
computers

Article

Dynamic Boundary of P-Set and Intelligent
Acquisition for Two Types of Information Fusion

Shouwei Li 1 , Yao Xiao 1 and Kaiquan Shi 2,*
1 School of Business, Shandong Normal University, Jinan 250014, China; lishouwei@sdnu.edu.cn (S.L.);

xiaoyaosdnu@stu.sdnu.edu.cn (Y.X.)
2 School of Mathematics, Shandong University, Jinan 250100, China
* Correspondence: shikq@sdu.edu.cn

Received: 3 December 2019; Accepted: 13 January 2020; Published: 16 January 2020
����������
�������

Abstract: The development of information technology brings the challenge of data redundancy
and data shortage to information fusion. Based on the dynamic boundary characteristics of p-set,
this paper analyzes the structure and generation of p-augmented matrix, and then analyzes the
dynamic generation of information equivalence class, and then proposes an intelligent acquisition
algorithm of information equivalence class based on matrix reasoning. In addition, this paper
analyzes two types of information fusion, namely information redundancy fusion and information
supplement fusion. Then, the relationship among redundant information fusion, supplementary
information fusion, and information equivalence classes is analyzed. Finally, this paper presents the
application of intelligent acquisition of information equivalence class in information retrieval.
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1. Introduction

Information fusion widely exists in the biological world, and it is an intrinsic feature of organisms
from the ancient times to the present [1]. As a hot field of information science, information fusion
technology originated from the military application in the 1970s [2]. After the continuous research
climax from the early 1980s to now, the theory and technology of information fusion have been further
developed rapidly [3,4]. As an independent discipline, information fusion has been successfully
applied to military fields such as military command automation, strategic early warning and
defense, multi-target tracking, etc., and gradually radiated to many civil fields such as intelligent
transportation, remote sensing monitoring, e-commerce, artificial intelligence, wireless communication,
industrial process monitoring and fault diagnosis, etc.

Information fusion is a formal framework, which uses mathematical methods and technical
tools to synthesize different information, in order to get high-quality and useful information [5–8].
Compared with the single-source independent processing, the advantages of information fusion
include: improving detectability and credibility, expanding the space-time sensing range, reducing the
degree of reasoning ambiguity, improving the detection accuracy and other performance, increasing the
target feature dimension, improving spatial resolution, enhancing the system fault-tolerant ability and
white adaptability, so as to improve the whole system performance.

In the past 20 years, scholars have put forward a variety of methods for information fusion, and
achieved rich research results [9–12]. Among them, p-set theory and method is a unique application.
P-sets (P = packet) is a mathematical model with dynamic boundary features [13–15]. It is obtained by
introducing dynamic features into the finite common element set X, and improving it. The dynamic
boundary features of the p-set are as following: for the given finite set of common elements X, and the
attribute collection α of X, (a) If the attribute αi is added into α, α generates αF, α ⊆ αF, then some
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elements are removed from X, and the X boundary shrinks inward. We called that the internal p-set
XF is generated by X, XF ⊆ X. (b) If the attribute αi is deleted from α, α generates αF, αF ⊆ α,
then X is supplemented with some elements, and the X boundary is expanded outward. We call
that X generates the outer p-set XF, X ⊆ XF. (c) If you add some attributes into α and delete some
other attributes from α at the same time, some elements are deleted from X and some other elements
are added into X. We call that X generates a set pair (XF, XF) which is named by p-set. (d) If the
above process continues, X will generate multiple set pair (XF

1 , XF
1 ), (XF

2 , XF
2 ), · · · , (XF

n , XF
n ). We get

the dynamic boundary of p-set: XF
n ⊆ XF

n−1 ⊆ · · · ⊆ XF
2 ⊆ XF

1 , XF
1 ⊆ XF

2 ⊆ · · · ⊆ XF
n . In the p-set,

the attribute αi of the element xi satisfies the expansion or contraction of “conjunctive normal form”
in mathematical logic. For given the information (x) which is defined by X, inner p-information
(x)F, outer p-information (x)F and p-information ((x)F, (x)F) are defined by XF, XF and (XF, XF)
respectively, i.e., (x) = X, (x)F=XF, (x)F=XF, ((x)F, (x)F)=(XF, XF). We can speculate that p-sets can
be used to analyze dynamic information recognition and information fusion. In fact, p-sets are the
new mathematical methods and models for researching dynamic information recognition and fusion,
because each information (x) has an attribute set α, that is, the information (x) is associated with
its attribute set α. Given the existing researches that the p-set and p-augmented matrix have many
applications in China [16–38] and some applications of function p-sets, the inverse p-sets and the
inverse p-sets have made by many researchers [39–41].

In the actual data set, redundant information will inevitably appear. For example, the data
collected by the sensor at a higher frequency is redundant for data analysis with a longer time
span. Similarly, in information fusion, sometimes we need to add some information to improve
the accuracy of the analysis. Therefore, we need to pay attention to redundant information fusion
and supplementary information fusion. These two kinds of information fusion are more important
in the era of big data. In this paper, two kinds of information fusion algorithms are proposed by
analyzing p-augmented matrix reasoning from the dynamic boundary of p-set. The purpose of this
paper is to improve the dynamic boundary of the p-set and its generated p-augmented matrix for
information fusion based on the function p-sets, the inverse p-sets, and the function inverse p-sets.
Compared with other traditional methods, p-set theory and method start from the attributes of
data, through set operation, matrix reasoning, etc., obtain information equivalent classes, and mine
unknown information.

