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Abstract: There is a strong correlation between the like/dislike responses to audio–visual stimuli and
the emotional arousal and valence reactions of a person. In the present work, our attention is focused
on the automated detection of dislike responses based on EEG activity when music videos are used
as audio–visual stimuli. Specifically, we investigate the discriminative capacity of the Logarithmic
Energy (LogE), Linear Frequency Cepstral Coefficients (LFCC), Power Spectral Density (PSD) and
Discrete Wavelet Transform (DWT)-based EEG features, computed with and without segmentation of
the EEG signal, on the dislike detection task. We carried out a comparative evaluation with eighteen
modifications of the above-mentioned EEG features that cover different frequency bands and use
different energy decomposition methods and spectral resolutions. For that purpose, we made use of
Naïve Bayes classifier (NB), Classification and regression trees (CART), k-Nearest Neighbors (kNN)
classifier, and support vector machines (SVM) classifier with a radial basis function (RBF) kernel
trained with the Sequential Minimal Optimization (SMO) method. The experimental evaluation
was performed on the well-known and widely used DEAP dataset. A classification accuracy of up
to 98.6% was observed for the best performing combination of pre-processing, EEG features and
classifier. These results support that the automated detection of like/dislike reactions based on EEG
activity is feasible in a personalized setup. This opens opportunities for the incorporation of such
functionality in entertainment, healthcare and security applications.

Keywords: physiological signals; electroencephalography (EEG); emotion recognition; detection
of negative emotional states; Linear Frequency Cepstral Coefficients (LFCC); Logarithmic Energy
(LogE); Power Spectral Density (PSD); Discrete Wavelet Transform (DWT); Naïve Bayes classification
(NB); classification and regression threes (CART); k-Nearest Neighbors classifier (kNN); Support
Vector Machine (SVM)

1. Introduction

The vast abundance of video recordings imposes the need for appropriate content selection that is
aligned with the preferences of individual users. This motivated research on automated recognition of
video liking based on facial expressions, peripheral physiological signals and EEG activity captured
from brain-computer interfaces (BCI). A brief summary of previous related work on EEG-based
emotion classification is tabulated in Table 1. Considerable research on the topic was carried by
Koelstra et al. [1–4], who have studied the relations between EEG signals, peripheral physiological
signals and facial videos for classification of affective states. In these studies, different forms of fusion
between features and modalities were examined; for example, the classification performance based on
different criteria for measurement of affective states—arousal, valence and liking. These studies report
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significant correlation between like/dislike ratings and valence in EEG signals [3]. Correlation between
liking and valence was also observed in [5]. Studies on automated recognition of liking based on
EEG signals have demonstrated an average classification accuracy comparable to the one obtained for
arousal and dominance [3] when peripheral modalities [1] and facial video [4] is concerned. Given
these observations, it can be stated that like and dislike responses are indicative of emotional states [6]
and their classification can be associated to the field of affective states classification. However, when
compared to arousal and valence, liking is less studied and rarely used to define emotional states [7]. In
the same time, like and dislike are traditionally employed in cases where reaction to media, such as
music, movies or images, is being studied.

Several large-scale studies on the performance and relevance of features on tasks regarding the
classification of affective states have been carried out. Jenke et al. [8] examined the relevance of a
high number of time-domain, frequency-domain, time-frequency domain features, as well as features
based on relations between different electrode measurement asymmetries (in total, 22,881 features).
Results from feature selection with ReliefF, Min-Redundancy-Max-Relevance and Effect-Size showed
that advanced feature extraction methods such as Higher Order Crossings (HOC), Higher Order
Spectra (HOS), and Hilbert-Huang Spectrum (HHS) outperformed other commonly used spectral
power bands. Although this study covered a wide range of features, other options such as LFCC
and DWT with wavelet functions from the Symmlet and Coiflet families were not included. Another
extensive study on emotion detection, reported by Zheng et al. [9], evaluated six features—PSD,
differential entropy (DE), asymmetry (ASM), differential asymmetry (DASM), rational asymmetry
(RASM) and differential causality (DCAU)—by using kNN, Linear regression, SVM classifier and a
newly developed Graph regularized Extreme Learning Machine (GELM). The experimental evaluation
of the models performed on the Database for Emotion Analysis using Physiological signal (DEAP) [1]
and on the SJTU Emotion EEG Dataset (SEED) showed that features obtained from the beta and gamma
frequency bands perform better than any other band. Thus, the authors concluded that beta and
gamma oscillations are more strongly connected to the discrimination between negative and positive
emotions, which is also supported by other studies on beta and gamma activity [10–12]. The higher
classification results reported for frequency bands, associated to cognitive activity, can be attributed to
the connection between cognition and the formation of emotions. Although traditional theories [13,14]
consider emotions to be solely physiological phenomena, some definitions of emotions [15] and
emotion theories [16–18] take the relation between cognition and emotion under consideration. The
influence of cognitive activity on the formation of emotions is most notable in the cases where the
evaluation of subjective work and media is considered. Often, the emotional impact of music and
movies [19,20] is defined using conceptual terms, such as playful, meditative, aesthetic and others.

