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Abstract: The Internet of Things (IoT) has experienced constant growth in the number of devices
deployed and the range of applications in which such devices are used. They vary widely in size,
computational power, capacity storage, and energy. The explosive growth and integration of IoT in
different domains and areas of our daily lives has created an Internet of Vulnerabilities (IoV). In the
rush to build and implement IoT devices, security and privacy have not been adequately addressed.
IoT devices, many of which are highly constrained, are vulnerable to cyber attacks, which threaten
the security and privacy of users and systems. This survey provides a comprehensive overview of
IoT in regard to areas of application, security architecture frameworks, recent security and privacy
issues in IoT, as well as a review of recent similar studies on IoT security and privacy. In addition,
the paper presents a comprehensive taxonomy of attacks on IoT based on the three-layer architecture
model; perception, network, and application layers, as well as a suggestion of the impact of these
attacks on CIA objectives in representative devices, are presented. Moreover, the study proposes
mitigations and countermeasures, taking a multi-faceted approach rather than a per layer approach.
Open research areas are also covered to provide researchers with the most recent research urgent
questions in regard to securing IoT ecosystem.

Keywords: security; privacy; cyber-attack; threat; mitigations; risk; cryptography; vulnerability;
intrusion; encryption-key

1. Introduction

The Internet of Things (IoT) encompasses a wide range of application domains, including home,
health, manufacturing and supply chain, agriculture, transportation, city and utilities. Physical devices
in these domains are increasingly being connected to each other and the Internet [1]. These devices
include home IoT devices, such as smart door locks, thermostats and appliances, connected cars,
wearables, health-related devices, such glucose monitoring systems and pacemakers, industrial devices,
such as manufacturing sensor networks and supply chain radio frequency identification (RFID) tags,
agricultural devices, such as greenhouse sensors and irrigation controllers, and city services, such as
street lighting and water distribution systems [2].
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The IoT presents many benefits to individuals, organizations and municipalities alike. Devices
that make home life more convenient are available and inexpensive, and remote sensors can monitor
areas that are difficult to access [3]. Smart city IoT technology allows municipalities to track energy
consumption and monitor the environment [4]. In both hospital settings and remote care monitoring,
medical IoT devices can improve patient outcomes and reduce human errors [5]. The proliferation
of IoT devices across application domains has attracted interest on many fronts, including investors,
business and academia [3].

However, the IoT also presents challenges to security and privacy. Firstly, the hardware used to
power the IoT is very limited compared to traditional IT devices like desktops, laptops and smartphones.
IoT hardware has limited memory and processing capacity, from tens of kB of RAM at the lowest end
sensors, to devices like the Raspberry Pi that can run an operating system [6]. While traditional IT
devices can be updated, IoT devices usually do not allow updates by the user [7] and are also usually
not subject to regular security patches and updates [8]. Limited processing capacity also limits the
ability to run typical cryptographic protocols. The heterogeneity of device hardware and protocols
makes it difficult to have a unified security solution [7]. Secondly, the vast amount of data collected by
IoT devices gives rise to privacy concerns. New smart devices promise convenience and better living,
but the variety and quantity of user data collected, analyzed, transported and stored at all layers of the
IoT architecture is a vulnerability, allowing threats to user privacy.

A variety of approaches have been taken in defining layered IoT security architectures and
frameworks. Earlier research [7] suggested a three-layer model with Perception, Transportation
and Application layers where the Perception layer represents the physical sensors and actuators,
e.g., RFID tags, that interact with the physical world, the Application layer provides smart functionality
to the IoT users, and the Network layer transports information between the other two layers using
various wireless technologies. More recent research presents security architectures defining additional
layers. A Processing layer that represents an intelligent interface between the Application and Network
layers is added in [9], where information from the Physical layer is processed through services including
data mining, parallel computing and cloud computing. The authors of [10] present a five-layer security
architecture, with an End-User layer representing the IoT devices, an Edge Network layer with servers
that collect, process and provide storage for data from the devices, a Core Network layer that transports
the processed data from the Edge Network layer to a Service and Storage layer, with data servers,
software servers, and control servers. The data servers store the data processed on the edge network for
further analysis, the software servers hold applications and operating system images, and the control
servers manage the data and software servers; the fifth layer is a Management layer that provides overall
management of the Service and Storage layer. A six-layer end-to-end view of security architecture is
provided in [11], encompassing an application layer, a cloud layer, and information transmission layer,
a gateway information layer, an internal communications layer, and end device layer.

Attacks may target a specific layer of any security architecture framework because of vulnerabilities
in that layer. In this paper, we will review attacks and security challenges on the Perception (Physical)
layer, the Network layer and the Application layer. The IoT devices in the Physical layer are resource
constrained and may be in an open, unprotected environment, vulnerable to physical damage,
tampering and forgery attacks [7,12–14]. The Network layer is critical to the transport of information
between IoT devices and Application layer processes; Denial of Service (DoS) attacks can threaten the
availability of network services [15,16] and vulnerabilities in the wireless protocols lead to additional
security threats [13]. The Application layer that processes data from the IoT devices and provides smart
functionality to users is vulnerable to exploits of software errors, application protocol weaknesses and
permissions [13,16].

Security is of utmost importance in the IoT, especially in application domains that have systems
critical to individual and community safety [17]. For example, connected cars and smart transportation
systems need to be secure to prevent accidents and injury, as well as to protect the privacy of drivers
who might be tracked as they travel on the roads [18]. Medical and health monitoring devices need to
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be secure to ensure that the information the devices monitor, collect, or report is correct and that life
critical devices remain available and operating [19]. Researchers were able to breach an IoT-connected
camera and retrieve images [20]. This kind of security breach can pose a threat to both individual
privacy and corporate secrecy depending on the location of the camera. IoT devices can not only be the
target of attack, but they can be harnessed to attack another system [21], just as traditional computers
have been recruited into botnets to launch attacks.

There are three basic security requirements, confidentiality, integrity and availability, commonly
known as the Confidentiality, Integrity and Availability (CIA) triad [22]. These security principles
apply to the IoT as they do to the Internet as a whole [23]. If there is a loss of any one of these
basic requirements, there is some impact to the individual or organization involved. The National
Institute for Standards and Technology (NIST) provides definitions for Low, Moderate and High
potential impacts due to loss of confidentiality, integrity or availability in FIPS 199 [24]. A loss of
availability in one IoT application might not have the same impact as a similar loss in another IoT
application [25]. In addition to providing a taxonomy of attacks by Perception (Physical), Network,
and Application layers, we will consider the potential impact of attacks on the CIA triad according to
the NIST definitions in a representative IoT device.

While mitigation and countermeasures can be taken for a specific attack, because of the
interconnectedness and heterogeneity of the IoT network, a security strategy should take a more
comprehensive, multi- and cross-layer approach [7]. Trade-offs between functionality and constrained
device capabilities can be made across architecture layers [26–28]. Cryptography and encryption can
provide confidentiality and integrity of data on devices and of data as it is transported through the
network [29–31]. Blockchain networks have also been presented as a multi-layer countermeasure to
provide security to IoT [32,33]. End-to-end security is a comprehensive mitigation approach to protect
wireless communication between devices, adapted to the specific protocols in use [34]. Authentication
applies to all layers, to verify and identify devices prior to sending or receiving data [35] and user
identity, using various techniques, including access controls [36–39]. Given the heterogeneous nature
of the IoT environment, standardization of protocols across devices and networks can mitigate security
threats [30,36,40–45]. Addressing security countermeasures, including standardization, is a current
open area of research for IoT.

Contribution

In addition to discussing recent surveys on IoT security, this paper makes the following contributions:

• Review the latest related security and privacy similar studies in IoT;
• Discuss proposals for IoT security architectures and frameworks in recent literature;
• Provide a taxonomy of attacks on IoT;
• Present classification of attacks’ impacts according to NIST’s FIPS 199 definitions on loss of

Confidentiality, Integrity and Availability (CIA) due to attacks on select smart devices;
• Discuss a multi-faceted approach to mitigation and countermeasures in IoT security;
• Allocate a section on open research area pertain to IoT ecosystem.

The rest of this paper is organized into the following sections: Section 2 provides an overview
of IoT; related work is presented in Section 3; the need for security is explored in Section 4; Section 5
discusses IoT security architecture and frameworks; Section 6 provides a taxonomy of attacks, threats
and vulnerabilities in IoT and possible impact of attacks on CIA security objectives; mitigation and
countermeasures are discussed in Section 7; Section 8 reviews current open research areas; the paper
concludes and comments on future work in Section 9.
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2. IoT Overview

2.1. Internet of Things (IoT)

The desire to collect and capture data, exchange and share information automatically, remotely,
at any time and without interruption help push forward the creation of Internet of Things (IoT). IoT is
defined as a network of Internet-connected objects/devices with embedded sensors that have the ability
to collect and send or exchange data. Today, there is a plethora of devices that are interconnected but
with no network standard or clearly defined boundary.

Despite IoT’s future promise of many beneficial applications, there are grave concerns about the
security of IoT, especially with regards to the lack of privacy, insufficient user authentication and
authorization, and weak or non-existent data encryption [46].

With the arrival of IoT, it is of paramount importance to expediently develop and embrace
security-standards ensuring secure IoT-device design, connectivity, and accessibility. IoT will
undoubtedly be the next big thing in our digital age after connecting people through social networks [47].
IoT will provide the connectivity of people and Things (devices around them) and of the networks of
connected Things.