The researches given in this paper are as follows: (a) we give the existing fact of the structure
and logical features of p-sets, then we give the structure and generation method of p-augmented
matrix. These concepts are preparations for reading this paper. (b) We analyze the dynamic boundary
features and the generation of information equivalence classes of p-sets. (c) We give matrix reasoning
intelligent acquisition and intelligent acquisition algorithm of information equivalence class generated
by p-augmented matrix. (d) We analyze the relationships between the concepts of information
equivalence class and information fusion. We find that information equivalence class and information
fusion are equivalent. (e) We give the application of intelligent acquisition of information equivalence
class on information fusion, which can be used in unknown information discovery.

2. Preparatory Concepts

Some preparatory concepts are given in literature [13–41].

2.1. The Structure of P-Sets and Their Logical Characteristics

Given a finite set of ordinary elements X = {x1, x2, · · · , xq} ⊂ U, α ={α1, α2, · · · , αk} ⊂ V is a
attribute set of X. XF is called the internal p-set generated by X,

XF = X− X−, (1)
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where X− is called the F-deleted set of X,

X− =
{

xi|xi ∈ X, f (xi) = ui∈X, f ∈ F
}

. (2)

If the attribute set αF of XF satisfies

αF = α ∪
{

α′i| f (βi) = α′i ∈ α, f ∈ F
}

, (3)

where in (3), βi ∈ V, βi∈α, f ∈ F turns βi into f (βi) = α′i ∈ α; in (1), XF 6= φ, XF =
{

x1, x2, · · · , xp
}

,
p < q,p, q ∈ N+.

Given a finite set of ordinary elements X = {x1, x2, · · · , xq } ⊂ U, α = {α1, α2, · · · αk } ⊂ V is the
attribute set of X. XF is called outer p-set generated by X,

XF = X ∪ X+, (4)

where X+ is called F-supplemented set of X,

X+ =
{

ui|ui ∈ U, ui∈X, f (ui) = x′i ∈ X, f ∈ F
}

. (5)

If the attribute set αF of XF satisfies

αF = α−
{

βi| f (αi) = βi∈α, f ∈ F
}

, (6)

where in (6), αi ∈ α, f ∈ F turns αi into f (αi), f (αi) = βi∈α; in (6), αF 6= φ; in (4), XF = {x1, x2, · · · , xr},
q < r, q, r ∈ N+.

The finite ordinary element set pair composed by internal p-set XF and outer p-set XF is called
p-set generated by X, namely

(XF, XF). (7)

The finite ordinary element set X is called the base set of p-set (XF, XF).
It is obtained from (3) that

αF
1 ⊆ αF

2 ⊆ · · · ⊆ αF
n−1 ⊆ αF

n . (8)

Internal p-sets can be obtained accordingly from (1), (8) as following:

XF
n ⊆ XF

n−1 ⊆ · · · ⊆ XF
2 ⊆ XF

1 . (9)

It is obtained from (6) that
αF

n ⊆ αF
n−1 ⊆ · · · ⊆ αF

2 ⊆ αF
1 . (10)

Outer p-sets can be obtained accordingly from (4) and (10) as follows:

XF
1 ⊆ XF

2 ⊆ · · · ⊆ XF
n−1 ⊆ XF

n . (11)

By using (9) and (11), the set is obtained as follow:{
(XF

i , XF
j )|i ∈ I, j ∈ J

}
, (12)

which is called the p-set family generated by X, and (12) is the general form of the p-set.
Some theorems can be obtained from (1)–(7), (12) as following:
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Theorem 1. If F = F = φ, then the p-set (XF, XF) is restored to the finite ordinary element set X, namely

(XF, XF)F=F=φ = X. (13)

Theorem 2. If F = F = φ, then the p-set family {(XF
i , XF

j )|i ∈ I, j ∈ J} is restored to a finite set of ordinary
element set X, namely {

(XF
i , XF

j )|i ∈ I, j ∈ J
}

F=F=φ
= X. (14)

Special notes:

1. U is the finite element universe, and V is the finite attribute universe.
2. F = { f1, f2, · · · , fn}, F =

{
f 1, f 2, · · · , f n

}
are element or attribute transfer families; f ∈ F,

f ∈ F are element or attribute transfer; element (or attribute) transfer is a function concept
of transformation.

3. The characteristic of f ∈ F is that, for the element ui ∈ U, ui∈X, f ∈ F turns ui into
f (ui) = x′i ∈ X; for the attribute βi ∈ V, βi∈α, f ∈ F turns βi into f (βi) = α′i ∈ α.

4. The characteristic of f ∈ F is that: for element xi ∈ X, f ∈ F turns xi into f (xi) = ui∈X; for the
attribute αi ∈ α, f ∈ F turns αi into f (αi) = βi∈α.

