure 7 present, different input traces with different characteristics
result in different best performing values for the execution horizon size. The results for Reward Delta
of u-driven approach show that as the FGS of the input traces increases, the size of the best performing
execution horizon increases as well. The u-driven approach equipped with smaller execution horizon

Computers 2020, 9, 16 20 of 32

sizes (i.e., 1 and 2) performs better in presence of the input traces with smaller FGS (i.e., Uniform and
Smallburst) while for the input trace with larger FGS (i.e., Bigburst) larger execution horizon size (i.e., 8)
performs better.

Figure 7. Reward Delta values of u-driven approach for different execution horizon sizes.

Figures 8 and 9 show the Reward Delta values for the solver and static approaches with different
execution horizon sizes in presence of the input traces. Similar to the u-driven approach, for both solver
and static approaches, the increase in the FGS of the input trace results in larger values for the best
performing execution horizon sizes.

Figure 8. Reward Delta values of solver approach for different execution horizon sizes.

The best performing execution horizon sizes for the solver approach are 3 for the Uniform trace,
12 for the Smallburst trace, 28 for the Grid’5000 trace, and 35 for the Bigburst trace. However, for the
u-driven approach, as presented in Figure 7, these values are considerably smaller for the same input
traces. As shown in our previous work [43], the optimization-based approaches (i.e., the solver approach
in this work) employ more costly planning schemes compared to the runtime efficient approaches, such
as the u-driven approach. Therefore, while employing such costly approaches, less frequent planning is
preferred. In the presence of the large failure group sizes (e.g., Grid’5000 and Bigburst), frequent planning

Computers 2020, 9, 16 21 of 32

in approaches with large runtime overheads can bring the system down, as the execution horizon with
a small size requires more frequent planning. As depicted in Figure 8 for the Grid’5000 and Bigburst
traces, the execution horizons with smaller sizes cause severe drops in the system performance for the
solver approach.

Figure 9. Reward Delta values of static approach for different execution horizon sizes.

The Reward Delta values for the static approach in Figure 9 are inline with our observation regarding
the correlation between the runtime overhead of the approach and the best performing execution horizon
size. Since the static approach has no runtime overhead due to its design-time predictions (see Section 5.3),
for the same input trace, it requires smaller or the same size for the best-performing execution horizon
compared to the u-driven approach which, as shown in [43], introduces a small overhead at runtime.

For the same reason, the differences between the best performing execution horizon sizes are even
larger if we compare the static approach (Figure 9) to the solver approach (Figure 8). We show in [43] that
the solver approach has a considerably larger runtime overhead compared to the static approach.

The results presented in Figures 7–9, validate the first part of the Hypothesis 3. The performance
of the SHS, employing any of the studied self-healing approaches, either with design-time or runtime
predictions for planning, is affected by tuning the execution horizon size.

II. Performance Loss of SHS due to the Wrong Choice of Execution Horizon Size

In the following we study the extent of the performance loss caused by the wrong assumptions about
the characteristics of the input trace (i.e., second part of Hypothesis 3). To this end, we compute the
Reward Loss for each approach caused by the wrong deployment-time choices regarding the employed
execution horizon size. For each of the u-driven, solver, and static approaches, using Equation (2),
Reward Loss values are computed and presented in Tables 9–11 respectively. The deployment-time
decisions are presented as (Tracei , execution horizon size = j) pairs. This indicates that at deployment-time,
j is chosen as the size of the execution horizon for the self-healing approach, since the input trace is assumed
to be Tracei. If the assumptions about the characteristics of the input are incorrect, i.e., the runtime trace
has different characteristics than Tracei, then the deployment-time choice of the execution horizon size
does not best fit the runtime trace and results in reward loss.

The results presented in Tables 9–11 show that for all the self-healing approaches and a given input
trace, if the execution horizon size is tuned based on the wrong assumptions regarding the characteristics
of the input trace, the SHS loses reward. For instance, in Table 9, if the input trace (i.e., runtime trace) is

Computers 2020, 9, 16 22 of 32

Uniform, while the execution horizon size is tuned based on the assumptions for the Bigburst trace, the
SHS will lose 85% of its reward.

Table 9. Reward Loss of u-driven approach compared to the best performing execution horizon sizes for
different traces.

Deployment-Time Decision
(Runtime Trace, Best Performing Execution Horizon Size)

(Uniform, 1) (Small Burst, 2) (Grid’5000, 3) (Big Burst, 8)

(Uniform, 1) 0 −60% −35% −16%
(Small Burst, 2) −67% 0 −34% −15%
(Grid’5000, 3) −69% −22% 0 −14%
(Big Burst, 8) −85% −48% −36% 0

Table 10. Reward Loss of solver approach compared to the best performing execution horizon sizes for
different traces.

Deployment-Time Decision
(Runtime Trace, Best Performing Execution Horizon Size)

(Uniform, 3) (Smallburst, 12) (Grid’5000, 28) (Bigburst, 35)

(Uniform, 3) 0 −297% −385% −110%
(Smallburst, 12) −575% 0 −291% −102%
(Grid’5000, 28) −100% −91% 0 −63%
(Bigburst, 35) −100% −91% −74% 0

Table 11. Reward Loss of static approach compared to the best performing execution horizon sizes for
different traces.

Deployment-Time Decision
(Runtime Trace, Best Performing Execution Horizon Size)

(Uniform, 1) (Smallburst, 1) (Grid’5000, 2) (Bigburst, 4)

(Uniform, 1) 0 0 −50% −40%
(Smallburst, 1) 0 0 −50% −40%
(Grid’5000, 2) −10% −30% 0 −35%
(Bigburst, 4) −23% −51% −6% 0

Our experiments show that the solver approach is the most sensitive approach to the wrong tuning
of the execution horizon. As shown in Table 10, the performance loss of the solver approach can be as
high as 575%. While the u-driven and static approach present more robustness against the wrongly tuned
execution horizons, the performance loss can be as high as 85% for the u-driven approach and up to 50%
for the static approach (see Table 9 and 11).