The world of IoT can be thought of as a “social network” for Things—connected devices, such that
interaction occurs, not just between humans and devices, but among devices themselves.

2.2. Application and Scope of Internet of Things

The benefits of IoT on our daily activities are evident. However, when the IoT was first adopted
in the late 1960s [48], security issues were not fully appreciated and, therefore, security was not a
design goal. Today, security has become crucial for IoT survival and vast adoption. IoT applications
and devices are permeating all aspects of our daily lives. In healthcare, IoT, including Wireless Sensor
Network (WSN) and Wireless Body Area Network (WBAN), has become an essential component
of many healthcare environments [49–51]. In the home environment, IoT devices have extended
into our living spaces enabling home automation and creating intelligent, hyper-connected homes.
Household devices ranging from power outlets, light bulbs, thermostats, and more are now packaged
with networking capabilities allowing for wireless remote control. Just about every home appliance
can be replaced with an automated and remotely controllable alternative. As shown in Figure 1,
we are surrounded by IoT devices and applications in our homes, cars, trains, streets, transportations,
agriculture, and businesses.
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Alam et al. [52], citing Statistic’s estimates and predictions, indicate that by 2025, with the current
rate of expanding, as shown in Figure 2, IoT connected devices will reach over 75 billion.
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2.3. Sheer Volume of Devices Lacking Sophistication

In general, IoT devices lack complexity and are designed to be compatible with and adaptable
to our everyday Internet devices. With the increasing number of IoT devices, new vulnerabilities
will emerge, unforeseen design flaws will surface, resulting in higher chances of system compromise.
With this in mind, it is crucial to strike a balance between embracing a technology in a timely manner
while without making compromises on the necessary protection of the Privacy, Confidentiality, Integrity
and Availability of our networks and our data [47].

According to a recent report by Symantec [53,54], there were a massive number of attacks on IoT
devices between 2017 and 2018, and the average number of attacks was around 5200 attacks per month.
Figure 3 shows the top source-countries for these attacks on IoT [53].
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Comparing this recent report to a previous one also by Symantec [54], IoT devices are still under
massive attacks every year, albeit in a different ways and sources. Table 1 shows attacks on different
types of IoT devices.

Table 1. Attacks on different IoT devices.

Device Type Vulnerability Possible Exploits/Attacks

Cars Chrysler car company had to recall 1.4 million vehicles after researchers proofed
that attackers are able take control of the vehicle remotely

Smart home devices
Millions of homes are affected.

Multiple vulnerabilities in a lot of commercially smart home devices such as smart
door lock that could be hacked and opened remotely without using a password

Medical devices Multiple vulnerabilities in medical devices such as insulin-pumps, Xray and
CT-scanners devices, and implantable sensors

Smart TVs Millions of Internet-connected televisions are vulnerable multiple attacks such as
click fraud, data theft, and ransomware

Embedded devices

Everyday devices such as routers, watches, cameras, and smart phones using the
same hard embedded code SSH and HTTPS server certificates left by

manufactures leaving other millions of devices vulnerable to attacks such as
interception and interruption

Ferrag et al. [55] conducted a comprehensive survey on IoT authentication protocols.
They categorized protocols based on the targeted IoT environment. Sfar et al. [56] discussed
security challenges in IoT devices and discussed access control, privacy, and identification security
aspects. A systemic approach has been followed in which each component was presented, discussed,
and highlighted to ensure the security for IoT components.

2.4. Privacy Concerns, IoT’s

Privacy concerns are the biggest issue for IoT. We cannot talk about IoT without addressing the
privacy concerns that come with it. The convenience of new technology and the eagerness to adopt it
usually outpace the need to ensure security and privacy. However, in the world of IoT, the privacy
issue is too significant to ignore. The benefits of big data can result in the premature adoption of IoT
technology before it is fully developed. Data that IoT devices collect is both enormous in magnitude
and diverse in nature. There are a lot of fundamental security questions we have to bear in mind,
such as how data is collected, processed, transported and stored.

Privacy concerns are raised through all the layers of the IoT architecture. Attempting to minimize
these security concerns has led to identifying security concerns depending on the IoT layer they reside
in, as shown in Table 2.

Table 2. Privacy concerns in IoT.

Layer/Function Privacy Concerns

Application • Who has access to the data, information reports?
• What does it use for?

Transportation/Network
• Data transmitted across networks encrypted?
• In general, Wireless networks, Cloud services are vulnerable.

Perception/Sensor

• The vast majority of devices collect personal information such as
name, address, date of birth, and some intrusively gather
information about the user’s taste of music, food preferences,
not to mention health and credit card information.

Luckily, we can use the standard C-I-A triad (Confidentiality, Integrity, and Availability) to
structure the way we approach the challenge of providing security [57]:
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• Confidentiality-It ensures that only authorized users can access the data and information reports
and only to the extent they need that access.

• Integrity-It ensures that data are secured and encrypted and only modified by authorized users
during transmission, processing, and storage.

• Availability-Although it is essential to secure the data and information, we have to make sure
data is available in a timely manner; otherwise, it may lose its value, e.g., in emergency and
medical applications.

As pointed out earlier, IoT devices are susceptible to attacks not only during data collection,
exchange, and transmission phases, but also at the design stage. This gives very little confidence and
limited assurance about the IoT’s confidentiality, integrity, and availability of data. If those issues are
not resolved, we will face even more significant security and privacy problems. Fortunately, despite
its rapid growth, IoT is still in its infancy. With the right focus and enhanced effort on security at the
design and development stage and throughout the product life cycle, IoT will be able reach its full
potential and truly be of benefit without compromising anyone’s security, especially privacy.

2.5. Phases of Data as They Pass through IoT’s Different Layers

The goal of IoT is to collect and process data and information and make meaningful, informative,
visually enhanced data presentations for end users (humans, applications, machines, or devices) [58].
Those end users will either consume the information and data or intelligently use that information or
data to determine what action to take. Data passing through IoT’s layers can be organized into phases,
as shown in Table 3 [59,60]:

Table 3. Data passing through IoT’s layers.

Phase Layer Process

Phase 1 Perception layer Data perception and collection from the sensors
Phase 2 Perception layer Data storage on sensors
Phase 3 Perception layer Data processing on the sensors
Phase 4 Transporting/Network layer Data transmission
Phase 5 Application layer Data delivery, data presentation for end users, output devices

At each phase, we see the transformation of the data and have inherent vulnerabilities that can be
exploited by attackers.

2.6. IoT Wireless Protocols and Standards

As shown in Table 4, depending on the IoT layer, there are different wireless protocols that can be
used in the Application and Message layer, Network and Transport layer, and Datalink layer [61,62].
There are different common types of IoT wireless technology, such as Bluetooth, radio frequency
identification (RFID), Wi-Fi, Low-Power Wide Area Networks (LPWANs), Cellular (4G/5G), and Zigbee.
Each of these wireless technologies has its strengths and weaknesses in various network criteria; thus,
a suitable protocol can be selected based on the specific use of the IoT [63,64].

Table 4. IoT wireless protocols.

Layer Protocols

Application and Message Layer JSON, HTTP, RESTFUL, XML, FTP, Etc . . .
Network and Transport Layer IPv6, TLS, 6LoWPAN, 6lo, TCP/UDP, Etc . . .

Datalink Layer Bluetooth, ZigBee, WiFi, 4G/5G/LTE, IEEE 802.15.4e, Etc . . .

Depending on the IoT layer’s model, most of the standards and protocols for IoT layers are proposed
by the Institute of Electrical and Electronics Engineers (IEEE), International Telecommunication Union
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(ITU), and Internet Engineering Task Force (IETF) [62]. When it comes to the data link layer, IEEE is
mostly used. For example, IEEE 802.15.4e is the data link standard for several MAC behaviors [65].
For the network, security firmware, and management, IETF new standards are mainly used [66].
ITU-T defined global standard recommendations for IoT and clarified the concept and scope of such
standards worldwide [29].

3. Related Work

Many surveys have focused on IoT security and privacy in the past five years. The authors of [67]
selected and surveyed commercially available and frequently used IoT programming frameworks
from major cloud providers that supported rapid IoT application development. They compared the
approaches taken to security and privacy at the programming level of the frameworks. They found
that the frameworks did support security to some degree, but design flaws could cause security issues
and the frameworks did not adequately consider the vast number of microcontrollers with minimal
hardware security present in the IoT network.

In [68], Machine-to-Machine (M2M) applications are enumerated in major application domains,
including Automotive, e-Health, Smart Metering, City Automation and Home Automation. A taxonomy
of attacks against M2M is presented, categorized by the target of the attack, whether physical, logical
or data. Scalability, heterogeneity, constrained resources, and a variety of end-to-end communication
protocols are identified as challenges for M2M. The authors note that while most existing solutions
addressed authentication and privacy, they did not address confidentiality.

The IoT is represented by three layers, Application, Transportation, and Perception in [7],
and for each layer they enumerate the potential attack types. They also review communication
protocols, security issues and possible solutions by layer. They find that the Perception layer is
the most vulnerable due to the physical availability of these devices that sense and monitor in the
IoT environment. The difference between traditional IT security requirements and IoT security
requirements is also discussed and the need for a multi-layer and cross-layer approach to security
is advocated.