In addition to the above, Yazdani et al. [21] studied the affective states induced through music
videos and used relative wavelet entropy as a feature on the emotion classification from EEG signals. By
means of an SVM classifier with RBF kernel function, they obtained an average classification accuracy
of 73.7% for a single trial, and 82% for single run classification. The average classification accuracy
reported for liking recognition were 70.2% and 74%, respectively. Hadjidimitriu et al. [22] have used
time-frequency processing of the EEG signal in order to compute the spectrogram, Zhao-Atlas-Marks
distribution and HHS. These were used as features on the liking classification task. Using a kNN
classifier, a classification accuracy of 86.52% ± 0.76% was reported.
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Table 1. Related work on the automated classification of emotional states in different setups.

Author(s) Features Classifier Accuracy

Bastos-Filho et al. [23] Signal statistics, PSD and HOC * kNN 70.1%

Nie et al. [24] Spectral Log. Energy of different frequency bands SVM 87.5%

Al-Nafjan et al. [25] PSD, frontal asymmetry features * DNN 7.513 (MSE)

Bos [26] Alpha and Beta bands, ratios and power FDA 92.3%

Brown et al. [27] Alfa power ratio features, Beta power features QDC, SVM, kNN 82.0% (3-class)
85.0% (2-class)

Li et al. [28] PSD of different bands of DBN features * SVM 66.9%

Murugappan [29] DWT (db4, db8, sym8, coif5) to calculate St. Dev, Power
and Entropy kNN 82.9%

Murugappan et al. [30] DWT (db4) to calculate statistical features of alpha band MLP-BP NN 66.7%

Rached et al. [31] DWT (db4) to calculate theta and alpha energy and
entropy * NN 95.6%

Yohanes et al. [32] DWT coefficients for different wavelets (coif., db, sym.) ELM, SVM 89.3%

Feradov [33] Log. Energy and LFCC * SVM 75.7%

Liu et al. [34] LFCC * kNN 90.9%

Wahab et al. [35] Statistical time domain features/ MFCC RVM, SVM, MLP, DT,
BN, EFuNN 97.8%

Othman et al. [36] MFCC, KDE MLP NN 0.05 (MSE)

Othman et al. [37] MFCC MLP NN 90%

* Research performed on the DEAP dataset.

In studies that use PSD as an EEG feature, traditionally all five—alpha, beta, gamma, delta and
theta—frequency bands are considered [8,23,24]. In some cases, low frequency bands were omitted [25]
or only specific bands (such as alpha and beta) were used [26,27]. The typical way of calculation for
PSD-based features is through a short-time Discrete Fourier Transform (stDFT) (in fact, Fast Fourier
Transform (FFT)) applied on non-overlapping frames of the segmented EEG signal [24,26]. STFT [8]
and Welch’s method are common alternatives [23,27,28]. An alternative approach for decomposition
of frequency bands is with DWT [29–31], where the DWT coefficients are used to calculate statistical
parameters, power and entropy for the bands. Directly using the wavelet coefficients for classification
was also evaluated in [32]. When compared to direct use of DFT and DWT coefficients, LFCC and
Mel-Frequency cepstral coefficients (MFCC) [33–37] provide a more compact representation of the
energy in the frequency bands of a signal. Cepstral coefficients were computed from the spectrum of
EEG signals with overlapping [33] or without overlapping [34] among subsequent frames.