Our empirical results in this section suggest that wrong choices of the execution horizon size—due to
assumptions based on unreliable input traces—can result in sever performance loss of the SHS (up to 575%).
Therefore, it is essential that the tuning of the optimization parameters of the parameterized self-healing
approaches is done with respect to the characteristics of the input trace.

5.6.5. Validating Hypothesis 4

We refer to the set of input traces used at design-time to steer the choice of self-healing approaches as
S. The size of S (i.e., |S|) indicates the number of the employed input traces. Hypothesis 4 indicates that
in cases where no accurate information about the real operational environment of the SHS is available,
increasing |S| reduces the risk of making wrong choices of the employed self-healing approach. To validate

Computers 2020, 9, 16 23 of 32

Hypothesis 4, we investigate how the risk of making wrong choices about the self-healing approach
evolves as |S| increases.

In our empirical experiments, the upper bound for |S| is 5 (i.e., the number of the available input traces
introduced in Section 5.5). The likelihood of correct, inconclusive, and wrong decisions are calculated
for 1 ≤ |S| ≤ 5. Similar to the experiments in Section 5.6.3, the u-driven approach is excluded from the
experiments here, since it outperforms the solver and static approaches for all the available input traces
(see Table 4). In order to demonstrate Hypothesis 4, we need to have an alternating set of best performing
approaches.

A correct decision refers to the cases where the self-healing approach suggested by the traces in S is the
best performing approach for the runtime trace as well. The best performing approach (excluding u-riven
approach) for each of the five available input traces can be extracted from Table 4. We use the notation
S → approachj if all the traces in S suggest approachj to be chosen as the best performing approach.
Runtime trace→ approachi indicates that approachi is the best performing approach for the runtime trace.
For the set of considered self-healing approaches in this section, likelihoods of the correct decisions are
calculated as in Equation (4).

P(Correct) = P(S→ Solver)× P(Runtime trace→ Solver)

+P(S→ Static)× P(Runtime trace→ Static)
(4)

A wrong decision refers to a case where the employed self-healing approach, suggested by S, is not the
best performing approach for the runtime trace. The likelihood of the wrong decisions can be computed as
in Equation (5) for our set of considered approaches.

P(Wrong) = P(S→ Solver)× P(Runtime trace→ Static)

+P(S→ Static)× P(Runtime trace→ Solver)
(5)

An inconclusive outcome refers to the cases where the traces in S, for 2 ≤ |S| ≤ 5, do not suggest the
same self-healing approach to be employed as the best performing approach. Any case which is not correct
or wrong is categorized as an inconclusive outcome. Therefore, the likelihood of inconclusive cases can be
computed as in Equation (6). In the conducted experiments we assume that all the traces in S are equally
likely to accurately represent the runtime trace and also are equally likely to be included in S.

P(Inconclusive) = 1− P(Correct)− P(Wrong) (6)

Figure 10 presents the likelihoods of the correct, inconclusive, and wrong design-time decisions
for 1 ≤ |S| ≤ 4. We excluded the results for |S| = 5, as they are similar to the case |S| = 4. For
|S| = 1, where the decision for the choice of self-healing approach is steered by only one input trace,
the solver approach is chosen as the best performing approach for the Single, Uniform, and Smallburst
traces (see Table 4). Therefore, P(S → Solver) = 60%. For |S| = 1, since the choice of the self-healing
approach is made only base on one input trace, P(Runtime trace → Solver) = P(S → Solver) = 60%. If
Grid’5000 or Bigburst trace steer the choice of the self-healing approach at design-time, the static approach
is chosen as the best performing approach with 40% likelihood (i.e., P(S→ Static) = 40%). In this case
also P(Runtime trace → Static) equals P(S → Static) = 40%. Employing Equations (4)–(6) for |S| = 1
results in 52% likelihood of the correct decisions, while there is a risk of 48% to make wrong decisions.
As the case |S| = 1 contains only one trace in the set S, it does not lead to an inconclusive situation, as
depicted in Figure 10.

Computers 2020, 9, 16 24 of 32

Employing two input traces (i.e., |S| = 2) reduces the likelihood of the wrong decisions to 18%;
the likelihood of the correct decisions also drops to 22%; and 60% of the cases are reported as inconclusive.
Adding one more trace to S (|S| = 3) reduces the likelihood of the wrong decisions to 4%. Correct decisions
are observed with 6% likelihood, and in 90% of the cases the outcome of the set S is inconclusive.

For |S| = 4, the likelihoods of both wrong and correct decisions drop to zero, and the only possible
outcome is inconclusive (i.e., likelihood of 100%). As elaborated earlier, the inconclusive output for
S indicates that the traces in S do not suggest the same best-performing self-healing approach. Our
experiments show that by increasing |S|, the likelihood of wrong decisions drops to zero. However,
increasing |S| eventually results in only achieving an inconclusive output. The objective behind increasing
|S| is to reduce the risk of making wrong decisions, and our experiments confirm this claim. In addition,
we argue that inconclusive output for S is also beneficial, as it prevents wrong choices.

Figure 10. Likelihood of design-time decisions in relation to the number of employed input traces
for evaluation.

We argue that the large likelihood of inconclusive output for large |S| values is due to the limitations of
our empirical experiments and the restricted number of the available input traces. If the input space of the
SHS is represented more fine grained with considerably more input traces, the likelihood of inconclusive
output for S can be expected to decrease respectively, since it is more likely that traces with similar
characteristics are included in the set S. However, in our experiment for |S| = 4, since traces with extreme
differences in their characteristics are included in S (e.g., Bigburst and Single), it is expected to observe
inconclusive outputs.