5. The dynamic feature of the Equation (1) is the same as the dynamic feature of the inverse
accumulator T = T − 1.

6. The dynamic feature of Equation (4) is the same as the dynamic feature of the accumulator
T = T + 1. For example, in Equation (4), XF

1 = X ∪ X+
1 , let X = XF

1 , then XF
2 = XF

1 ∪ X+
2 =

(X ∪ X+
1 ) ∪ X+

2 , · · · , and so on.

2.2. The Existence Fact of P-Sets and Its Logical Characteristics

Suppose that X = {x1, x2, x3, x4, x5} is a set of finite ordinary elements in which there are 5
apples, α = { α1, α2, α3 } is a attribute set of X, α1=Red, α2=Sweet, α3=Red Fuji; ∀xi ∈ X, xi have the
attributes α1, α2 and α3. By using the “conjunctive normal form” in mathematical logic, we can obtain
the following facts:

Given the attribute αi for ∀xi ∈ X, αi = α1 ∧ α2 ∧ α3, i = 1, 2, 3, 4, 5,

1. If α4 = produced f rom Yantai, Chinese is added to α, α generates αF, α ⊆ αF, αF = α ∪ {α4} =
{α1, α2, α3, α4}, then x4, x5 are deleted from X, X generates internal p-set XF, XF ⊆ X, XF =

X − {x4, x5} = {x1, x2, x3}, the attribute αi for ∀xi ∈ XF satisfies αi = (α1 ∧ α2 ∧ α3) ∧ α4 =

α1 ∧ α2 ∧ α3 ∧ α4; i = 1, 2, 3.
2. If the attribute α3 is deleted in α, α generates αF, αF ⊆ α, αF = α − {α3} = {α1, α2},

then x6, x7 is supplemented to X, X generates an outer p-set XF, X ⊆ XF, XF = X ∪ {x6, x7} =
{x1, x2, x3, x4, x5, x6, x7}, the attribute αi for ∀xi ∈ XF satisfies αi = (α1 ∧ α2 ∧ α3)−∧α3 = α1 ∧ α2,
i = 1, 2, 3, 4, 5, 6, 7.

3. If you add some attributes into α and delete some other attributes from α at the same time,
α generates αF and αF, i.e., α generates (αF, αF), then X generates XF and XF, i.e., X generates a
p-set (XF, XF).

4. If the process of adding some attributes into α while deleting other attributes continues from α,
X generates multiple p-sets: (XF

1 , XF
1 ), (XF

2 , XF
2 ), · · · , (XF

n , XF
n ), which are the p-set family which

is showed as Equation (12).

For X = {x1, x2, · · · xq}, α = {α1, α2, · · · , αη , αη+1, · · · αk} is the attribute set of

X; for XF = {x1, x2, · · · xp}, αF = {α1, α2, · · · , αk, αk+1, · · · , αλ} is the attribute set of XF;
for XF = {x1, x2, · · · , xr}, αF = {α1, α2, · · · , αη} is the attribute set of XF; p < q < r, p, q, r ∈ N+;
η < k < λ, η, k, Λ ∈ N+. Some general conclusions can be obtained from the above facts 1–4
as following:



Computers 2020, 9, 3 5 of 15

1. The attribute αi for ∀xi ∈ X satisfies the attribute’s conjunctive normal form:

αi = ∧k
t=1αt. (15)

2. The attribute αi for ∀xi ∈ XF satisfies the expansion of attribute’s conjunctive normal form:

αi = (∧k
t=1αt) ∧λ

t=k+1 αt. (16)

3. The attribute αi for ∀xi ∈ XF satisfies the contraction of attribute’s conjunctive normal form:

αi = (∧k
t=1αt)−∧k

t=η+1αt. (17)

4. The attribute αi for ∀xi ∈ XF and the attribute αj for ∀xj ∈ XF satisfies the expansion and
contraction of attribute’s conjunctive normal form:

(αi, αj) = ((∧k
t=1αt) ∧λ

t=k+1 αt, (∧k
t=1αt)−∧k

t=η+1αt), (18)

where, αi=(∧k
t=1αt)∧Λ

t=k+1αt, αj = (∧k
t=1αt)−∧k

t=η+1αt; Equations (15)–(18) are the logical feature

of the p-set (XF, XF) .

2.3. Structure and Generation of P-Augmented Matrix

By using the structure of the p-set, the definition and structure of improved general augmentation
matrix A∗ are given in literature [38]:

Given a finite set of ordinary elements X = {x1, x2, · · · , xq}, xi (∀xi ∈ X) has n values yi,1, yi,2, · · · ,
yi,n; yj = (yi,1, yi,2, · · · , yi,n)

T is a vector generated by yi,1, yi,2, · · · , yi,n, the matrix A can be obtained
by using yi as the column. The A is called element value matrix generated by X

A =


Y1,1 y1,2 · · · y1,q
Y2,1 y2,2 · · · y2,q

...
...

. . .
...

Yn,1 yn,2 · · · yn,q

 . (19)

The AF is called the internal p-augmented matrix of A generated by internal p-set
XF =

{
x1, x2, · · · , xp

}
,

AF =


Y1,1 y1,2 · · · y1,p
Y2,1 y2,2 · · · y2,p

...
...

. . .
...