These observations, as well as the previously discussed findings led us consider that PSD features
extracted from higher frequency bands of EEG signals and cepstral coefficients could prove to be
beneficial on the automated dislike detection task. Furthermore, DWT based features might also prove
to be beneficial for the automated recognition of dislike responses. For that reason, in this study we
evaluate the applicability of EEG features computed with different signal decomposition method, such
as DFT and DWT, and compute features that cover different bands with different spectral resolution.
Specifically, our study is focused on evaluating the performance of LogE, LFCC, DWT coefficients and
PSD computed either for an entire EEG recording or after segmentation of the signal to frames and
averaging of all frames.

2. Materials and Methods

We outline two different EEG preprocessing approaches (Section 2.1) and, in this context, we
evaluate (Section 3) the discriminative capacity of various EEG features (Section 2.2), which were
reported successful in previous related studies [23–25,28–34]. These EEG features are based on
the following:

(i) frequency decomposition with DFT, such as the PSD (Section 2.2.1), Logarithmic Energy (LogE)
(Section 2.2.2), and Linear Frequency Cepstral Coefficients (LFCC) (Section 2.2.3),
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(ii) DWT-based decomposition with four different wavelet functions, such as Daubechies of order 4
and 32, Coiflets of order 5 and Symmlets of order 8 (Section 2.2.4).

Next, in Section 2.3 we outline the DEAP database, and in Section 2.4 the common experimental
protocol used in all experiments.

2.1. Preprocessing of the EEG Signal

Here, we assume that each EEG channel is processed independently from the others. A convenient
way to preprocess the EEG signal is to remove artifacts and interferences due to other activity, detrend
and filter the signal, and then use the entire duration of the EEG recording in the feature computation
process. The entire recording would contain brain activity for the duration of the stimuli or longer,
which provides the basis for higher frequency resolution in the analysis of content in the subbands of
interest. However, when the recording is very long the temporal localization of events is worsened,
as the time localization ambiguity is proportional to the recording length.

A trade-off, which could improve the temporal localization resolution, would be to segment the
EEG signal into frames. The frame duration could be from one to several seconds, i.e., time which
is far smaller than the usual length of an EEG recording and, thus, temporal ambiguity decreases.
However, processing each frame separately and computing EEG features on frame level would mean
large number of EEG features with lower resolution in the frequency domain. Thus, we experiment
with an averaged EEG frame, computed as the mean of the corresponding samples of all frames. The
averaged frame is considered as a representation of the general EEG activity during the recording.
Here, we evaluate whether the averaged frame is useful in the detection of dislike responses.

Let us assume that si(n) corresponds to the i-th channel in a multichannel EEG signal. We can
either make use of the entire signal si(n) in order to compute the DFT or segment the signal to P short
frames xip(n), with 1 ≤ p ≤ P, which are processed one-by-one. The last will permit better temporal
resolution of the event localization in time and will reduce the risk of smearing short-living events.
However, frame-by-frame processing will bring higher complexity and higher computational demand.
In contrast, processing the entire signal si(n) at ones will provide better frequency resolution at the cost
of loss of temporal localization of events.

In brief, each channel of the EEG signal can be segmented into short frames using a sliding window
with overlap between two successive frames. The total number of frames per channel, obtained in
such a way is calculated as:

P =
⌈N −Nw + L

L

⌉
, (1)

where N is the total number of samples in si(n), Nw is the frame size in samples, L is the step size of
sliding in samples, and the operator d.e denotes that the result is rounded toward the smaller integer
number. In order to reduce the complexity, we make use of averaged frames, which are computed as
the average value of samples among all P frames, i.e.,

xi(n) =
1
P

P∑
p=1

xip(n), n = 1, 2, . . . , Nw. (2)

Here, xip(n) corresponds to the value of n-th sample in the frame with index p and xi(n) is the n-th
sample of the resulting averaged frame. In this way, the N values of the signal si(n) are represented
with only Nw values of the averaged frame, xi(n), where Nw << N usually holds true in the case of
EEG recordings.