The results of Figure 10 confirm that as the number of the considered input traces to steer the choice of
the self-healing approach (i.e., |S|) increases, the risk of making wrong decisions drops considerably (from
48% to zero in our experiments). In addition, increasing |S| supports robustness claims for the performance
measurements, as it allows multiple measurements of the system under evaluation in presence of various
volatile input conditions (see Section 2.1).

5.6.6. Threats to Validity

Internal Validity

Threats to internal validity concern how we performed the experiments and interpreted the results.
We rule out any experimentation bias and selection bias, as the set of employed self-healing approaches and
failure traces used for the empirical assessments were developed in our former works and independent
of the experiments in this paper. Our experiments in [43,58] indicated that the u-driven approach
outperforms the solver and static approaches, and the experiments conducted in this study confirm
this finding; however, this did not cause any bias in the experiments and the interpretation of the results, as
comparing the optimality of the approaches regarding the reward is not the subject of this study. Moreover,

Computers 2020, 9, 16 25 of 32

the experiments are conducted and repeated several times using the controlled simulation environment
mRUBiS [12] following the benchmark guidelines proposed by [73] to obtain trustworthy measurements
and results.

External Validity

Threats to external validity may restrict the generalization of our findings outside the scope of our
experiments. Such threats are the use of only one system under evaluation, the specific failure traces, and
the three self-healing approaches. To mitigate these threats, we used mRUBiS equipped with self-healing
properties as the system under evaluation, which allows the injection of generic failure traces. We can
consider mRUBiS as a generic and representative exemplar for self-healing.

The choice of the traces is intended to provide a reasonable representation of the potential spectrum
of failure occurrence characteristics. Employing real world traces and traces statistically derived from real
data to cover the edge cases and extreme characteristics allowed us to mitigate the threat of generalization
of the results. However, certain measurements, such as performance loss are heavily affected by the
characteristics of the failure occurrences, and thus the reported measurements cannot be generalized, as
they can be considerably lower or higher in the presence of failure traces with different characteristics than
the ones applied in this paper. Therefore, generalizations of the measurements are only justified for the
studies where the considered traces can be represented by the traces we applied in this study.

Different sources and types of failures can result in different characterizations of the failure traces
which are not covered in this study. Completeness of the employed set of traces is not the claim of this
study. Our goal is to cover a large spectrum of input traces in order to emphasize that these characteristics
have an impact on the performance of SHS.

The employed self-healing approaches are limited, and as a result, generalization of the findings
cannot be a claim of this study. However, the selected self-healing approaches are shown in our previous
works [43,58] to fairly represent the space of self-healing approaches as they spread between the two
edge cases: the static approach is a non-optimal cost-effective approach with minimal runtime overhead,
while the solver approach typically achieves optimal rewards but introduces large runtime overhead.
Considering these edge cases, the u-driven approach is the case where these two edge cases meet and is
shown to be both optimal and cost-effective. Another threat could be a selection bias to the choice of the
self-healing approaches, as we only considered rule-based approaches. However, the decision enables
comparability between the employed approaches. Overall, as there is no claim regarding the specific
approach employed or the coverage of the complete spectrum of self-healing approaches, our findings are
not affected by these limitations.

Construct Validity

The major threats to construct validity are the correctness of the simulation environment, our
implementation of the self-healing approaches, and our choice of the failure traces. To address these
threats, we used mRUBiS as our simulation environment, which has been accepted as an exemplar by the
research community on self-adaptive software and has been extensively tested by students in the scope of
four courses on self-adaptive software. The soundness of the employed self-healing approaches has been
confirmed in our previous works [43,54,58]. Since the employed utility functions are the same for all the
considered self-healing approaches, the specific way of constructing these utility functions is not a threat to
the validity of the experiments, as none of the claims depend on the specific utility function or the absolute
values of the measured reward. Therefore, reward is a proper measurement for the system performance.

Computers 2020, 9, 16 26 of 32

6. Discussion

The conducted systematic literature review followed by an analytical assessments in this paper
revealed that the evaluation of the SHS is treated naively by the current state-of-the-art. In order to obtain
robust, conclusive, and reliable results from evaluation of a SHS, multiple reproducible experiment runs
should be conducted.

Employing one failure trace as input for an under evaluation SHS (revealed by our SLR to be the
common practice among the investigated studies) only supports a single experiment run and does not
justify any claim on the robustness of the results. An individual failure trace only captures one possible
future for the simulated SHS and fails to cover a large and representative spectrum of the input space.
Employing such a trace results in inconclusive output for SHS under evaluation and lacks generality.
Studies on evaluation of SHS can have generic credibility claims only if the results are tested for robustness
in the presence of a large spectrum of the input space during multiple reproducible experiments. Therefore,
multiple failure traces with volatile characteristics are required to support the required number of the
experiments and improve the evidence.

Besides the outcome of the analytical assessment, the empirical assessment of Hypothesis 1 indicates
that, even for probabilistic traces, wrong assumptions regarding the characteristics of the input trace can
result in large prediction errors for performance of the self-healing approaches. Therefore, absolute
performance predictions seem possible only if recorded real failure traces of enormous length or
probabilistic traces fitted to real data are available. However, for less demanding design-time decisions
such as the selection of alternative self-healing approaches, the empirical assessment of Hypothesis 2
indicates that having wrong assumptions regarding the characteristics of the failure occurrences can
result in disadvantageous design-time decisions. Furthermore, for deployment-time decisions concerning
optimization parameter tuning, the empirical assessment of Hypothesis 3 indicates that even if we
only employ the evaluation for the decisions concerning the parameter tuning, employing the wrong
characteristics for the occurrence of failures can result in disadvantageous deployment-time decisions.
Finally, the empirical assessment of Hypothesis 4 indicates that employing multiple alternative input traces
with volatile characteristics of the occurrence of failures can reduce the risk of premature disadvantageous
design-time decisions.