Yn,1 yn,2 · · · yn,p

 . (20)

The AF is called the outer p-augmented matrix of A generated by the outer p-set
XF = {x1, x2, · · · , xr},

AF =


Y1,1 y1,2 · · · y1,r
Y2,1 y2,2 · · · y2,r

...
...

. . .
...

Yn,1 yn,2 · · · yn,r

 . (21)

The matrix pair consisting of the inner p-augmented matrix AF and outer p-augmented matrix
AF is as following

(AF, AF). (22)
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The (AF, AF) is called p-augmented matrix of A generated by p-set (XF, XF), where,
in Equations (19)–(21), p < q < r, p, q, r ∈ N+. The outer p-augmented matrix AF of A is the
same concept as the ordinary augmentation matrix A∗ of A.

Figure 1 shows a two-dimensional visual representation of the p-set (XF, XF).
The following conclusions are directly obtained from Equations (1)–(7) and the Figure 1:

1. The X boundary is contracting inward when some attributes are added into the attribute set α of
X. That is, the X dynamically generates the internal p-set XF.

2. The X boundary is expanding outward when some attributes are deleted from the attribute set α

of X. That is, the X dynamically generates the outer p-set XF.
3. The boundary of X is contracting inward and expanding outward when some attributes are

added and some attributes are deleted in attribute collection α of X. That is, the X dynamically
generates p-set (XF, XF); the process of adding attributes and deleting attributes in α keeps going,
X dynamically generates p-set families.

U

XF

X

XF

Figure 1. The positional relationship between the finite ordinary element set X and the p-set (XF, XF),
XF ⊆ X ⊆ XF; where, X is represented by a solid line, XF and XF are indicated by dashed lines
respectively; the p-set is composed of XF and XF.

The concepts in this section are important for accepting the research and results given in
Sections 3–5. More features and applications of p-sets and p-augmented matrices can be found
from the works of literature [13–38].

Convention: X, XF, XF and (XF, XF are defined as the information (x), the inner p-information
(x)F, the outer p-information (x)F and the p-information ((x)F,XF) respectively; i.e., (x) = X, (x)F=XF,
(x)F = XF and ((x)F, XF)=(XF, XF). These concepts and symbols are used in Sections 3–6.

3. Dynamic Boundary of P-Sets and Dynamic Generation of Information Equivalence Classes

Theorem 3. (The dynamic generation theorem of αF-information equivalence class [x]F) if some attributes are
added into the attribute set α of information (x), α generates αF, α ⊆ αF, then the internal p-information (x)F

with the attribute set αF is the αF-information equivalence class [x]F generated by (x). That is

(x)F = [x]F . (23)

Proof. Suppose that (x)F is the internal p-information generated by the information (x), the attribute
set αF of (x)F is the relationship R of (x)F × (x)F, i.e., R = αF; Some equivalence class concepts can
be obtained: 1. For ∀xi ∈ (x)F, xi and xi have the relationship R, i.e., xiα

Fxj, so the reflexivity is

satisfied. 2. For ∀xi, xj ∈ (x)F, xi has a relationship R with xj, then Xj has a relationship R with xi;

i.e., if xiα
Fxj, then xjα

Fxi could be obtained, so the symmetry is satisfied. 3. For ∀xi, xj, xk ∈ (x)F,
if xi has a relationship R with xj, and xj has a relationship R with xk, then xi has a relationship R
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with xk; i.e., if xiα
Fxj, and xjα

Fxk, then the xiα
Fxk could be obtained. So the transitivity is satisfied.

From 1–3 we can obtained that: for ∀xi, xj, xk ∈ (x)F, αF satisfies with the reflexivity xiα
Fxi; the

symmetry xiα
Fxj ⇒ xjα

Fxi; and the transitivity xiα
Fxj, xjα

Fxk ⇒ xiα
Fxk. It is easy to get that: internal

p-information (x)F is the αF- information equivalence class [x]F generated by the information (x),
(x)F = [x]F .

Theorem 4. (The dynamic generation theorem of αF-Information equivalence class [x]F ) If some attributes are
deleted from attribute set α of information (x), α generates αF, αF ⊆ α, then the outer p-information (x)F with
attribute set αF is the αF- Information equivalence class [x]F generated by (x); that is,

(x)F = [x]F. (24)

The proof is similar to Theorem 1, so the proof of Theorem 2 is omitted.
From Theorems 3 and 4, the Theorem 5 can be obtained directly,

Theorem 5. (The dynamic generation theorem of (αF,αF)- information equivalence class [[x]F, [x]F] ) If some
attributes are added to and deleted from attribute set α of information (x) at the same time, α generates αF and
αF, αF ⊆ α ⊆ αF, then the p-information ((x)F, (x)F) with attribute set (αF, αF) is the (αF, αF)-Information
equivalence class [[x]F, [x]F] generated by(x); that is,

((x)F, (x)F) = [[x]F, [x]F]. (25)

Obviously, the information (x) with the attribute set α is the α-information equivalence class [x],
[x] = (x).

Some propositions can be obtained from Theorems 3–5 and Equations (1)–(7) in Section 2
as following:

Proposition 1. The dynamic generation of αF- information equivalence class [x]F is synchronous with the
boundary inward dynamic contraction of the internal p-set XF.