2.2. Feature Extraction

In the EEG feature computation process, we assume that each channel of the EEG signal is
processed independently of the others. Furthermore, we denote the signal that is subject to feature
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extraction with s(n), regardless of whether segmentation and averaging is used, i.e., s(n) � xi(n),
or entire signal is used, i.e., s(n) � si(n).

2.2.1. Power Spectral Density

We compute the PSD following Stoika and Moses [38]. Specifically, after preprocessing, DFT is
performed on the time domain signal s(n) in order to compute the spectral coefficients S(k):

S(k) =
N−1∑
n=0

s(n) exp
(
−

j2πnk
N

)
, 0 ≤ n, k ≤ N − 1, (3)

Once the spectrum S(k) is computed, we can calculate the average power spectrum density (PSDAll) for
the entire bandwidth of interest [1 Hz, 45 Hz], excluding only the DC offset:

PSDAll =
1

2πN(K − 2)

K−2∑
k=1

∣∣∣S(k)∣∣∣2, (4)

or we can estimate the average PSD within a specific frequency range PSDHigh, such as

PSDHigh =
1

2πN(k2 − k1 + 1)

k2∑
k=k1

∣∣∣S(k)∣∣∣2, (5)

with 0 < k1 < k2 ≤ K − 2. In our case, PSDHigh corresponds to frequency range [20 Hz, 40 Hz].

2.2.2. Logarithmic Energy

The logarithmic energy (LogE) of the signal represents the sum of log-power spectrum coefficients
in specific set of spectral subbands. These frequency subbands are obtained after applying a filterbank
containing M triangular filters (6) on the power spectrum |S(k)|2, computed from the DFT (3). Each of
the filters, Hm, in the filterbank is defined as:

Hm(k) =



0 for k < fbm−1
(k− fbm−1)

( fbm− fbm−1)
for fbm−1 ≤ k ≤ fbm

( fbm+1
−k)

( fbm+1
− fbm )

for fbm ≤ k ≤ fbm+1

0 for k < fbm−1

(6)

where m, with 1 ≤ m ≤M, is the filter index, k, with 0 ≤ k ≤ N/2-1, is the frequency bin index in the
N-point DFT, fbm defines the boundaries of the m-th filter in terms of frequency bin index. The filters
are used for acquiring frequency subbands of the power spectrum from which the logarithmic energy
is calculated as

Sm = log10

N−1∑
k=0

∣∣∣S(k)∣∣∣2 ·Hm(k)

, m = 1, 2, . . . , M, (7)

where Sm is the output of the m-th filter, |S(k)|2 is the power spectrum value of the frequency bin k,
N is the DFT size, Hm denotes the m-th filter of the filter bank and M is the total number of filters. For
convenience, in the following discussion we refer to Sm as the LogE with suffix F10, F15, F20, F30, F45,
F60, depending on the number of filters in (6).
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2.2.3. Linear Frequency Cepstral Coefficients

Using the LogE values, Sm, (7), computed for the individual frequency subbands defined via (6),
we compute the LFCC by performing decorrelation by means of the Discrete Cosine Transform (DCT):

LFCC(r) =
M∑

m=1

Sm

(
r(m− 0.5)

B

)
, r = 0, 1, . . . , R− 1, (8)

where r is the LFCC index, and R ≤M is the total number of unique LFCC that can be computed.

2.2.4. Discrete Wavelet Transform Based Features

These EEG features are computed following the DWT implementation in [39]. On each level of
decomposition, we obtain the approximation (9) and details (10),

A = Wφ[ j0, k] −
1
√

M

∑
n

s(n) φ j0,k(n), (9)

D = Wψ[ j, k] −
1
√

M

∑
n

s(n) ψ j,k(n), j ≥ j0, (10)

where W[j,k] is the j-th wavelet coefficients from the k-th level of decomposition of the EEG signal
s(n), and φ j0,k and ψ j,k are the orthogonal basis functions used to separate each frequency band to
approximation and details.