Required Improvements

Conducting multiple reproducible experimental runs under controlled circumstances is required
to obtain robust, conclusive, and reliable results from evaluation of a SHS. Generic credibility claims of
the studies on evaluation of SHS are only justified if the results are tested for robustness in the presence
of large spectrum of the input space. Therefore, multiple failure traces with volatile characteristics are
required to support the claim and improve the evidence.

Taking into account that: (I) the characteristics of the SHS environment are always only known to a
limited extend due to the usually rare nature of failures, (II) the characteristics of the SHS environment are
also subject to change over time, and (III) we are interested in a robust solution that also performs well for
all kinds of situations, it seems necessary to consider multiple alternative probabilistic traces when using
evaluation to guide design-time and deployment-time decisions.

Moreover, the development of more competent self-healing approaches can be beneficial in mitigating
the identified limitations. The findings of the experiments validating Hypothesis 2, Hypothesis 3, and
Hypothesis 4 indicate that developing approaches that perform reasonably well in the presence of a large
range of input traces (e.g., u-driven approach, see Table 4) which also do not present large sensitivity
to the parameter tuning, or do not need tuning parameters, can help to reduce the observed problems.

Computers 2020, 9, 16 27 of 32

However, this solution is not trivial, as it requires developing self-healing approaches that perform best
under various volatile circumstances, and their performances cannot be further improved by tuning.

Secondly, inspired by the observations concerning the validation of Hypothesis 2 and Hypothesis 4,
combining multiple self-healing approaches via a higher-order self-adaptive logic that selects the best
performing approach for a given situation (e.g., select at runtime the best performing approach for a
given FGS) can address the problem. Analogously, the observations concerning Hypothesis 3 indicate that
employing a higher-order self-adaptive logic that selects the best performing parameter value for a given
situation (e.g., tuning the parameter at runtime for given FGS) can help. Overall, similar to the rationale
behind developments towards self-adaptive systems, delaying an activity—classically done offline either
at design-time or deployment-time—to runtime may be beneficial, as at runtime more accurate information
is available.

7. Conclusions and Future Work

Our SLR on the state-of-the-art for evaluating SHS revealed that while simulation-based experiments
are pursued in 97% of the studies, only a few (two papers) use multiple input traces with volatile
characteristics in their simulated evaluations. Our findings suggest that proper design and evaluation of
SHS still remains an open issue, since critical elements for the design space of a SHS under evaluation are
often missing.

We demonstrate the impact of the identified limitation concerning the input for SHS under evaluation
through validating four hypotheses proposed in this paper. The hypotheses state that wrong assumptions
regarding the characteristics of the input trace can result in: (I) large prediction errors for performance of
self-healing approaches, and (II) disadvantageous design-time and (III) deployment-time decisions. They
further propose that (IV) employing multiple alternative input traces with volatile characteristics of the
occurrence of failures can reduce the risk of premature disadvantageous design-time decisions.

Our empirical assessments of the proposed hypotheses show that inaccurate assumptions regarding
the characteristics of the input failure trace of a SHS at design-time can result in up to 138% performance
prediction error of the self-healing approaches, and up to 51% performance loss, as they might result
in disadvantageous and premature choices of the self-healing approaches. The experiments further
demonstrate that wrong assumptions regarding the characteristics of the input trace at deployment-time
can cause up to 575% performance loss. Finally, the empirical assessment of the hypotheses suggest that
employing multiple input traces to steer the choice of the self-healing approaches at design-time reduces
the risk of premature wrong decisions by 48%.

In the face of our findings, we recommend improving efforts such that multiple reliable and
representative probabilistic failure traces supporting robustness testing of the measurements are
employed to both steer the design-time and deployment-time decisions and support credible and robust
measurements during SHS evaluation.

In future work, the authors plan to investigate mitigating the problem brought to light by this
paper through employing an additional layer of self-awareness to a SHS which allows postponing
certain design-time and deployment-time decisions to runtime, and therefore reduces the likelihood
of performance loss due to inaccurate consideration of the potential input trace characteristics.

Author Contributions: Conceptualization, S.G. and H.G.; methodology, S.G. and H.G.; software, S.G.; validation,
S.G.; writing–original draft preparation, S.G. and H.G.; writing–review and editing, S.G. and H.G.; visualization, S.G.;
supervision, H.G.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Computers 2020, 9, 16 28 of 32

Abbreviations

The following abbreviations are used in this manuscript:

SAS self-adaptive system
SHS self-healing system

References

1. Schmerl, B.; Andersson, J.; Vogel, T.; Cohen, M.B.; Rubira, C.M.F.; Brun, Y.; Gorla, A.; Zambonelli, F.; Baresi, L.
Challenges in Composing and Decomposing Assurances for Self-Adaptive Systems. In SEfSAS III: Assurances;
de Lemos, R., Garlan, D., Ghezzi, C., Giese, H., Eds.; Springer: New York, NY, USA, 2017.

2. Farahani, A.; Nazemi, E.; Cabri, G.; Rafizadeh, A. An evaluation method for Self-Adaptive systems.
In Proceedings of the SMC ‘16 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
Budapest, Hungary, 9–12 October 2016; pp. 002814–002820. [CrossRef]

3. Raibulet, C.; Fontana, F.A.; Capilla, R.; Carrillo, C. Chapter 13—An Overview on Quality Evaluation of Self-Adaptive
Systems; Morgan Kaufmann: San Francisco, CA, USA, 2017; pp. 325–352.

4. Psaier, H.; Dustdar, S. A survey on self-healing systems: Approaches and systems. Computing 2011, 91, 43–73.
[CrossRef]

5. de Sousa, A.O.; Bezerra, C.I.M.; Andrade, R.M.C.; Filho, J.M.S.M. Quality Evaluation of Self-Adaptive Systems:
Challenges and Opportunities. In Proceedings of the XXXIII Brazilian Symposium on Software Engineering, Salvador,
Brazil, 2019; ACM: New York, NY, USA, 2019; pp. 213–218.