Proposition 2. The dynamically generation of αF- information equivalence class [x]F is synchronous with the
boundary outward expansion of the outer p-set XF.

Proposition 3. The dynamically generation of (αF, αF)-Information equivalence class [[x]F, [x]F] are
synchronous with the boundary inward dynamic contraction and outward dynamic expansion of the p-set
(XF, XF).

4. Matrix Reasoning and the Intelligent Acquisition Theorem of Information Equivalence Classes

Conventions: in Section 2, the internal p-augmented matrix AF, outer p-augmented matrix AF

and p-augmented matrix (AF, AF) are recorded as the internal p-matrix AF, the outer p-matrix AF and
p-matrix (AF, AF) respectively. It will not cause any misunderstanding.

Given internal p-matrix AF
k and AF

k+1, αF
k , αF

k+1 are the attribute set of AF
k , AF

k+1 respectively; AF
k ,

AF
k+1 and αF

k , αF
k+1 satisfy the following equation

i f AF
k+1 ⇒ AF

k , then αF
k ⇒ αF

k+1. (26)

Equation (26) is called internal p-matrix reasoning generated by internal p-matrix; AF
k+1 ⇒ AF

k is
called the internal p-matrix reasoning condition, αF

k ⇒ αF
k+1 is called the internal p-matrix reasoning

conclusion. Where, in Equation (26), AF
k+1 ⇒ AF

k is equivalent to AF
k+1 ⊆ AF

k ; αF
k ⇒ αF

k+1 is equivalent
to αF

k ⊆ αF
k+1.
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Given the outer p-matrix AF
k and AF

k+1, αF
k and αF

k+1 are the attribute set of AF
k , AF

k+1, respectively.

AF
k , AF

k+1 and αF
k , αF

k+1 satisfy the following equation

i f AF
k ⇒ AF

k+1, then αF
k+1 ⇒ αF

k . (27)

Equation (27) is called outer p-matrix reasoning generated by outer p-matrix; AF
k ⇒ AF

k+1 is called

outer p-matrix inference condition, αF
k+1 ⇒ αF

k is called the outer p-matrix reasoning conclusion.

Given p-matrix (AF
k+1, AF

k ) and (AF
k , AF

k+1), (α
F
k+1, αF

k ) and (αF
k , αF

k+1) are the attribute sets of

(AF
k+1, AF

k ), (AF
k , AF

k+1) respectively. (AF
k+1, AF

k ), (AF
k , AF

k+1), (α
F
k+1, αF

k ) and (αF
k , αF

k+1) satisfy the
following equation

i f (AF
k+1, AF

k )⇒ (AF
k , AF

k+1),

then (αF
k , αF

k+1)⇒ (αF
k+1, αF

k ).
(28)

Equation (28) is called p-matrix reasoning generated by p-matrix; (AF
k+1, AF

k ) ⇒ (AF
k , AF

k+1)

is called the p-matrix reasoning condition, (αF
k , αF

k+1) ⇒ (αF
k+1, αF

k ) is called p-matrix reasoning

conclusion. Where, in Equation (28), (AF
k+1, AF

k )⇒ (AF
k , AF

k+1) means that AF
K+1 ⇒ AF

K, AF
k ⇒ AF

k+1.

There are some special explanation: from Section 2, AF
k+1 is generated by the value of XF

k+1; AF
k+1

does not change the attribute set of XF
k+1; AF

k+1 and XF
k+1 have the same attribute set αF

k+1; AF
k is

generated by the value of XF
k ; AF

k does not change the attribute set of XF
k ; AF

k and XF
k have the same

attribute set αF
k .

From Equations (26)–(28), we can obtain

Theorem 6. (The intelligent acquisition theorem of αF-Information equivalence class [x]F) if the internal
p-matrix AF

k , AF
k+1 and αF-Information equivalence class [x]Fk , [x]Fk+1 satisfy

i f AF
k+1 ⇒ AF

k , then [x]Fk+1 ⇒ [x]Fk . (29)

Then, under the condition of AF
k+1 ⇒ AF

k , αF-information equivalence class [x]Fk+1 is acquired intelligently

from [x]Fk ; [x]Fk+1 ⊆ [x]Fk .

Proof. From Section 2, we obtained that: AF
k+1, AF

k are generated by (x)F
k+1, (x)F

k respectively; AF
k+1

and AF
k satisfy AF

k+1 ⊆ AF
k , that is, AF

k+1 ⇒ AF
k . By using Theorem 3, we get that: [x]Fk+1, [x]Fk are

the αF-information equivalent equivalence class generated by information (x). [x]Fk+1 and [x]Fk satisfy

[x]Fk+1 ⊆ [x]Fk , that is, [x]Fk+1 ⇒ [x]Fk . Under the internal p-matrix reasoning condition AF
k+1 ⇒ AF

k ,

[x]Fk+1 ⇒ [x]Fk is obtained, that is, [x]Fk+1 ⊆ [x]Fk . [x]Fk+1 is acquired intelligently in [x]Fk .