The authors in [69] provide a comprehensive survey of attacks on IoT networks, covering both
common and specific types of attacks in IoT applications. They focus on Smart Home, Smart Grid
and Vehicular Ad hoc Network (VANET) applications in IoT and the related wireless networking
technologies. They provide a taxonomy of attacks between each of these applications and the relevant
wireless network, as well as classifying those attacks. They review existing solutions and found no
common solution that would apply to all attacks, leading them to recommend more sophisticated
schemes, including cryptography specifically adapted to the resource constrained IoT devices.

IoT applications in the domains of Industry, Personal Medical Devices, and Smart Home are
discussed in [70], along with general IoT security requirements to protect data privacy and security.
They find that most security threats to IoT are related to data leakage and loss of service. They also
describe threats to Smart Home and classify different types of attacks by threat level, from low to
extremely high, including possible solutions.

IoT in healthcare is the focus of [5] with applications categorized by healthcare setting, including
clinical care, remote monitoring, and context awareness. They present the network topology of
healthcare IoT networks and describe frameworks for health information service models and Wide
Body Area Networks (WBAN) for healthcare applications, noting that there are no well-defined
architectures in IoT in healthcare [50]. They identify challenges for healthcare in IoT, including
scalability, data privacy and security, and low-powered devices, and enumerate requirements for
WBAN in IoT in healthcare [50,51].

Blockchain as a security solution for IoT is discussed in [61]. A taxonomy of security issues
by layer is provided. Security issues and potential solutions are categorized by groupings of
the layers of the protocol stack, with low level including the Hardware, Physical and Data Link
layers, intermediate level including Network and Transport layers, and high level encompassing the
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Application layer. Blockchain-based solutions are discussed, though they note that blockchain itself is
not without vulnerabilities.

The authors of [15] describe a three-layer IoT architecture divided between Perception, Network
and Application layers and posits that the security goals of confidentiality, integrity, and availability
(CIA-triad) apply to the IoT. They divide security challenges into two categories, technological,
which contains challenges such as the heterogeneity of IoT hardware, wireless networking technologies
and scalability, and security, which contains the CIA-triad and end-to-end security. Security challenges
are discussed by layer and countermeasures, including authentication, trust establishment, federated
architecture, and security awareness, are discussed.

An overview of IoT architecture and the interoperability of interconnected networks is provided
in [71], as well as an analysis of security issues and mitigation strategies. They believe that the
ease in conducting attacks against IoT is a significant threat. They discuss security constraints for
hardware, software and networks, and present requirements for information security, access level
security, and functional security. A taxonomy of attacks is categorized by device properties, adversary
location, access level, attack strategy, and damage level, as well as by host and protocol.

The authors in [72] discuss security goals and requirements for IoT, including data confidentiality,
privacy and trust, while also providing a background of threats, attacks and vulnerabilities pertaining
to IoT system components. They also provide an analysis of the motivations and capabilities of the
intruders who would threaten the IoT. Intruders are classified into three main types, individuals,
organized criminal groups, and state intelligence units; the motivation and capabilities of each
are discussed.

Classification of the IoT in a corporate environment into four component layers, including
connected objects, transportation, storage and data mining, API and GUI, is done in [73], with multiple
technologies possible in each layer. A taxonomy of threats and attacks for each of these components
is provided. A case study is undertaken to demonstrate the operation of these components in
connected thermostat devices, offering threat scenarios and corresponding mitigation measures,
showing how an attacker could compromise one layer and use the trust between layers to gain access
to additional resources.

A taxonomy and comparison of smart technologies in a host of application domains, Smart Cities,
Smart Homes, Smart Grid, Smart Building, Smart Transportation, Smart Health, and Smart Industry,
is discussed in [74], along with the objectives and characteristics of each smart technology. The authors
believe that the unique capabilities of the IoT and smart technologies bring new opportunities
to businesses and consumers. They present case studies from four countries that they believe
were successful examples of IoT and smart technology use to improve life, safety, efficiency and
environmental monitoring.

An end-to-end view of IoT is taken in [20], where the authors describe three main components,
things, cloud, and controllers, where the cloud serves as a middleman for the things and controllers.
The authors define ten major functionalities in their end-to-end view, including upgrading, pairing,
binding, local and remote authentication and control, relay and big data analytics by cloud, and sensing
and notification. They argue that security in IoT needs to be considered across five dimensions,
hardware, software, OS/firmware, networking, and data. A detailed analysis of a connected camera
system’s functionalities and communications between the three main components is made, as well as a
discussion of their implementation of remote attacks that successfully gave them control of the camera.

The authors of [75] believe that understanding the difference between traditional IT systems and
cyber-physical systems is important to comprehending the security requirements of cyber-physical
systems. A proposal of a cyber-physical system model with three parts, (i) physical, for those devices
that directly connect with the physical world, (ii) cyber-physical, where connections between the
physical and cyber worlds are made, and (iii) cyber, which has no connection to the physical world,
is made. They present a comprehensive review of cyber-physical systems, choosing four major
applications, Industrial Control Systems (SCADA), Smart Grid, Medical Devices, and Smart Cars,
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as representative systems for further analysis. A review of general threats applicable to cyber-physical
systems in general, as well as threats targeted to each of the four major applications, is made, including
the source, target, motivation, attack vector, and possible consequence of each attack. The causes
of general and application-specific vulnerabilities, examples of real-life attacks, and controls are
also discussed.

A comparison of IoT reference models, the early three-level model, the alternative five-level model,
and the CISCO seven-level model is made in [76]. A detailed taxonomy of attacks, security requirements,
and countermeasures is made for the Edge-side levels, including Edge Nodes, Communication,
and Edge Computing (Fog). The authors believe that the traditional CIA-triad of confidentiality,
integrity, and availability is not sufficient to provide full security in IoT and thus consider the expanded
IAS-Octave security requirements in their discussion of attacks and countermeasures. They see the
enormous growth of insecure IoT devices in the wild and the privacy implications to the vast amount
of data present in the IoT environment as major challenges to be addressed.

IoT applications are classified into major application domains and the critical security issues
relevant to each domain are discussed in [77]. They divide IoT applications themselves into four
main layers, including Application, Middleware, Network, and Sensing. For each of these layers,
including the Gateways that connect them, they present the various attacks and security issues to
which the layer is susceptible. Because of the heterogeneity of the IoT infrastructure and the high
level of connectedness between IoT devices and systems, the authors believe major improvements
are needed to make IoT secure and to protect the large amount of private information generated by
devices. They categorize existing IoT security solutions into four distinct approaches, blockchain,
fog computing, edge computing, and machine learning. For each of these approaches to IoT security,
they present the particular security issues that the solution can address, but they also acknowledge
that these solutions are not without their own security issues.

A comprehensive look at IoT security is presented in [78]. The services and protocols in the
layers of the IoT protocol stack they categorize as Semantics, Application, MAC/Adaptation/Network,
and Physical/Perception are enumerated. Threats to IoT in general and at each of the four layers are
detailed. A major contribution of this survey is a review of major malware attacks on IoT devices and
an analysis of the malware attack methodology, from the preparatory phase, through the infiltration,
execution and propagation phases, to finally the hideout and clean-up phase. The authors see current
IoT security as inadequate against these malware attacks and so propose guidelines for an IoT security
framework that would provide comprehensive security for IoT. Each security measure in the proposed
framework is designed to counter a particular threat to IoT.

The authors in [25] propose a taxonomy of vulnerabilities in IoT grouped into nine classes that
include weaknesses in the hardware, software, and resources available in the IoT system. They examine
the vulnerabilities in the context of layers, security impact, attacks, countermeasures, and situational
awareness capabilities. As part of this examination, they consider impact and attacks on the general
security principles of confidentiality, integrity and availability. A unique contribution of this survey
is an empirical analysis of darknet data passively collected from a/8 network telescope. This data is
correlated with third-party information to determine the number of unique devices, manufacturers of
the devices, countries of traffic origin, and the business sectors involved.

In [79], the authors approach IoT as a security object to be protected and detail specific IoT
properties that are critical to security. They present vulnerabilities according to the particular IoT asset
or property being targeted by attackers as well as enumerating IoT device vulnerabilities recorded in
the National Institutes of Standards and Technology (NIST) National Vulnerability Database (NVD).
Among the components of IoT that they see as security objects to be protected are data, devices,
communications, applications and clouds. They propose a combination of hardware and software
solutions as well as proper access control, organizational policies and shared threat detection and
intelligence for IoT information security.
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Viewing the IoT as a collection of features that are representative of IoT devices as opposed to
traditional IT devices is the approach taken in [80]. These features include aspects of IoT devices,
such as constrained, unattended, mobile, ubiquitous, diversity, myriad, intimacy and interdependence
that have impact on security and privacy. These features relate to the vast number of connected
devices in a heterogeneous technical and application environment. Threats, challenges and solutions
for each feature are described. The authors conclude that vulnerabilities related to the features they
call “constrained” and “interdependence” would be exploited by attackers more in the future.

The authors in [81] propose a four-layer reference model, with each layer, Cloud, Network,
Edge Computing and Perception, having a set of building blocks. In developing an IoT attack model
they take a multi-layer approach, considering the general building block types, including physical
objects, protocols, data, and software, as IoT assets. After identifying attack surfaces by building block
asset and IoT security requirements, including confidentiality, integrity and availability, as well as the
extended IAS-octave, the authors present a taxonomy of attacks, compromised security requirements
and countermeasures by each building block asset category.