6. Weyns, D.; Iftikhar, M.U.; Malek, S.; Andersson, J. Claims and Supporting Evidence for Self-adaptive Systems:
A Literature Study. In Proceedings of the SEAMS ‘12 2012 7th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), Zurich, Switzerland, 4–5 June 2012; pp. 89–98.

7. Neti, S.; Muller, H.A. Quality Criteria and an Analysis Framework for Self-Healing Systems. In Proceedings of
the 2007 International Workshop on Software Engineering for Adaptive and Self-Managing Systems, Minneapolis,
MN, USA, 20–26 May 2007; IEEE Computer Society: Washington, DC, USA, 2007; p. 6. [CrossRef]

8. Pearson, S.; Campos, J.; Just, R.; Fraser, G.; Abreu, R.; Ernst, M.D.; Pang, D.; Keller, B. Evaluating and Improving
Fault Localization. In Proceedings of the ICSE ‘17 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), Buenos Aires, Argentina, 20–28 May 2017; pp. 609–620. [CrossRef]

9. Ghahremani, S.; Giese, H. Performance Evaluation for Self-Healing Systems: Current Practice & Open Issues.
In Proceedings of the 2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems
(FAS*W), Umeå, Sweden, 16–20 June 2019; IEEE Computer Society: Los Alamitos, CA, USA, 2019; pp. 116–119.

10. Kaddoum, E.; Raibulet, C.; Georgé, J.P.; Picard, G.; Gleizes, M.P. Criteria for the Evaluation of Self-* Systems.
In Proceedings of the SEAMS ‘10 2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems, Cape Town, South Africa, 1–8 May 2010; pp. 29–38. [CrossRef]

11. Gallet, M.; Yigitbasi, N.; Javadi, B.; Kondo, D.; Iosup, A.; Epema, D. A Model for Space-Correlated Failures in
Large-Scale Distributed Systems. In Euro-Par 2010—Parallel Processing: 16th International Euro-Par Conference,
Ischia, Italy, 31 August–3 September 2010; Proceedings, Part I; Springer: New York, NY, USA, 2010; pp. 88–100.

12. Vogel, T. mRUBiS: An Exemplar for Model-Based Architectural Self-Healing and Self-Optimization.
In Proceedings of the SEAMS ’18 International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, Gothenburg, Sweden, 28–29 May 2018; ACM: New York, NY, USA, 2018. [CrossRef]

13. Patikirikorala, T.; Colman, A.; Han, J.; Wang, L. A Systematic Survey on the Design of Self-adaptive Software
Systems Using Control Engineering Approaches. In Proceedings of the SEAMS ‘12 7th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, Zürich, Switzerland, 4–5 June 2012; pp. 33–42.

14. Avizienis, A.; Laprie, J.C.; Randell, B.; Landwehr, C. Basic Concepts and Taxonomy of Dependable and Secure
Computing. IEEE Trans. Dependable Secur. Comput. 2004, 1, 11–33. [CrossRef]

http://dx.doi.org/10.1109/SMC.2016.7844665
http://dx.doi.org/10.1007/s00607-010-0107-y
http://dx.doi.org/10.1109/SEAMS.2007.15
http://dx.doi.org/10.1109/ICSE.2017.62
http://dx.doi.org/10.1145/1808984.1808988
http://dx.doi.org/10.1145/3194133.3194161
http://dx.doi.org/10.1109/TDSC.2004.2

Computers 2020, 9, 16 29 of 32

15. Egyed, A. Architecture differencing for self management. In Proceedings of the 1st ACM SIGSOFT Workshop on
Self-Managed Systems, Newport Beach, CA, USA, 31 October–1 November 2004; ACM: New York, NY, USA,
2004; pp. 44–48.

16. Koopman, P. Elements of the Self-Healing System Problem Space. In Proceedings of the WADS 2003, Waterloo,
ON, Canada, 15–17 August 2013; pp. 31–36.

17. Heinis, T.; Pautasso, C.; Alonso, G. Design and Evaluation of an Autonomic Workflow Engine. In Proceedings of
the Second International Conference on Autonomic Computing (ICAC’05), Seattle, WA, USA, 13–16 June 2005;
pp. 27–38. [CrossRef]

18. Reinecke, P.; Wolter, K.; van Moorsel, A. Evaluating the adaptivity of computing systems. Perform. Eval. 2010,
67, 676–693. [CrossRef]

19. Cámara, J.; de Lemos, R.; Laranjeiro, N.; Ventura, R.; Vieira, M. Robustness-Driven Resilience Evaluation of
Self-Adaptive Software Systems. IEEE Trans. Dependable Secur. Comput. 2017, 14, 50–64. [CrossRef]

20. Kitchenham, B.A.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering;
Technical Report EBSE-2007-01; Keele University: Staffordshire, UK, 2007.

21. Riganelli, O.; Micucci, D.; Mariani, L. Policy Enforcement with Proactive Libraries. In Proceedings of the SEAMS
‘17 2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), Buenos Aires, Argentina, 22–23 May 2017; pp. 182–192. [CrossRef]

22. Schmitt, J.; Roth, M.; Kiefhaber, R.; Kluge, F.; Ungerer, T. Realizing Self-x Properties by an Automated Planner.
In Proceedings of the ICAC ‘11 8th ACM international conference on Autonomic Computing, New York, NY,
USA, 17–19 May 2011; pp. 185–186.

23. Ehlers, J.; van Hoorn, A.; Waller, J.; Hasselbring, W. Self-adaptive Software System Monitoring for Performance
Anomaly Localization. In Proceedings of the ICAC ‘11 8th ACM international conference on Autonomic
Computing, New York, NY, USA, 17–19 May 2011; pp. 197–200.

24. Salehie, M.; Tahvildari, L. A Coordination Mechanism for Self-healing and Self-optimizing Disciplines.
In Proceedings of the SEAMS ‘06 2006 International Workshop on Self-Adaptation and Self-Managing Systems,
Shanghai, China, 21–22 May 2006.