Theorem 7. (The intelligent acquisition theorem of αF-Information equivalence class [x]F) If the outer p-matrix
AF

k , AF
k+1 and αF-Information equivalence class [x]Fk , [x]Fk+1 satisfy

i f AF
k ⇒ AF

k+1, then [x]Fk ⇒ [x]Fk+1 . (30)

Then, under the condition of AF
k ⇒ AF

k+1, αF- information equivalence class [x]Fk+1 is acquired intelligently
by [x]Fk ; [x]Fk ⊆ [x]Fk+1.

The proof of Theorem 7 is similar to Theorem 6, so the proof is omitted.
From Theorems 6 and 7, we can obtained directly the following theorem:
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Theorem 8. (The intelligent acquisition theorem of (αF, αF)-information equivalence class ([x]F, [x]F))
If the p-matrix (AF

k+1, AF
k ), (AF

k , AF
k+1) and (αF, αF)-information equivalence class [[x]Fk+1 , [x]Fk ],

[[x]Fk , [x]Fk+1] satisfy

i f (AF
k+1, AF

k )⇒ (AF
k , AF

k+1),

then [[x]Fk+1 , [x]Fk ]⇒ [[x]Fk , [x]Fk+1].
(31)

Then under the condition of (AF
k+1, AF

k ) ⇒ (AF
k , AF

k+1), the [x]Fk+1, [x]Fk+1 in the (αF, αF)-information

equivalence class [[x]Fk+1, [x]Fk+1] will be acquired intelligently in [x]Fk and [x]Fk respectively. [x]Fk+1 ⊆ [x]Fk ,
[x]Fk ⊆ [x]Fk+1.

Corollary 1. If [x]F is the αF-information equivalence class generated intelligently by the internal p-matrix
reasoning, [x]F ⊆ (x), then the attribute set α of the (x) must be supplemented with some attributes αi.

The proof is obtained directly by Theorem 3, and the proof of Corollary 1 is omitted.

Corollary 2. If [x]F is the αF- information equivalence class generated intelligently by outer p-matrix reasoning,
(x) ⊆ [x]F, then the attribute set α of information (x) must be deleted some attributes αj.

The proof of Corollary 2 is similar to Corollary 1, and the proof is omitted.
From Corollaries 1 and 2, we can obtain directly the following corollary:

Corollary 3. If [[x]F , [x]F] is the (αF, αF)-information equivalence class generated intelligently by p-matrix
reasoning, [x]F ⊆ (x), (x) ⊆ [x]F, then the attribute set α of information (x) must be added into the attributes
αi and must be delete the attribute αj.

The intelligent acquisition algorithm of information acquisition class can be obtained by using the
concepts and results given in Section 4 (showed in Figure 2). It should be noted that the intelligent
algorithm diagram of αF- information equivalence class [x]Fk is similar to Figure 2. It is omitted.Computers 2020, xx, 5 10 of 15

Start

Input (x), α, k = 0

[x]F,∗ A α0 = α

k = k + 1

αF
k

[x]Fk

AF
k

i f AF
k ⇒ A, then [x]Fk ⇒ (x)

[x]Fk = [x]F,∗

End
YES

NO

Figure 2. The intelligent algorithm diagram of αF-information equivalence class [x]F. In the figure,

(x) is the given information; α is the attribute set of (x); [x]Fk is αF
k -information equivalence class;

[x]F,∗ is the given αF- information equivalence class; AF
k , AF

k+t are the internal p-matrix generated by

[x]Fk , [x]Fk+t respectively; A is the information value matrix generated by (x).

5. The Relationship Between Information Equivalence and Information Fusion

5.1. Two Types of Information Fusion

For example, there are two boxes A and B on the table; there are m grains of soybeans in box A,
and n grains of wheat in box B.

I. Children w puts n grains of wheat in box B into box A, then the m grains of soybeans mixed
with n grains of wheat.

II. Children w pour the mixture of m grains and n grains into a sieve. The wheat grains are filtered
by a sieve and separated from it, and m grains of soybean are left in the sieve.

If m grains of soybeans in box A are considered as m information elements xi, n grains of wheat in
box B are considered as n information elements xj, xi 6= xj. The two conclusions I∗ and II∗ are obtained
by using the concept of information fusion to understand the above facts I and II as following:

I∗. The n information elements xj are merged into A from outside A, which generates information
fusion (x)F. There are m + n information elements xk in (x)F; (x)F is the first type of information
fusion. The first type of information fusion is called information supplementation fusion.

II∗. The n information elements xj among the m + n information elements in box A are transfer

from inside to outside of box A, which generates information fusion (x)F. There are m information
elements xi in (x)F. (x)F is the second type of information fusion. The second type of information
fusion is called information redundancy fusion. The characteristics of the two types of information
fusion are exactly the same as those of the p-set (XF, XF). P-set is a new model and new method for
researching information fusion.

Figure 2. The intelligent algorithm diagram of αF-information equivalence class [x]F. In the figure,

(x) is the given information; α is the attribute set of (x); [x]Fk is αF
k -information equivalence class;

[x]F,∗ is the given αF- information equivalence class; AF
k , AF

k+t are the internal p-matrix generated by

[x]Fk , [x]Fk+t respectively; A is the information value matrix generated by (x).
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5. The Relationship between Information Equivalence and Information Fusion

5.1. Two Types of Information Fusion

For example, there are two boxes A and B on the table; there are m grains of soybeans in box A,
and n grains of wheat in box B.