We computed four variants of the EEG features based on the DWT decomposition. These
were implemented with four different wavelet functions, such as, Daubechies of order 4 and 32,
Coiflets of order 5 and Symmlets of order 8, which were used in previous related work on emotion
recognition [29–32]. We are interested to evaluate their performance on the dislikes detection task and
compare it with better-studied EEG features.

2.3. Dataset

The experimental evaluation was performed using EEG recordings from the DEAP dataset [1],
which consists of 32 subjects, each presented with 40 audio–visual stimuli. Specifically, musical videos
of songs, varying in style and genre, were used to induce affective reactions and each of the trial
recordings is rated by each subject based on his/her emotional response to the shown video clips. The
data is tagged in five dimensions, namely valance, arousal, dominance, liking and familiarity [40], based
on self-graded ranks by the subjects on a scale from one to nine, where rank one is the lowest and nine
is the highest. The familiarity rating provides the only exception to this ranking system, with the range
in this case being from one to five, with one being the lowest and five being the highest.

2.4. Experimental Protocol

The data split used for the purpose of our study is based on the liking ratings, where we consider
two categories—negative (dislikes) and other. Specifically, recordings with liking ratings lower than
four were tagged as dislikes, while recordings with liking rating higher than four were tagged as other.
Subjects, for which less than 20% of the total amount of data was tagged as negative, were excluded, in
order to avoid great misbalance between categories dislikes and other. Due to this pruning, the number
of subjects in our study was reduced to 24 [33,41]. These 24 subjects are shown in Table 2, where the
column subject ID value, Pn, with 1 ≤ n ≤ 32, corresponds to the n-th participant in the DEAP dataset.
The column dislikes in (%) shows the percentage of dislike responses for the corresponding subject.

A subject-dependent classification setup with a 10-fold cross validation was considered. Each
feature type described in Section 2.2 was computed for 60 sc. recordings with or without segmentation
(Section 2.1). For LFCC and LogE, we experimented with filterbanks consisting of 10, 15, 20, 30, 45 or



Computers 2020, 9, 33 7 of 11

60 filters. For the DWT-based features, we experimented with four wavelet functions. Thus, a total of
18 sets of EEG feature types were calculated in each of the two preprocessing setups.

Table 2. Percentages of recordings tagged with dislike for the selected subjects of the DEAP dataset.

# Subject ID Dislikes in (%) # Subject ID Dislikes in (%)

1 P2 30.0% 13 P20 22.5%
2 P4 40.0% 14 P21 70.0%
3 P5 27.5% 15 P22 67.5%
4 P6 20.0% 16 P23 42.5%
5 P11 45.0% 17 P24 20.0%
6 P12 40.0% 18 P25 32.5%
7 P13 22.5% 19 P26 22.5%
8 P14 22.5% 20 P28 32.5%
9 P15 27.5% 21 P29 35.0%

10 P16 55.0% 22 P30 45.0%
11 P17 27.5% 23 P31 22.5%
12 P19 27.5% 24 P32 45.0%

The experimental evaluation was carried out using the WEKA [42] implementations of four
classification algorithms, which have frequently been used in previous related studies. These are
the Naïve Bayes (NB), Classification and regression threes (REP), k-Nearest Neighbors (kNN), and
SVM classifier with a RBF kernel trained with the Sequential Minimal Optimization (SMO) method.
In all experiments, the default settings of the classifiers were used and 10-fold cross-validation was
performed. In Section 3, we report the average classification accuracy and standard deviation across
all 24 subjects.

3. Evaluation Results

Based on the common experimental protocol outlined in Section 2.4, we evaluated eighteen EEG
feature sets, computed in two signal pre-processing setups (Section 2.1). In Figures 1 and 2, we present
the average dislikes detection accuracy and the standard deviation in percentages, computed for all
24 subjects. Each feature set was evaluated with four classification methods: NB, REP, kNN, and
SMO (Section 2.4). Specifically, in Figure 1 we present the accuracy obtained for the EEG features
computed for averaged frames, and in Figure 2 the results obtained for features computed for an
entire EEG recording. As shown in the figures, the average classification accuracy varies in a wide
range depending on the specific combination of EEG features and classification method—between
53.8% and 98.6%. The lowest accuracy, 53.8%, is observed for the NB classifier with PSDAll features
calculated for the entire signal. The highest average classification accuracy, 98.6%, was observed
for the kNN classifier with WPT-db4 features computed for the entire signal. We observed identical
average detection accuracy, 98.5%, for the other three wavelet functions: db32, coif5, and sym8. The
classification accuracy of the REP tree is much lower because in the specific EEG feature sets, there are
no highly discriminative features that can provide adequate split on the top levels of the tree. The NB
classifier does not perform well due to the limited amount of training data.