25. Camara, J.; de Lemos, R. Evaluation of resilience in self-adaptive systems using probabilistic model-checking.
In Proceedings of the SEAMS ‘12 7th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, Zürich, Switzerland, 4–5 June 2012; pp. 53–62.

26. Haupt, T. Towards Mediation-based Self-healing of Data-driven Business Processes. In Proceedings of the
SEAMS ‘12 7th International Symposium on Software Engineering for Adaptive and Self-Managing Systems,
Zürich, Switzerland, 4–5 June 2012; pp. 139–144.

27. Brown, A.B.; Redlin, C. Measuring the Effectiveness of Self-Healing Autonomic Systems. In Proceedings of
the Second International Conference on Autonomic Computing (ICAC’05), Seattle, WA, USA, 13–16 June 2005;
pp. 328–329. [CrossRef]

28. Griffith, R.; Kaiser, G. A Runtime Adaptation Framework for Native C and Bytecode Applications. In Proceedings
of the ICAC ’06 IEEE International Conference on Autonomic Computing, Dublin, Ireland, 2–6 June 2016;
pp. 93–104. [CrossRef]

29. Carzaniga, A.; Gorla, A.; Pezz‘e, M. Self-healing by Means of Automatic Workarounds. In Proceedings of the
SEAMS ‘08 2008 International Workshop on Software Engineering for Adaptive and Self-Managing Systems,
Gothenburg, Sweden, 28–29 May 2018; ACM: New York, NY, USA, 2018; pp. 17–24.

30. Griffith, R.; Kaiser, G.; L’opez, J.A. Multi-perspective Evaluation of Self-healing Systems Using Simple
Probabilistic Models. In Proceedings of the ICAC ‘09 6th International Conference on Autonomic Computing,
Barcelona, Spain, 15 June 2009; pp. 59–60.

31. Casanova, P.; Garlan, D.; Schmerl, B.; Abreu, R. Diagnosing Architectural Run-time Failures. In Proceedings of
the SEAMS ‘13 2013 8th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, San Francisco, CA, USA, 20–21 May 2013; IEEE Press: New York, NY, USA, 2013; pp. 103–112.

http://dx.doi.org/10.1109/ICAC.2005.21
http://dx.doi.org/10.1016/j.peva.2009.12.001
http://dx.doi.org/10.1109/TDSC.2015.2429128
http://dx.doi.org/10.1109/SEAMS.2017.9
http://dx.doi.org/10.1109/ICAC.2005.39
http://dx.doi.org/10.1109/ICAC.2006.1662386

Computers 2020, 9, 16 30 of 32

32. Angelopoulos, K.; Souza, V.E.S.; Mylopoulos, J. Dealing with Multiple Failures in Zanshin: A Control-theoretic
Approach. In Proceedings of the SEAMS 2014 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, Hyderabad, India, 3–4 June 2014; pp. 165–174.

33. Magalhaes, J.P.; Silva, L.M. SHOWA: A Self-Healing Framework for Web-Based Applications. Trans. Auton.
Adapt. Syst. 2015, 10, 4:1–4:28. [CrossRef]

34. Piel, E.; Gonzalez-Sanchez, A.; Gross, H.; Van Gemund, A.J. Spectrum-Based Health Monitoring for Self-Adaptive
Systems. In Proceedings of the SASO ‘11 5th IEEE International Conference on Self-Adaptive and Self-Organizing
Systems, Ann Arbor, MI, USA, 3–7 October 2011; pp. 99–108.

35. Di Marco, A.; Inverardi, P.; Spalazzese, R. Synthesizing Self-adaptive Connectors Meeting Functional and
Performance Concerns. In Proceedings of the SEAMS ‘13 2013 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, San Francisco, CA, USA, 20–21 May 2013; IEEE Press:
New York, NY, USA, 2013; pp. 133–142.

36. Albassam, E.; Porter, J.; Gomaa, H.; Menasce’, D.A. DARE: A Distributed Adaptation and Failure Recovery
Framework for Software Systems. In Proceedings of the ICAC ‘17 2017 IEEE International Conference on
Autonomic Computing (ICAC), Columbus, OH, USA, 17–21 July 2017; pp. 203–208. [CrossRef]

37. Kantert, J.; Spiegelberg, H.; Tomforde, S.; Hähner, J.; Müller-Schloer, C. Distributed Rendering in an Open
Self-Organised Trusted Desktop Grid. In Proceedings of the ICAC ‘15 2015 IEEE International Conference on
Autonomic Computing, Grenoble, France, 7–10 July 2015; pp. 267–272. [CrossRef]

38. Kwak, K.J.; Baryshnikov, Y.M.; Coffman, E.G. Self-Organizing Sleep-Wake Sensor Systems. In Proceedings of the
SASO ‘08 2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems, Venezia,
Italy, 20–24 October 2008; pp. 393–402. [CrossRef]

39. Ishikawa, H.; Courbot, A.; Nakajima, T. A Framework for Self-Healing Device Drivers. In Proceedings of the
SASO ‘08 2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems, Venezia,
Italy, 20–24 October 2008; pp. 277–286. [CrossRef]

40. Baresi, L.; Guinea, S.; Saeedi, P. Self-managing Overlays for Infrastructure-less Networks. In Proceedings of the
SASO ‘13 2013 IEEE 7th International Conference on Self-Adaptive and Self-Organizing Systems, Philadelphia,
PA, USA, 9–13 September 2013; pp. 81–90. [CrossRef]

41. Stojnic, N.; Schuldt, H. OSIRIS-SR: A Safety Ring for self-healing distributed composite service execution.
In Proceedings of the SEAMS ‘12 7th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, Zürich, Switzerland, 4–5 June 2012; pp. 21–26. [CrossRef]

42. Pournaras, E.; Ballandies, M.; Acharya, D.; Thapa, M.; Brandt, B. Prototyping Self-Managed Interdependent
Networks—Self-Healing Synergies against Cascading Failures. In Proceedings of the SEAMS ’18 International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, Gothenburg, Sweden, 28–29
May 2018; pp. 119–129.