I. Children w puts n grains of wheat in box B into box A, then the m grains of soybeans mixed with n
grains of wheat.

II. Children w pour the mixture of m grains and n grains into a sieve. The wheat grains are filtered by
a sieve and separated from it, and m grains of soybean are left in the sieve.

If m grains of soybeans in box A are considered as m information elements xi, n grains of wheat in
box B are considered as n information elements xj, xi 6= xj. The two conclusions I∗ and II∗ are obtained
by using the concept of information fusion to understand the above facts I and II as following:

I∗. The n information elements xj are merged into A from outside A, which generates information
fusion (x)F. There are m + n information elements xk in (x)F; (x)F is the first type of information
fusion. The first type of information fusion is called information supplementation fusion.

II∗. The n information elements xj among the m + n information elements in box A are transfer from

inside to outside of box A, which generates information fusion (x)F. There are m information
elements xi in (x)F. (x)F is the second type of information fusion. The second type of information
fusion is called information redundancy fusion. The characteristics of the two types of information
fusion are exactly the same as those of the p-set (XF, XF). P-set is a new model and new method
for researching information fusion.

5.2. The Relationship between Two Types of Information Fusion and Information Equivalence Classes

From the above simple example, we analyze the relationship among two types of information
fusion and information equivalence class.

The information supplementation fusion (x)F is called αF-information equivalence class [x]F

on the attribute set αF, if (x)F is the generation of the delete attribute in the attribute set α of
information (x).

The information redundancy fusion (x)F is called αF-information equivalence class [x]F on the
attribute set αF, if (x)F is the generation of the supplementary attribute in the attribute set α of
information (x).

The information fusion pair ((x)F, (x)F) is composed of information redundancy fusion (x)F and
information supplementation fusion (x)F). ((x)F, (x)F) is called the (αF, αF)-information equivalence
class [[x]F, [x]F] on the attribute set (αF, αF).

By using these concepts, we can get the following theorems.

Theorem 9. (The relationship theorem of information supplementation fusion and αF- information equivalence
class) Information supplementation fusion (x)F is the αF- information equivalence class generated by information
(x) if and only if ∀ xi, xj,Xk ∈ (x)F satisfy

1. reflexivity. xiα
Fxi

2. symmetry. xiα
Fxj ⇒ xjα

Fxi

3. transitivity. xiα
Fxj, xjα

Fxk ⇒ xiα
Fxk.

(32)

Theorem 10. (The relationship theorem of information redundancy fusion and αF-information equivalence
class) Information redundancy fusion (x)F is the αF-information equivalence class [x]F generated by information
(x) if and only if ∀xi, xj, xk ∈ (x)F satisfy
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1. reflexivity. xiα
Fxi

2. symmetry. xiα
Fxj ⇒ xjα

Fxi

3. transitivity. xiα
Fxj, xjα

Fxk ⇒ xiα
Fxk.

(33)

Theorems 9 and 10 can be obtained directly by using Theorem 3. The proof of Theorems 9 and 10
is omitted.

Corollary 4. Information redundancy and supplement fusion ((x)F, (x)F) is the (αF, αF)-information
equivalence class [[x]F, [x]F].

The following Propositions 4–6 are obtained directly by Theorems 9 and 10 and Corollary 4:

Proposition 4. Information redundancy fusion (x)F and αF-information equivalence class [x]F are two
equivalent concepts.

Proposition 5. Information supplement fusion (x)F and αF-information equivalence class [x]F are two
equivalent concepts.

Proposition 6. Information redundancy and supplement fusion ((x)F, (x)F) and the (αF, αF)-information
equivalence class [[x]F, [x]F] are two equivalent concepts.

6. Application on Intelligent Acquisition of Information Equivalence Class in Information
Fusion and Unknown Information Discovery

In order to be simple and easy to accept the conceptual and theoretical results given in Sections 3–5
of this paper, this section only gives the simple application of αF-information equivalence intelligence
acquisition in information redundancy fusion and unknown information discovery.

Suppose that x1, x2, x3, x4, x5, x6, x7 are PhD students enrolled in 2018, they will complete
their PhD within four years; x1 ∼ x7 come from different provinces in China; x1 ∼ x7 constitutes
information (x):

(x) = {x1, x2, x3, x4, x5, x6, x7} , (34)

∀xi ∈ (x) has the test scores of math, physics, computer, information technology: mathematics = y1,i,
physics = y2,i, computer = y3,i, information technology = y4,i; i = 1, 2, 3, 4, 5, 6, 7. A is the information
value matrix generated by (x):

A =



87 93 79 97
80 88 91 87
74 83 92 77
91 90 93 88
96 73 82 91
85 89 90 78
91 91 70 85


, (35)

where, for xi ∈ (x), the j column yj in A are 4 scores: y1,i, y2,i, y3,i, y4,i, which constitutes the vector
yj = (y1,i, y2,i, y3,i, y4,i)

T ; j ∈ (1, 2, 3, 4, 5, 6, 7), i = 1, 2, 3, 4, 5, 6, 7 .
The math, physics, computer, and information technology are defined as attributes α1 = math,