Summarizing the results presented in Figures 1 and 2, the highest average classification accuracy is
observed for the kNN classifier, followed by SMO. We explain this observation with the ability of these
two classifiers to build robust models when the amount of training data is small. Because in the present
study we assume subject-specific dislikes detection, the amount of training data is small—classifiers are
trained with just 1152 feature vectors, distributed in the two categories according to Table 2.

Analyzing the average classification accuracy observed for the various EEG features, we point out
that LFCC perform well (accuracy above 90%) both when computed for an entire recording and for
an averaged frame. Due to the use of filterbank, the increased frequency resolution, which using an
entire EEG recording brings, does not lead to some advantage. For the LogE features, it is observed
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that LogE leads to a higher accuracy when calculated for the averaged frames, 87.5%, which is much
better than the one obtained for the entire signal, 75.9%. Using only the higher band of the spectrum,
i.e., PSDHigh decreases the accuracy, when compared to the entire bandwidth, PSDAll, regardless of
whether these are computed for an entire recording or for averaged frames.Computers 2020, 9, x FOR PEER REVIEW 8 of 11 
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Figure 2. The average detection accuracy for dislikes detection, shown in percentages, when the EEG
features were calculated from the entire recording, without segmentation.

The computation of DWT-based features for an entire recording, in our case 60 s, provides the
opportunity to observe the signal on larger time scales. The DWT decomposition of the signal provides
a mechanism for flexible time-scale localization of the components in an EEG recording, which clearly
benefits the detection of dislike reactions. Specifically, for the combination of kNN classifier and
DWT features, we observed classification accuracy in the range of 98.5% to 98.6%, regardless of the
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particular wavelet function. These results are in good conformance with the accuracy, 95.6% reported
in Rached et al. [31], for WPT-based features. The accuracy reported here is higher than the accuracy
reported in Murugappan [29], 82.9%, on a different experimental setup using the DWT with db4, db8,
sym8, coif5 wavelet functions to calculate features such as the standard deviation, power and entropy
of different frequency bands. The advantageous results obtained with the EEG features studied here
is due to their higher time-scale resolution and number of coefficients, when compared to previous
related work.

4. Conclusions

In the present study, we evaluated four types of EEG features in different modifications, which led
to eighteen EEG feature sets. These were evaluated in two different pre-processing setups, on the task
of automated detection of dislikes responses. A mean classification accuracy of up to 98.6% is reported
for the best performing classifier (kNN) and feature set (DWT-db4). The results reported in Section 3
are in good agreement with the accuracy reported in previous related work [29,31–35] on the DEAP
dataset, summarized in Section 1. Our experimental evaluation has shown an average classification
accuracy of 1–3% higher than the results reported in previous related work for the best performing
classifiers (kNN and SVM). These performed better than the other classification methods evaluated
here because as it is widely known kNN and SMO cope well (although in different manner) when the
amount of training data is small.

In conclusion, it is pointed out that the two signal preprocessing approaches considered here
serve as different representations of the EEG activity. Specifically, the averaged frames provide a
compressed representation of the EEG signal, which contains information about the entire recording.
The features based on the entire signal convey information about the activity during the period,
which the DFT-based features cannot capture. In contrast, the DWT-based features possess temporal
localization capability, and this is expressed in the much higher detection accuracy. Although
experimental evaluation has shown that EEG feature sets calculated using the entire signal show the
highest mean classification accuracy it might not be the ultimate choice in all application scenarios.
Computing the EEG features from an averaged frame allows for a substantial reduction of data size,
memory demand and computational complexity, which could make these a convenient trade-off choice
in practical applications that make use of automated detection of dislike responses.
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