A different approach to IoT security is taken in [56]. Instead of dividing the IoT into layers by
technological function, the authors consider the various actors, relationships and interactions in the IoT.
This systemic and cognitive approach is presented as a tetrahedron with four nodes representing the
person, the intelligent object or device, the process, and the technical ecosystem. The edges between the
nodes reflect the relationships and tensions between them. This theoretical model is further illustrated
by a case study in the Smart Manufacturing application domain. The edges that relate to security are
presented in more detail, including privacy, trust, identification and access control. The authors believe
the increased expectation for objects and networks to be intelligent and act on their own requires IoT
security to become more context aware, adaptive and similarly autonomous.

In [2], the authors focus on nine major application domains of IoT, including smart healthcare,
grid, home, wearables, transportation, manufacturing, agriculture, supply chain and city. For each
of these application domains, they present security requirements, including confidentiality, integrity
and availability, as well as the extended IAS-Octave. Additionally, system models, threat models that
include the comparative level of threats, and protocols and technologies applicable to each application
domain are presented in detail. Solutions to address the limitations of IoT devices, namely their
low power and capacity, are discussed, including cryptographic primitives, authentication protocols,
hardware, application-specific, and current lightweight solutions.

Finally, most IoT surveys have focused on IoT devices as the target of attacks. The authors of [21]
consider the IoT device as the enabling force in an attack on another target that is not necessarily
another IoT device. The authors limit their work to verified attacks, whether they occurred in the real
world or were produced by researchers. Their model of IoT-enabled attacks includes the adversary,
the IoT device, and the actual target, which is typically a critical system. The access, means and
motivation of the adversary are examined, as are the vulnerabilities at different IoT system layers
and the direct, indirect and non-existent connections between the IoT device and the target system.
They propose a risk methodology that assesses threat, vulnerability and impact levels to provide a
risk profile for different IoT systems. Attacks in IoT application domains SCADA, Smart Power Grids,
Intelligent Transportation Systems, E-Health and Medical Systems, and Smart Home and Automation
are analyzed, with the authors finding that the closeness of device and target, exploitation of network
and physical communication, and the extension of IoT device functionality played a role in the viability
of an attack across all of the aforementioned application domains.

4. The Need for Security

The explosive growth, proliferation of IoT devices and the integration of IoT into our daily life has
created an Internet of Vulnerabilities [82,83]. The convenience and comfort that IoT deliver to us comes
with a security and privacy toll. Until recently, IoT devices were not completely secured. Security and
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privacy are delimiting factors in adopting and deploying IoT devices in many fields, sectors, services
and applications such as mission critical applications [11,82].

A report by the TCS Global Trend Study, July 2015. Internet of Things: the complete reimaginative
force [84] stated that reliability and security are the two main inhibiting factors for industry to
deploy IoT in many fields and sectors to provide services. Traditional security techniques will not
function well in the IoT environment due to the complexity, heterogeneity and the scale of IoT-enabled
ecosystem [85,86]. This is mainly due to the fact that IoT devices are small in size, have low energy,
low battery lifetime, memory size limitations, and low processing power to run complex encryption
protocols. Identity allocation, management and the authentication of billions of IoT devices also play a
role in this [85,86].

To gain insight into the need for security in IoT, we need to put security and privacy into action
through practical IoT applications. In a smart health care environment, heart suffering or diabetics
patients via pacemakers or insulin pumps, respectively. Patients can be monitored remotely via
telehealth provision for their conditions. These IoT implants provide health monitoring but can be
compromised. If these IoT implants were hacked and patients’ data were breached, it can put their life
at risk. Moreover, if the authenticity of information from these devices cannot be verified, then that is
another life-threatening situation [85]. Some of the security and privacy concerns in this context are
as follows: (i) Who has access to a patient’s information? (ii) Is information communicated over the
wireless medium encrypted? (iii) Is the data stored securely? (iv) What personal information about the
patient is being collected and more?

In an IoT-enabled smart home, for example, if the heating control system is compromised,
the hacker will gain access to the home network and from there to the home security system,
which jeopardizes the physical security of the home occupants. Some of the security and privacy
concerns that arise from this case are as follows: (i) Who has access to the home security system? (ii) Is
the data communicated by different components of the smart home encrypted? (iii) Does the actuator
accept data from authenticated sources and more?

In the previous two cases we just touched based on two wide spread practical scenarios that
clearly show the need for security in IoT-enabled systems and services. The more IoT-enabled services
and applications, the more vulnerabilities are ready to exploit by an adversary.

5. IoT Security Architectures and Frameworks

Urien proposes a four-quarter security architecture, based on a secure element [87]. It uses an
Arduino board as a General Purpose Unit (GPU) to coordinate three subsystems: a WiFi SoC in charge
of communication, a secure element (SE) performing TLS protocol operations and defining object
identity, and sensors and actuators. The GPU has a limited SRAM size of 8KB, which is the most
critical resource. The entire system is controlled using a mobile App. The WiFi unit implements the
IEEE 802.11i security protocol and provides a TCP/IP stack with client and server features. The SE
has a smartcard form factor, supports Java Virtual Machine (JVM), and runs software written in the
Javacard language. The system uses a digital temperature sensor for the sensors and actuators unit.

Liu et al., propose a four-layer security architecture consisting, top-to-bottom, of information
application security at the application layer, information processing security at the processing layer,
information transmission security at the network layer, and information processing security at the
perceptual layer [9].

Protection at the perceptual layer is in the form of physical security of the sensing devices
themselves, authentication, and Wireless Sensor Network (WSN) security [49]. Authentication can
be done using asymmetric encryption to the ensure security of a node’s ID. Some of the attacks on a
WSN include fake routing information, selective forwarding and black hole attacks [49]. Mitigating
methods include integrated security policies such as encryption algorithms, key distribution strategies,
intrusion detection mechanisms, and secure multi-path routing strategies.
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At the network layer, issues of longer-distance transmission, such as mobile communication
networks and long-distance cable networks, are tackled. Issues to account for include the denial of
service attacks, unauthorized access, man-in-the-middle attacks, and virus attacks. The processing
layer acting as an interface between the network and the application layers needs to ensure data
integrity and confidentiality.

Obaidat et al., propose a six-layer security architecture [11] consisting of top-to-bottom security,
application security, cloud security, information transmission security, gateway information security,
internal communications security, and end-device security. At the application layer, they identify
authentication as the most important, yet often overlooked, mechanism to employ. The cloud layer is
to address data protection, privacy policies, and secure connections. The information transmission
security layer handles reliable secure communication throughout the system. This includes wired,
wireless and mobile networks. The gateway information security layer handles heterogeneity at the
network edge using control and protocol security. Internal communications security handles security
under the perimeter. Finally, the end-device security layer ensures physical IoT-device security. It is
worth mentioning that the architecture is based on an end-to-end security framework.

Sridhar and Smys propose end-to-end security architecture [34]. They address the three domains
of the communication in an IoT infrastructure, namely, the sensing device domain, network domain,
and cloud domain. Mutual authentication is achieved through an authentication-delegation process.
Key management is accomplished using a dedicated Master Key Repository. Communication between
nodes and device gateway and between device gateway and cloud service gateway is conducted using
symmetric encryption while communication of these gateways with the Master Key Repository is
done using asymmetric encryption. The repository generates a key-pair sharing its public key with
the gateways via a one-time handshake. Lee et al., proposed a three-factor mutual authentication
protocol for multi-gateway IoT environments to solve the existing security weaknesses in two factor
authentication protocols [46]. The proposed scheme protects IoT ecosystem against existing threats
such as user impersonation attacks, gateway spoofing attacks, and session key disclosure [46]. Due to
resource limitations in IoT, a lightweight authentication mechanism is needed. Yu et. al., in [88],
proposed a secure and lightweight three-factor authentication scheme for IoT in cloud computing
environment to secure IoT devices against attacks that were not previously addressed by previous
mechanisms such as session key disclosure, replay attacks and user impersonation. In addition,
it provides mutual authentication and anonymity.

Olivier et al., propose an IoT security architecture based on software-defined networking (SDN) [89].
The architecture is meant for securing wired, wireless, ad hoc networks, and object networking (devices
such as sensors, tablets, smart phones and the like).

The network is assumed to be heterogeneous with nodes that have more resources being
SDN-capable, while others with limited resources are not. Nodes with limited resources are assumed
to be in the vicinity of an SDN-capable node. The larger network is referred to as an extended SDN
domain that is divided into multiple domains, where a domain represents an enterprise network or a
data center. Each domain can have or more controllers for managing the devices within that domain.
To allow for scalability, the authors introduce a Border Controller that sits at the edge of each domain.
The architecture is not hierarchical, rather control functions are not distributed on multiple controllers,
while routing functions and security rules are distributed across edge controllers.

Each SDN domain has its own security policies and management strategy. SDN controllers are
responsible for authenticating network devices, and once a device is authenticated, a controller will
push the appropriate flow entries to the access switch. As opposed a master/slave model, all border
controllers follow equal interaction mode having read/write access to the switch. This means they have
to synchronize their operations.