α2 = physics, α3 = computer, α4 = Information Technology respectively. α1, α2, α3, α4 constitutes the
attribute set α of (x):

α = {α1, α2, α3, α4} (36)
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Because each xi ∈ (x) has the attributes α1, α2, α3 and α4, the attribute αi of xi ∈ (x) satisfies the
attribute “conjunctive normal form” of Equation (15); that is,

αi = α1 ∧ α2 ∧ α3 ∧ α4 = ∧4
t=1αt. (37)

If we want to know which one in x1 ∼ x7 came from Shandong Province, China, we can add the
attribute α5= Shandong Province to the attribute set α, so α generates αF:

αF = α ∪ {α5} = {α1, α2, α3, α4, α5} . (38)

We get the (x)F with attribute set αF:

(x)F = (x)− {x3, x5, x6, x7} = {x1, x2, x4} . (39)

The attribute αi of ∀xi ∈ (x)F satisfies the attribute “expansion of conjunctive normal form” of
Equation (16), that is,

αi = (α1 ∧ α2 ∧ α3 ∧ α4) ∧ α5

= (∧4
t=1αt) ∧ α5

= ∧5
t=1αt.

From Theorem 3, we can obtain that: (x)F is the αF-information equivalence class [x]F generated
by (x); from Theorem 10 and Proposition 4, we obtain that (x)F is the information redundant fusion
generated by (x) by deleting x3, x5, x6, x7. The information value matrix A generate the internal
p-matrix AF:

AF =

87 93 79 97
80 88 91 87
91 90 93 88

 . (40)

From Equations (35) and (40), we get that A and AF satisfy AF ⊆ A, or AF ⇒ A;
Equations (35) and (40), Equations (34) and (39) satisfy the inner p-p-matrix reasoning respectively:
i f AF ⇒ A, then (x)F ⇒ (x). Because the inner p-matrix reasoning condition is satisfied, AF ⇒ A,
information redundancy fusion (x)F is intelligently acquired in the information (x); the students x1,
x2, x4 who come from the Shandong province are found in x1-x7.

From this simple example, we conclude that if the attribute α5 is added to the attribute set α of the
information (x), the redundant fusion (x)F of unknown information is discovered intelligently from
(x); the unknown information (x)F is hidden in (x) before the attribute α5 is added to α.

For x1, x2, x3, x4, x5, x6, x7, we have conducted the survey of students from the provinces
respectively, and the results of the survey are the same as those given in Equation (39).

7. Conclusions

For the p-set and its augmented matrix, some new conclusions are obtained from the analyses
given in this paper as following:

1. Under the condition that some attributes are added to the attribute set α of (x), some information
elements are deleted in (x), so (x) generate (x)F; that is, the boundary of (x) shrinks inward to
generate (x)F; by using the equivalence class concept in mathematics, we get that: (x)F is the αF-

information equivalence class [x]F generated by (x); the reasons are as following: the attribute set

αF for ∀xi, xj, xk ∈ [x]F satisfies the characteristics of the equivalence class: reflexivity, symmetry,

and transitivity. Obviously, (x) generates multiple αF-information equivalence classes [x]F1 , [x]F2 ,
· · · , [x]Fn under the condition of constantly supplementing attributes in α; so (x) continuously
deletes the information element xi to get multiple information fusions: (x)F

1 , (x)F
2 , · · · , (x)F

n ;
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each (x)F
i is called information redundancy fusion, i = 1, 2, · · · , n. we get a new concept of

information fusion: information redundancy.
2. Under the condition that some attributes are deleted from attribute set α of (x), some information

elements are added in (x), so (x) generates (x)F; that is, the boundary of (x) expands outward
to generate (x)F; by using the equivalence class concept in mathematics, we get that: (x)F is
the αF-information equivalence class [x]F generated by (x); the reasons are as following: the
attribute set αF for ∀xi, xj, xk ∈ [x]F satisfies the characteristics of the equivalence class: reflexivity,

symmetry and transitivity. Obviously, (x) generates multiple αF-information equivalence classes
[x]F1 , [x]F2 , · · · , [x]Fn under the condition of continually deleting attributes in α; so (x) constantly
supplement the information element xj to get multiple information fusions: (x)F

1 , (x)F
2 , · · · , (x)F

n ;
Each (x)F

j is called information supplementation fusion, j = 1, 2,· · · , n. We get a new concept of
information fusion: information supplementation fusion. Information redundancy fusion and
information supplementation fusion exist in many application researches of information fusion.

The literature cited is [1–8,42,43] gives many excellent researches on multiple information fusions.
By comparing with the literature [1–8,42,43]. The research given by the contributions of this article are
as following: two new concepts of information fusion are presented by using mathematical methods
to understand the concept and characteristics of information fusion: information redundancy fusion
and Information supplementation fusion. The concept of information equivalence class is presented
by using the new mathematical model: the p-set. Information equivalence class and information
fusion are two equivalent concepts, which is an important theoretical conclusion. Information fusion
intelligent acquisition method and intelligent acquisition algorithm are presented under the matrix
reasoning conditions. The results given in the paper are all new.
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