43. Ghahremani, S.; Giese, H.; Vogel, T. Efficient Utility-Driven Self-Healing Employing Adaptation Rules for Large
Dynamic Architectures. In Proceedings of the 2017 IEEE International Conference on Autonomic Computing
(ICAC), Columbus, OH, USA, 17–21 July 2017.

44. Chan, K.S.M.; Bishop, J. The design of a self-healing composition cycle for Web services. In Proceedings of the
SEAMS ‘09 2009 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems, Atlanta,
GA, USA, 31 August 2009; pp. 20–27.

45. Duan, S.; Babu, S. Guided Problem Diagnosis through Active Learning. In Proceedings of the ICAC ‘08 2008
International Conference on Autonomic Computing, Chicago, IL, USA, 2–6 June 2008; pp. 45–54. [CrossRef]

46. Bohra, A.; Neamtiu, I.; Gallard, P.; Sultan, F.; Iftode, L. Remote repair of operating system state using Backdoors.
In Proceedings of the ICAC ‘04 International Conference on Autonomic Computing, New York, NY, USA, 17–18
May 2004; pp. 256–263. [CrossRef]

47. Klopper, B.; Honiden, S.; Meyer, J.; Tichy, M. Planning with Utility and State Trajectory Constraints in
Self-Healing Automotive Systems. In Proceedings of the SASO ‘10 2010 Fourth IEEE International Conference
on Self-Adaptive and Self-Organizing Systems, Budapest, Hungary, 27 September–1 October 2010; pp. 74–83.
[CrossRef]

http://dx.doi.org/10.1145/2700325
http://dx.doi.org/10.1109/ICAC.2017.12
http://dx.doi.org/10.1109/ICAC.2015.66
http://dx.doi.org/10.1109/SASO.2008.15
http://dx.doi.org/10.1109/SASO.2008.43
http://dx.doi.org/10.1109/SASO.2013.25
http://dx.doi.org/10.1109/SEAMS.2012.6224387
http://dx.doi.org/10.1109/ICAC.2008.28
http://dx.doi.org/10.1109/ICAC.2004.1301371
http://dx.doi.org/10.1109/SASO.2010.16

Computers 2020, 9, 16 31 of 32

48. Renz, W.; Preisler, T.; Sudeikat, J. Mesoscopic Stochastic Models for Validating Self-Organizing Multi-Agent
Systems. In Proceedings of the SASO ‘12 2012 IEEE Sixth International Conference on Self-Adaptive and
Self-Organizing Systems Workshops, Lyon, France, 10–14 September 2012; pp. 119–126. [CrossRef]

49. Audrito, G.; Casadei, R.; Damiani, F.; Viroli, M. Compositional Blocks for Optimal Self-Healing Gradients.
In Proceedings of the SASO ‘17 2017 IEEE 11th International Conference on Self-Adaptive and Self-Organizing
Systems (SASO), Tucson, AZ, USA, 18–22 September 2017; pp. 91–100. [CrossRef]

50. Ippoliti, D.; Zhou, X. A Self-tuning Self-optimizing Approach for Automated Network Anomaly Detection
Systems. In Proceedings of the ICAC ‘12 9th International Conference on Autonomic Computing, San Jose, CA,
USA, 16–20 September 2012; pp. 85–90.

51. Haesevoets, R.; Weyns, D.; Holvoet, T.; Joosen, W. A formal model for self-adaptive and self-healing organizations.
In Proceedings of the SEAMS ‘09 2009 ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems, Atlanta, GA, USA, 31 August 2009; pp. 116–125.

52. Anaya, I.D.P.; Simko, V.; Bourcier, J.; Plouzeau, N.; J’ez’equel, J.M. A Prediction-driven Adaptation Approach for
Self-adaptive Sensor Networks. In Proceedings of the SEAMS 2014 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, Hyderabad, India, 3–4 June 2014; pp. 145–154.

53. Jánicke, M.; Tomforde, S.; Sick, B. Towards Self-Improving Activity Recognition Systems Based on Probabilistic,
Generative Models. In Proceedings of the ICAC ‘16 2016 IEEE International Conference on Autonomic
Computing (ICAC), Wurzburg, Germany, 17–22 July 2016; pp. 285–291. [CrossRef]

54. Ghahremani, S.; Adriano, C.M.; Giese, H. Training Prediction Models for Rule-Based Self-Adaptive Systems.
In Proceedings of the ICAC ‘18 15th IEEE International Conference on Autonomic Computing, At Trento, Italy,
3–7 September 2018; pp. 187–192. [CrossRef]

55. C’amara, J.; Garlan, D.; Schmerl, B.; Pandey, A. Optimal Planning for Architecture-based Self-adaptation via
Model Checking of Stochastic Games. In Proceedings of the SAC ’15 30th Annual ACM Symposium on Applied
Computing, Salamanca, Spain, 13–17 April 2015; ACM: New York, NY, USA, 2015; pp. 428–435.

56. Kephart, J.O.; Walsh, W.E. An Artificial Intelligence Perspective on Autonomic Computing Policies.
In Proceedings of the IEEE POLICY’04 Fifth IEEE International Workshop on Policies for Distributed Systems
and Networks, Yorktown Heights, NY, USA, 7–9 June 2004; pp. 3–12. [CrossRef]

57. Ghahremani, S.; Giese, H.; Vogel, T. Towards Linking Adaptation Rules to the Utility Function for Dynamic
Architectures. In Proceedings of the IEEE SASO ‘16 2016 IEEE 10th International Conference on Self-Adaptive
and Self-Organizing Systems (SASO), Augsburg, Germany, 12–16 September 2016; pp. 142–143.