Edge controllers are also responsible for establishing connections and exchanging information
with other SDN border controllers. An edge controller exchanges its security rules with controllers of
other domains following a concept of a grid of security.
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Unlike other SDN-based schemes that assume a single controller and hence a single point of failure
in case the controller is attacked, this scheme uses edge controllers working together in a distributed
fashion in order to guarantee the independence of each domain in case of failure.

Ling et al. present an end-to-end view of IoT security meant as a guide to design a secure and
privacy-preserving IoT system [20,90]. By focusing on standalone IoT systems consisting of three
components (thing, controller and cloud) they identify 10 basic IoT functionalities related to security
and privacy. These functionalities are listed and described in Table 5.

Table 5. Identified functionalities and their description.

Functionality Description

Upgrading Updates to IoT-device (thing) firmware
Pairing The process of connecting a controller, e.g., a mobile app, to the IoT thing.
Binding Configuring the thing through the controller once pairing is done.

Local Authentication
Takes place when the controller resides on the same local network as the thing.
Thing may provide an open port for the controller to connect to. Thing should
authenticate user to allow for further actions from user.

Local Control Ability to locally control thing through sending user-commands
after authentication.

Remote Authentication
When the controller is away from the home network, it may not be able to
connect directly to the thing because the latter is probably behind NAT. In this
case, it must use a cloud service to authenticate.

Remote Control Ability to control thing while away from the home network through the cloud.

Relay
Cloud is to relay the authentication and control messages between the thing and
controller. Cloud may need to authenticate both thing and controller using its
own authentication servers.

Big Data Analytics The cloud may collect data from the thing, the user, and may also contact other
clouds for data on other things.

Sensing and Notification A thing may report on environment or actions, e.g., room temperatures or
number of login attempts.

To secure an IoT system, the authors identify five dimensions: hardware, operating system
and firmware, software, networking and data generated and maintained within the system.
The 10 functionalities span these five dimensions.

As a case study, the exploiting an IP camera system manufactured by Edimax is presented under
this view of IoT security and privacy. They focus on remote attacks when the controller is away
from the home network. Using three types of attacks, they are able to remotely control any camera.
These attacks are: device scanning attack, brute force attack, and device spoofing attack.

Through identifying two major challenges in IoT networks, Guo et al., propose a five-layer IoT
architecture [10]. The first of these challenges is interoperability due to high degree of disparity
between different nodes in terms hardware architecture, embedded operating system, applications and
functionalities. The second is management of both devices and resources. An example of the first is
the need to update software and settings while an example of the latter is the ability to gather data
from myriad devices in a timely manner.

The authors propose centralized management of resources including operating system (OS),
applications, and data, while improving scalability using transparent computing (TC). TC refers to
the decoupling of the software stack from the underlying hardware and separating computing unit
from storage. In this model, OS, applications and data are considered resources that can be centrally
managed and scheduled by the server. Prior to such scheduling, an IoT device acts as a lightweight
terminal with no OS, yet is capable of executing small segments of code or data as demanded by the
server (called block-streaming).

The architecture consists of five layers: the end-user layer, edge network layer, core network layer,
service and storage layer, and management layer. The end-user layer is comprised of the IoT devices
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running a resident software such as MetaOS such that they are capable of booting various operating
systems as instructed by the Edge network layer.

The edge network layer is made of devices such as servers. They perform two types of tasks:
(a) collecting and processing user data gathered by the end-user layer. Processed data is sent to the
service and storage layer through the network layer, (b) providing computing and storage services
to IoT devices. The core network layer provides the communication infrastructure and is used for
communication between the edge network layer and service and storage layer.

The service and storage layer consists of different types of servers. Data servers for storing data
received from the edge network layer and providing such data for analysis. Software servers for
storing OS images and applications to make available to IoT and edge devices. Finally, control servers
control and manage both data and software servers. The Management layer manages service and
storage layer servers, and assigns tasks to the control server, such as adding and updating software.

Liu et al., propose a security framework for IoT based on a future Internet Architecture named
MobilityFirst [91]. MobilityFirst addresses, among many others, two major issues with the Internet of
today, mobility at scale and security. These are achieved by cleanly separating human-readable names,
globally unique identifiers (GUIDs), and network location information. To that end, two services are
used, a name certification and resolution service (NCRS) is used to securely bind a human-readable
name to a GUID while a global name resolution service (GNRS) is used to securely map a GUID
to a network address (NA). By allowing the GUID to be a cryptographically verifiable identifier
(e.g., a public key), trustworthiness is improved. Separation of the location information (NA) from the
identity (GUID) enables users to request content by name without worrying about the current network
address. This results in seamless mobility at scale.

The authors adopt the MobilityFirst architecture in addressing IoT needs in terms of scalability,
mobility, content retrieval, inter-operability, and security. While many of these are clearly needed in an
IoT setting, mobile IoT may not be. A mobile IoT application scenario is Vehicular Ad hoc Networks
(VANETs). Sensors can be installed in moving vehicles to collect data and make it available to relevant
applications through the underlying IoT infrastructure.

The authors propose a framework comprised of four components: devices, applications,
MobilityFirst network, and IoT middleware as shown in Figure 4. Devices are the things of the
IoT network, capable of sensing, actuating and communicating. Applications are used by users to both
consume data after being processed and feed back into the system.
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The IoT middleware is further divided into three functional layers, Aggregator, Local Service
Gateway (LSG), and the IoT server. The aggregator provides sensor abstraction hiding the hardware
specifics for the underlying sensors and presenting a unified interface for querying and subscribing to
the sensor data. The aggregator passes collected raw data to the LSG layer.

The LSG connects the IoT system to the global Internet. It might process raw data provided
by the aggregator for context refining and aggregation purposes. The LSG also publishes the
information, along with a data GUID, access control policy, and the storage location information
(either human-readable names or NA), to the IoT server. Applications (users) can query the IoT server
regarding where to fetch the data from through its edge router. After that, it can fetch the data from
either a storage location or directly from the aggregator. In enforcing access control, the IoT server may
decide to handle it itself or delegate it to the NCRS/GNRS.

Huang et al., propose a security framework for IoT that is meant to strike a balance between
security and usability [92]. Three main scenarios were user experience is important are considered:
a body-area network, a home network, and a hotel network. Two additional scenarios were also
considered: logistics IoT and an office IoT. To better understand user perceptions of the importance
of security vs. usability, and how willing users are to trade one for another, a survey is conducted.
User were asked about three aspects of security: authenticity, integrity, and availability.

The survey results show that while different aspects of security matter differently depending on
the application, security matters to all users and in all applications. This is particularly the case when
it comes to access systems and payment systems.

The proposed framework, named SecIoT, is composed of sensors that communicate to a central
node, e.g., a web server, which is connected to the Internet. The central node stores, processes,
and delivers data to users. Users can also control objects via this unit. The central unit also provides
interoperability when communicating with other IoT networks. An all-IP 5G network is assumed,
such that either the gateway or even the IoT nodes are equipped with a 5G SIM card so they are able
to communicate.

Two forms of authentication are used: users when connecting to the central node to enquire or
control objects, and objects when providing data to the central unit. A single-sign-on mechanism is used
to authenticate users, while a Multi-channel security protocol (MCSP) is used for authenticating devices.
In MCSP, a no-spoofing and no-blocking (NSB) out-of-band channel is used to communicate security
properties (e.g., public key). Examples of NSB channels are emails, SMS messages, phone calls, and even
face-to-face conversations. Using a user’s mobile phone or email address, it is easy to exchange public
keys between the mobile phone and the IoT central service provider using, e.g., public key infrastructure.

The second component of the framework is providing a successful secure channel. This is relatively
easy to accomplish once authentication takes place. The public key distributed during authentication
can be used to ensure secure communication.

For authorization, role-based access control is proposed. The role is more encompassing than
simply a job role. It could include the user’s context, e.g., location being in the vicinity or location,
access during business hours.

The last component is a risk indicator, which helps users assess their current configurations
and choices in terms of security risks. The risk indicator provides information in three elements:
asset identification, threat identification, and risk evaluation.

Colombo and Ferrari et al., propose Fine-Grained Access Control (FGAC) to NoSQL databases,
which have been gaining popularity in the data storage and analysis layer of IoT platforms [93–96].
The papers attribute this adoption of NoSQL databases in IoT to several reasons, including
performance, scalability, support for handling high volumes of data, and the ease of interaction
with external applications.

NoSQL databases support multiple data models, with document-oriented being the most popular.
MongoDB, the most popular NoSQL datastore, follows this data model. Using this model, a database
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is made of collections, each collection has a number of documents within, and each document contain
key-value pairs [93,97].

A major shortcoming of NoSQL databases, however, is the poor data protection mechanism they
offer; e.g., MongoDB, integrates a role-based access control model operating at collection level only.
For handling sensitive IoT data, the database could greatly benefit from the integration of FGAC [95,97].

The authors propose the integration of a purpose-based model operating at document level into
MongoDB and even at field level, which supports content-and context-based access control policies
similar to those of Oracle VPD (Virtual Private Database). They also extend FGAC to map-reduce
systems. An extracted key-value pair is dynamically modified on the basis of the specified FGAC
policies, before the mapping phase starts the processing [93,97].

In recent years, fog-based access control has been proposed to move the computational complexity
from the core to the edge. To dynamically control context-sensitive access to cloud data resources, a novel
approach was proposed in [38], which combines the benefits of fog computing and context-sensitive
access control solutions. The new model reduces administrative efforts and processing overheads.
For comprehensive look at the context-aware access control schemes for cloud and fog networks as
well as open research issues, the reader is encouraged to refer to the study in [39].