58. Ghahremani, S.; Giese, H.; Vogel, T. Improving Scalability and Reward of Utility-Driven Self-Healing for Large
Dynamic Architectures. ACM Trans. Auton. Adapt. Syst. 2020, 14, 12:1–12:41. [CrossRef]

59. Seborg, D.E.; Mellichamp, D.A.; Edgar, T.F.; Doyle, F.J. Process Dynamics and Control, 3rd ed.; John Wiley & Sons:
New York, NY, USA, 2011.

60. Wongpiromsarn, T.; Topcu, U.; Murray, R.M. Receding Horizon Temporal Logic Planning. IEEE Trans.
Autom. Control 2012, 57, 2817–2830. [CrossRef]

61. Li, L.; Negenborn, R.R.; Schutter, B.D. Intermodal freight transport planning—A receding horizon control
approach. Transp. Res. Part C Emerg. Technol. 2015, 60, 77–95. [CrossRef]

62. Castillo, X.; McConnel, S.R.; Siewiorek, D.P. Derivation and Calibration of a Transient Error Reliability Model.
IEEE Trans. Comput. 1982, C-31, 658–671. [CrossRef]

63. Tang, D.; Iyer, R.K. Dependability measurement and modeling of a multicomputer system. IEEE Trans. Comput.
1993, 42, 62–75. [CrossRef]

64. Iyer, R.K.; Butner, S.E.; McCluskey, E.J. A Statistical Failure/Load Relationship: Results of a Multicomputer
Study. IEEE Trans. Comput. 1982, C-31, 697–706. [CrossRef]

65. Heath, T.; Martin, R.P.; Nguyen, T.D. Improving Cluster Availability Using Workstation Validation.
SIGMETRICS Perform. Eval. Rev. 2002, 30, 217–227. [CrossRef]

http://dx.doi.org/10.1109/SASOW.2012.29
http://dx.doi.org/10.1109/SASO.2017.18
http://dx.doi.org/10.1109/ICAC.2016.22
http://dx.doi.org/10.1109/ICAC.2018.00031
http://dx.doi.org/10.1109/POLICY.2004.1309145
http://dx.doi.org/10.1145/3380965
http://dx.doi.org/10.1109/TAC.2012.2195811
http://dx.doi.org/10.1016/j.trc.2015.08.002
http://dx.doi.org/10.1109/TC.1982.1676063
http://dx.doi.org/10.1109/12.192214
http://dx.doi.org/10.1109/TC.1982.1676070
http://dx.doi.org/10.1145/511399.511362

Computers 2020, 9, 16 32 of 32

66. Zhang, Y.; Squillante, M.S.; Sivasubramaniam, A.; Sahoo, R.K. Performance Implications of Failures in Large-Scale
Cluster Scheduling. In Job Scheduling Strategies for Parallel Processing: 10th International Workshop, JSSPP 2004;
Revised Selected Papers; Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Eds.; Springer: Berlin/Heidelberg,
Germany, 2005; pp. 233–252. [CrossRef]

67. Iosup, A.; Dumitrescu, C.; Epema, D.; Li, H.; Wolters, L. How Are Real Grids Used? The Analysis of Four Grid
Traces and Its Implications. In Proceedings of the GRID ’06 7th IEEE/ACM International Conference on Grid
Computing, Barcelona, Spain, 28–29 September 2006; IEEE Computer Society: Washington, DC, USA, 2006;
pp. 262–269. [CrossRef]

68. Iosup, A.; Jan, M.; Sonmez, O.; Epema, D. On the Dynamic Resources Availability in Grids. In Proceedings of the
8th IEEE/ACM International Conference on Grid Computing, Austin, TX, USA, 19–21 September 2007.

69. Kondo, D.; Javadi, B.; Iosup, A.; Epema, D. The Failure Trace Archive: Enabling Comparative Analysis of
Failures in Diverse Distributed Systems. In Proceedings of the CCGRID ‘10 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, Melbourne, Australia, 17–20 May 2010; pp. 398–407.
[CrossRef]

70. Davison, A.C.; Kuonen, D. An Introduction to the bootstrap with applications in R. Stat. Comput. Stat.
Graph. Newsl. 2002, 13, 6–11.

71. Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman & Hall: New York, NY, USA, 1993.
72. Perino, N. A Framework for Self-healing Software Systems. In Proceedings of the ICSE ’13 2013 35th International

Conference on Software Engineering (ICSE), San Francisco, CA, USA, 18–26 May 2013; pp. 1397–1400.
73. Sestoft, P. Microbenchmarks in Java and C#; Lecture Notes; 2013. Available online: https://www.itu.dk/people/

sestoft/papers/benchmarking.pdf (accessed on 26 February 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/11407522_13
http://dx.doi.org/10.1109/ICGRID.2006.311024
http://dx.doi.org/10.1109/CCGRID.2010.71
https://www.itu.dk/people/sestoft/papers/benchmarking.pdf
https://www.itu.dk/people/sestoft/papers/benchmarking.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	On the Evaluation of SHS
	Problem Space of SHS Evaluation
	Classification of Input Types for Simulated SHS

	State-of-the-Art
	Research Questions
	Selection Method
	Search Term and Query String
	Searched Databases and Venues
	Inclusion and Exclusion Criteria

	Selected Studies
	Results
	RQ1
	RQ2

	Analytical Assessment
	Deterministic Failure Model
	Probabilistic Failure Model
	Recorded Real Failure Trace

	Empirical Assessment
	Case Study
	Measurements: Utility and Reward
	Spectrum of Considered Self-Healing Approaches
	Execution Horizon
	Selected Traces for Failure Occurrences
	Probabilistic Failure Model Fitted to Real Data
	Probabilistic Failure Models Partially Fitted to Real Data

	Hypotheses and Validation
	Validation of Hypotheses
	Validating Hypothesis 1
	Validating Hypothesis 2
	Validating Hypothesis 3
	Validating Hypothesis 4
	Threats to Validity

	Discussion
	Conclusions and Future Work
	References