Irshad created a review and comparison of IoT security frameworks [98]. To survey the
available literature, three search phrases were used: “IoT Security Framework”, “IoT Security”,
and “IoT Information Security Governance” and four security frameworks were identified and
compared as a result. The results of comparing these frameworks were presented in a table format and
are reproduced as shown in Table 6.

Table 6. Comparison of four IoT Security Frameworks [98]. An X indicates a criterion that is
insufficiently developed.

Security Framework
Policies, Standards,
Process Adaption and
Secure IOT Components

Security Service Level
Agreement Applicability

Cisco Security
Framework

Authentication Threat Detection,

X

Infrastructure
Authorization Anomaly Detection, Framework
Network Enforced Policy Predictive Analysis
Secure Analytics: contextual- Awareness
Risk and Assurance

Floodgate Security
Framework

Software APIs to enable
secure boot

Runtime Integrity
Validation (RTIV)

Identify the threats
and Floodgate
firewall IDS Supp

Best Fit in

Hardware root of trust
integration

Application Guarding
APIs Internet
security (DDOS)

Compliance support
Security Evaluation Infrastructure

Software based vTPM for
legacy systems Security

Integration for secure
remote firmware updates. Framework

Constrained
Application Protocol
Framework (COAP)

IoT Smart Objects

X X

Best Fit in
Protocol suites. Application
CoAP, UDP, 6LoWPAN Security
IEEE 802.15.4e provide the
easy mapping to HTTP at
the gateway

Framework

Object Security
Framework for
IoT (OSCAR)

Technological Trends and
Design Goals Access Control

Analyzed and
extracted risks of
utilizing cloud
computing by using
the Risk Breakdown

Based on Object
Security Approaches

Producer-Consumer
Model Confidentiality Structure

(RBS) method.
Best Fit in
application Security

Fitting the Concept with
the REST Architecture and
CoAP Object
Security Approaches

Authenticity

Availability
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Krishna and Gnanasekaran also compare different IoT security protocols [99]. Protocols are
classified based on the layer at which they operate. Nine different schemes are compared, three at the
perceptual layer, two at the network layer, and four at the application layer. These are compared in
terms of the issues they address, the solution they provide, and their limitations.

Issues addressed include the life style of the elderly, absence of real-time data from nodes, and data
integrity at the perceptual layer, security of home devices and device security at the network layer,
and e-health information systems and environmental changes at the application layer.

6. Attacks, Threats and Vulnerabilities

6.1. Perception/Physical Layer

The security challenges at this layer rise from the fact that the IoT device is residing in an open
unprotected environment. In addition, it is because of the nature of IoT nodes and devices that
have limited resources. [12,13,83]. Physical layer challenges include physical damage and tampering
with the IoT device [7,13]. Attacks at this layer are centered on the idea of forging information [14].
The following threats/attacks are the most common at the physical layer in IoT devices.

Node capture/tampering/physical damage attack: This could be either by physically tampering
with the hardware components of the node or device, or replacing the entire node with a malicious
node. The aim of the attacker is to gain access and control the node or IoT device. This could also be by
damaging the functionality of the hardware components or compromising the sensitive information in
the device, such as keys necessary for communications. Injection, using the device’s interface to inject
malicious code that spreads to the rest of the network [13,15,100–104] and physically damaging the
IoT node or device to hinder the availability and proper functionality of the system [104]. Since IoT
nodes are usually operated outside in an unprotected environment, they are vulnerable to such attacks.
The attacker with physical access to the node or device might reprogram it, tamper with the software
components, and reconfigure or extract cryptographic information [14,105–108]. The extraction of
security information: after gaining access to the device driver, an attacker can steal the encryption
keys [13,15,76,100,101,109–111].

Physical Attacks/Tampering: against RFID tags: Some of the physical attacks against tags include
probe attack, circuitry manipulation, clock glitching and material removal [112]. These attacks enable
the attacker to gain access to information from the tag or modifying the tags for forgery [13,76,83,112].

Hardware Trojan: The attacker changes the design of the integrated circuit (IC) before or throughout
the production process to add the hardware Trojan. This enables the attacker to gain access to data
or the software implemented on the integrated circuit (IC) [76]. The attacker builds a certain trigger
mechanism into the circuitry to enable activating this mechanism later on. This type of hardware
Trojan attack includes both externally and internally activated Trojans.

Denial of Service (DoS) Attacks: IoT nodes are vulnerable to DoS attacks due to the fact that
nodes and devices in IoT system have limited resources, such as power, battery, memory and
processing capabilities [7,13]. DoS attacks at the node include, but are not limited to, sleep deprivation,
outage attacks and battery draining. Because of the small batteries that IoT nodes have, they are
vulnerable to this attack where the attacker depletes the battery to move the node into shutdown
state [113–116]. This has very serious consequences in case of an emergency where the node cannot
function and report the emergency. Moreover, keeping the node awake and preventing it from going
into sleep mode would cause the DoS attack through sleep deprivation. A node might not function
properly due to an outage attack. This could be as a result of code injection, unauthorized access, or
the node being defective due to manufacturing error [13,76]. In case of DoS attacks against the RFID
tag, the tag reader is not able to read the tag due to jammed radio frequency (RF) channel. This makes
the tags unavailable which in turn causes DoS [76,110].

Node Jamming attack: In this attack, the attacker transmits a noise signal over the communication
channel to interfere with the IoT radio signal to occupy the transmission media that will cause jamming
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of the signal. The aim of the attacker is to corrupt the transmitted signal from legitimate nodes by
introducing and increasing the number of collisions that will lead to unnecessary retransmissions.
This causes power consumption that leads to fast depletion of the resources. Continuously jamming the
signal will disable the communications between IoT nodes and devices. This ultimately causes DoS of the
IoT node preventing communication to the nodes or the entire system [13,101,102,104,109–111,117,118].

Replication/duplication of a node/device attacks: A malicious node is inserted into the system
that appears to be genuine by duplicating the information (i.e., hardware, software and configuration)
of a genuine node. This attack uses the duplicated node to redirect traffic, drop packets, or gain access
to sensitive information such as the shared encryption keys [13,76,100,101,119,120].

Social Engineering: The aim of the attacker is to have the users of an IoT system perform specific
acts by manipulating them to do such acts [104]. The attacker has to interact with the IoT user to get
the information of interest or perform a certain action.

Malicious code injection attacks: The attacker infects an IoT node by injecting a malicious code
to the node or device which gives the attacker full access or control of the node or the entire IoT
system [104]. This attack could drain the network resources which leads to DoS attack in WSN [49].
Moreover, viruses could be injected into nodes [13,100,111,121].

Malicious Node Injection: This is used to carry out MiTM attack by introducing a malicious
node between two or more legitimate genuine nodes. The attacker will be able to monitor, modify
and eavesdrop on the communications between two IoT devices in the system. This is considered an
insider threat since the attacker must physically exist and insert the node into the network [84].

Camouflage/Corrupted/Malicious Node attack: In this attack, a fraudulent node is inserted or
attacks a legitimate node to hide at the edge. This node later could be used to perform traffic analysis,
send and redirect packets [76,120,122]. By using a corrupted/malicious node, the attacker aim is to
gain access to the system [12], which could include getting access to other nodes, the network and its
communications [76,100,111,120,122]. This might halt the entire network.

False data injection attacks: The attacker injects information to replace existing true information
that is initially collected by the IoT device. This device will then transmit the erroneous information to
the intended destination [13].

Replay attacks (or freshness attacks): The goal of the attack is to have a malicious node or device
gain the trust of the rest of the IoT nodes or devices. This is accomplished through communicating with
the destination node or device using legitimate identification information that has already established
communications with the destination node or device [13,15,102].

Cryptanalysis attacks and side-channel attacks: The attacker aim is to get the encryption key.
Predicting the encryption key by obtaining the cipher-text or plain text from the communication [110,111].
The effectiveness of the cryptanalysis attack is very low. To maximize the effectiveness of such an attack,
a side-channel attack is used. In this attack, some techniques are applied to get the encryption key.
One of these techniques is the timing technique, where the attacker analyzes the time it takes to perform
the encryption process and from that the attacker can predict the encryption key [13,15,102,103,111].
The way the side-channel attack is launched against RFID tag is that the attacker extracts information
by intercepting wireless communications between different parties and processing it. The attacker then
looks for patterns to launch its attack [13,110]. In a non-network side-channel attack, the continuous
transmission of the electromagnetic waves delivers private information about the status of the node or
the owner of it, even though the node or device is not transmitting information [76,123].

Eavesdropping and interference: The wireless communication channel is very vulnerable to
this attack as most IoT nodes and devices communicate wirelessly. The attacker can interfere and
eavesdrop on the transmitted information fairly easily over the wireless channel since this is broadcast
transmission in nature and for this reason it is challenging to trace [13,102,109,110]. This is considered
a passive attack as the attacker does not do anything besides listening. In the case of eavesdropping
against RFID tags, the attacker intercepts the communications over the RF channel to sniff messages
and perform some traffic analysis to extract some sensitive information [15,76].
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RF interference on RFIDs: The attacker sends noise signal to cause interference with the RFID to
obstruct it from performing its normal functions [110,111,124]. Once the noise signal interferes with the
radio frequency signal, communication between nodes becomes very difficult, which could partially
disable the network and ultimately lead to DoS [100,104,110,111].

Sleep deprivation/sleep denial attacks: The battery lifetime of most IoT nodes or devices is very
limited. To extend the lifetime of an IoT node or device, they are programmed to go into sleep mode
in order to save energy. In this attack, the node is prevented from going into sleep mode so that
it drains its resources in the shortest time possible. Due to the fast consumption of its resources,
the battery, by keeping the node awake, this will result in a shutdown state of the IoT node or
device [13,15,100,104,111,125].

Tag Cloning or spoofing attacks against RFID tags: The attacker copies the target victim’s
RFID tags information into another RFID tag, which is replicating another genuine tag. This is
accomplished by capturing the communications between the RFID tag and its reader or physical
tampering [76,104,126,127]. The attacker will copy information from the compromised RFID tag and
copy it into another RFID tag as described in Figure 5 below. This information can be the Identifier (ID)
or Electronic Product Code (EPC), which is a serial number that is broadcasted and can be read by any
within range reader, or key for memory access [127]. The purpose is to mislead the reader, which gives
the attacker access to sensitive information by RFID impersonation [76,104,126,127]. According to [16],
the reader cannot recognize the difference between a genuine RFID tag and a compromised RFID tag.
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Tracking attacks against RFID tags: Since these tags are usually unprotected, anyone can read
them. This provides the attacker with a wealth of tracking information about objects or individuals.
This becomes more dangerous when this tag is tied to sensitive personal information [76,128,129].
Tracking information about individuals could be related to their movement, financial transactions and
social communications by fixed readers that reads all passing by RFID tags. This date will then be
correlated to come up with a pattern [129]. This is a major concern and threat to people’s privacy.
In the case of objects, this might cause dangerous and chaotic situations when infrastructure relies on
RFIDs that might lead to a Denial of Service (DoS) attack.

6.2. Network Layer Attacks

One of the main functions of this layer is to transmit information. The main challenge is to keep
the network available and functional. Moreover, the wireless links are susceptible to different security
threats [13].

DoS attacks: This attack can drain IoT resources to the point that a device becomes unavailable
and cannot provide services [15,16]. This attack can take different forms at different layers of the
IoT architecture. At the network layer, it can overwhelm the network by generating an enormous
amount of traffic, as shown in Figure 6 below, or attack the IoT network protocols, which leads to
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the unavailability of an IoT device or system [15,16]. This includes many attacks, such as SYN flood,
UDP flood, ping of death, etc. [13,104]. One of the main threats is leaking unencrypted information
about the user [16].
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Spoofing attacks: The attacker uses spoofing attacks to spread malicious information through the
IoT system [104]. IoT spoofing includes IP spoofing [130], where the attacker spoofs an IP address
of a genuine node or device in the IoT system to gain access to the system. This allows the attacker
to send contaminated data that appears to be from legitimate node or device. In RFID, spoofing is
when the attacker uses legitimate spoof RFID tag information and spread data through the system
that appears to be from a genuine RFID tag to execute harmful or illegal activity [13,102,103,110,131].
This is achieved by targeting the RFID signal. The attacker then uses this tag information to transmit
its own data [132] as if it were the original owner of the spoofed tag id [133], which allows the attacker
to gain access to the system [100,104,111].

Selective forwarding: In this attack, the attacker targets a victim by either dropping some or all
packets destined to a certain IoT node or delay the forwarding of packets [13,102,109]. This attack can
disrupt communications between different parties in the IoT system by causing DoS by selectively
forwarding packets [134].

Packet replication attack: The attacker retransmits/replays previously received packets to the entire
network or to a cluster of nodes in the IoT system, which will drastically degrade the performance of the
system due to the overuse and consumption of resources such as power, memory and bandwidth [76,109].
This is considered as one of three different attacks of injecting fraudulent packets.

Man in the middle attack: This is a real time attack where the attacker places itself between two
IoT devices or nodes using a malicious device [16,135]. By being in the middle of communications
between two different entities, the attacker gains access to the traffic being communicated between the
two victims’ devices. This attack infringes the privacy, integrity and confidentiality of information
being exchanged between the two victims [13,15,16,102,111,136]. This attack can be launched remotely
by employing the communications protocols used in IoT system [71,100,104].

Sinkhole attacks: In this attack, a compromised IoT node or device broadcast false metrics about
its capabilities to its neighboring nodes in order to attract these nodes to use it as a forwarding node
(next hop) in their routing path [137]. The compromised node or device will attract so much traffic to it,
then it drops these packets or inspect it and gain access to sensitive information [13,16,102,104,111,138].
In a Wireless Sensor Network (WSN), all packets generated from WSN nodes are redirected to the
same sink point where they are later dropped instead of being forwarded to their destination [139].
This is carried out by the malicious node announcing fake preeminent routes using different metrics,
such as having optimal bandwidth, minimum delay, shortest path, etc. [100,109,111].

Routing information attacks: Such attacks targets the routing protocols employed in IoT systems.
Routing information is modified to cause routing loops, dropping packets, increase latency [104],
forward false information or result in network segmentation [13,102,104,111,140]. Routing protocols
at the network layer are vulnerable to impersonation, spoofing, and routing attacks [104,110,141].
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The attacker might use this attack to drop, redirect, spoof or send misleading error messages throughout
the system. There are many types of routing attacks, such as altering (change the routing information),
Wormhole, Sybil attack, Black hole, Gray hole, and Hello flood [134,142,143] all described below.
Address Resolution Protocol (ARP), Domain Name System (DNS) poisoning and Internet Control
Message Protocol (ICMP) redirect are redirection attacks against the network layer and are carried out
to disrupt the communications between two devices in the IoT system [76,100,109,110].

Wormhole attacks: In this attack, two malicious IoT nodes or devices are placed in two far away
locations throughout the IoT system with one hop private link in between them which is exclusively
used by the attacker. Through the false one hop transmission link (a wormhole tunnel) between the
two malicious nodes or devices, many IoT devices will choose the malicious devices or nodes as a
next hop in their routing path [13,102,109,144]. In other words, this attack will record messages from
one geographic zone and replay it in another geographic zone [144]. Once there is an amount of
traffic flowing through the tunnel between the two malicious nodes, the attacker can drop or delay the
traffic which can be very critical and have serious consequences in case of critical mission applications.
This attack can be carried out by either compromising an IoT device which is known as in-band
wormhole or through out-of-band wormhole when high-gain directional antenna is used [144].

Sybil attacks: The attacker compromises an IoT device that can pretend to have many
genuine identities in the IoT system and imitate them [16,104,145,146]. Having different identities,
the compromised device (Sybil device) sends fabricated information to its neighboring devices.
In addition, routes that include the Sybil device as a forwarding node could be deceived that many
routes are available when there is only one route available where all traffic transmitted will go. This can
lead to different attacks, such as a DoS or jamming attack [13,111]. In a sybil attack, sybil nodes with
fraudulent identities are added or used which could outnumber the genuine nodes in the network [76].
An example of this attack would be a voting system where a malicious node claims the identity of
many nodes and impersonates them to vote on their behalf [147].

Black hole attack: A malicious node is inserted in the network and advertises wrong routing
information to its neighboring nodes that it has the shortest path to the destination [142]. Upon receiving
the packets, the malicious node either processes or drops the packets [76,109]. In a gray hole attack,
the malicious node drops some selected packets. The attacker captures packets at one site in the network
and then tunnels them to a different site [76,142]. In a hello flood attack [76,134,148], the attacker
inserts a malicious node with high transmission radius and then uses it to broadcast the hello message
to nodes within the transmission range claiming to be their neighbor. This could be used to launch
other attacks [76].

RFID unauthorized access: Due to the absence of an RFID tag authentication process
(i.e., no standardized secure authentication procedure) and accessibility, these tags are vulnerable to
attacks and are easy target to manipulate [100,104,111]. The information contained in the tag can easily
be modified, or deleted by the attacker [13,104,149,150].

Sniffing attack: The attacker uses certain tools, applications or devices to capture traffic on the
network and perform analysis to carry out an actual attack [16].

Traffic analysis attacks: Due to the wireless medium characteristics in IoT, which mainly
relies on RFID technology, the attacker analyzes the traffic using a sniffing tool to get confidential
information [15,16,119,151]. This is usually the initial step in launching the actual attack. This type of
reconnaissance might include port scanning, vulnerability scanning and network sniffing [100,104,111,152].
In addition, this attack can be used on encrypted traffic. The more of the traffic that is captured and
analyzed, the more that can be extracted from the packets captured [16].

6.3. Application Layer Attacks

The role of the application layer is to assist in providing on-demand services to the user. The layer
also processes data from the network layer. This layer is mainly vulnerable to software attacks
(i.e., the exploitation of vulnerabilities in programs or application layer protocols) and lifetime
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permissions [13,16]. These attacks target accessing sensitive information of IoT users, which leads to
violations of data confidentiality and users’ privacy.

Phishing attack: The attacker uses infected email or phishing website, as shown in Figure 7 below to
get users’ private information (i.e., authentication credentials) such as ID and password [16,100,104,111,153].
The attacker gains access to sensitive information such as login credentials once the victim accesses their
email account [16].
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Malicious virus/worm/trojan horse, spyware: IoT applications suffer from vulnerabilities to
malware that can replicate and disseminate on its own which is considered to be one of the most
challenging attacks to the IoT system [104]. Once the attacker succeeds in infecting the IoT application,
s/he will intrude into the system and gain access to sensitive confidential information [102,111].
In addition, malicious software can infect the system, which could lead to DoS, tampering with or
stealing data [100,108,111].

Malicious scripts: These scripts contaminate the application by adding or modifying the software
in order to purposely cause harm to the IoT system and its functionality [104]. An attacker achieves his
goal when the victim tries to access a service on the internet since IoT applications are all internet based.
The attacker can send a malicious script to the user when the latter requests a service from the internet.
Executing an ActiveX script by the user might give the attacker an access to the system [100,106,111]
Examples of such scripts are Java attack applets and ActiveX scripts. The attacker can access confidential
data or cause the system to crash [104].

XMPPilot attack: The attacker uses the command line tool XMPPilot to launch an attack against
the XMPP connection established between client and server. The attack prevents the encryption of
communications on the client side. This enables the attacker to monitor the communications [118].

Denial of service: Attackers can gain access to the application layer and confidential sensitive information
in a database as a result of DoS or DDoS, which will cause service unavailability [7,100,111,120,153].

Software vulnerabilities: Software vulnerabilities are still considered a main threat since software
engineers and developers do not consider writing secure code because of an absence of standardization
to do so. This enables attackers to launch attacks such as buffer overflows, as explained below,
for example, to redirect the execution to malicious code [7,16,100,122].

Code injection: The attacker exploits some vulnerabilities in the programs. The main aim of code
injection is to get credentials, expose the confidentiality data, gain access to the system, steal data, or
propagate worms to infect other IoT devices in the system. HTML and script injections are the most
common types of code injection [7,16,153].

Buffer overflow: The attacker takes advantage of vulnerabilities in the program to carry out the
attack as most programs have some security issues related to pre-allocated memory. The attacker
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writes a piece of code that is larger than the fixed pre-allocated memory size for a certain program.
The consequences are modifying other information stored in other memory locations, interruption of
program control flow and redirecting the control of the program to run malicious code redirecting the
stack pointer. Many mechanisms exist to launch the attack, such as string buffer overflow, heap or
stack overflow, and integer overflow [16].

Data aggregation distortion: the attacker modifies the data collected by a node and forwards it to the
base station. So, the base station will gather false information about the observed surroundings [100,109].

Sensitive Data Permission/Manipulation: The attack exploits the vulnerabilities in IoT design
flaws and, in particular, in the permission model to control applications [16]. The main target of this
attack is based on communications between smart devices and smart applications. In this scenario,
the smart device sends sensitive data to the application where the latter monitors the smart device [16].
This might have serious consequences on users and violate their privacy.

Clock Skewing: The attacker desynchronizes the IoT devices’ clocks by generating bogus timing
information. This causes victims’ devices to be out of sync with the aggregation nodes [100,109].

Data leakage: An attacker, by exploiting vulnerabilities in the IoT application or service, is able to
access sensitive and confidential data [7].

Authentication and Authorization: At the time of writing this paper, there is no standardized
authentication mechanism for IoT devices. Therefore, no authentication mechanism exists to fit all
kinds of IoT devices requirements [16]. For example, when updating an application, the attacker might
use the update to inject a harmful payload to gain access to an IoT device or have control over the IoT
device or system [16].

6.4. Impact of Attacks on Security Objectives

Attacks may affect the security objectives of Confidentiality, Integrity, and Availability (the CIA
triad). The potential impact of the loss of one of these three security objectives is defined in NIST’s
publication FIPS 199 [24]:

• Low: limited effect on operations, assets, or individuals
• Moderate (Mod): serious effect on operations, assets, or individuals
• High: severe or catastrophic effect on operations, assets or individuals
• Not applicable: only applies to Confidentiality

The potential impact may vary due to the context in which an attack occurs. In Table 7, we consider
the potential impact of select attacks on the CIA triad for user information depending on the general
type of device at which the attacks are directed. In one case, the attacks are directed at a smart light
bulb, in the other, at a smart health monitor; the difference in applications can make a difference in the
severity of the impact [25].

Table 7. Potential impact of attacks on Confidentiality, Integrity and Availability.

Sample Attacks

Potential Impact on
Confidentiality of
User Information

Potential Impact on Integrity of
User Information

Potential Impact on
Availability of

User Information

Smart Home
Heating
Control

Smart Health
Monitor

Smart Home
Heating
Control

Smart Health
Monitor

Smart Home
Heating
Control

Smart Health
Monitor

RFID tag tracking Low/Mod Low/Mod Low Low/Mod Low Low/Mod
Denial of

Service (DoS) Low Low/Mod Low Low Low Mod/High

Man in the Middle Low/Mod Low/Mod Low Mod/High Low Mod/High
Traffic analysis Low/Mod Low/Mod Low Low Low Low/Mod

Phishing Low/Mod Low/Mod Low Low/Mod Low Low
Malicious

virus/worm Low/Mod Low/Mod Low Low/Mod Low Mod/High
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7. Mitigation and Countermeasures

Mitigation and countermeasures against threats and attacks may be developed for and directed at
each layer of the IoT architecture, but they may also be considered more broadly across multiple layers,
as summarized in Figure 8, and described in detail below.Computers 2019, 8, x FOR PEER REVIEW 26 of 43 
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7.1. Functionality Trade-Offs

Because of the limited resources present on IoT devices, trade-offs must be made between
functionality and device capabilities on all respective IoT layers [26–28]. In order to best manage
these functionality trade-offs while maintaining the greatest level of security, certain architectures
can be adapted. This includes the “Event Driven Architecture” (EDA) Model, or alternatively the
“Event Driven Adaptive Security Model” (EDAS). Because of the nature of IoT devices, adaptive
security models tend to be strongest for creating a functionality trade-off architecture, but also must be
balanced with system capabilities [154].

7.2. Physical Security

Physical Layer-directed security can primarily be mitigated by the physical security of
device design. Individual device components should not be interchangeable, for example [155].
Techniques that provide anonymity, such as the “Zero-Knowledge” technique [156] or “K-anonymity”
technique [157], mitigate physical layer security risks by hiding sensitive information such as location
and address [26]. Physical security also goes hand-in-hand with chosen protocols; the assessment of
device and program needs alongside connection protocols assists in determining functionality and
risk trade-offs [158]. For example, RFID is more vulnerable to tracking, while WiFi is more vulnerable
to eavesdropping [27]. Physical security can also simultaneously mitigate threats in other layers.
The interlocking nature of functional elements in IoT means that a more secure physical environment
results in more secure application and processing layers. Some studies have proposed this through
SIM-based authentication alongside key agreements, or suggesting a lack of direct device to device
communication at all [159]. Some research has indicated that malware can be detected physically as
well as in software; this has been considered through “path delay testing”, “temperature analysis”,
and “power based analysis” [158].
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7.3. Risk Assessment

Dynamic risk assessment techniques provide confidentiality and assist in avoiding security
breaches, especially on the physical layer [100]. Risk assessment can also mitigate vulnerability on the
application layer alongside preexisting architectures [26,160].

7.4. Network Protections

Network protections such as routing security through pathing algorithms and security aware
ad-hoc routing (SAR) can prevent attacks from adversaries by adding security measurements to
packets [161] and applying confidentiality toward sensor nodes in IoT systems [26,162]. Network
security options also exist on the application layer, particularly in protocols used for communication
security; this is derivative of the wireless communication used at the top level. For example,
protocols with TCP-based transport can use TLS/SSL for security to mitigate eavesdropping or
man-in-the-middle attacks, while UDP-based transport systems can use DTLS [27]. Some studies
have suggested a methodology of securing networks through non-routable TCP/IP addressing, a stark
contrast to the typical network computing done elsewhere. The application of such prevents data traffic
from being maliciously intercepted by sniffing or injected into by man-in-the-middle attacks [159].
Further network protections can be achieved through communication protocols which support M2M
communication, such as AMQP or MQTT. The protocol used is dependent on the needs of the system;
AMQP assures reliability by guaranteeing delivery, while MQTT is best on limited-memory devices
that require a “publish-subscribe” architecture for data transfer. Furthermore, it has been proposed that
moving from IPv4 to IPv6 for IoT devices can help with improved network security by more specific
identification, especially due to the mass deployment of these devices versus non-IoT computational
counterparts [30]. Alternatively, it has been proposed to eliminate modern paradigms and opt for a
peer-to-peer networking protocol [163].

7.5. Key Distribution

As much as encryption and cryptographic techniques are vital for the security of all data transfers,
key distribution minimizes cyberattack risks and can function within lightweight frameworks [34].
Key distribution techniques are dependent on the form of cryptography deployed by other aspects
of the individual device as well as by the wider IoT ecosystem. These must be paired alongside
processing power. Some forms of pre-distributed keys can provide greater security and less processing
power, but may result in reverse engineering risks. Certain studies have shown hybrid encryption
systems can be paired alongside key distribution systems to mitigate such risks, however [36,164].
Key administration is another element that goes hand-in-hand with key distribution. Key administration
must be considered alongside secure routing systems and detection systems trilaterally. Safe key
distribution methodologies can minimize protection risks in cryptographic frameworks [40,165].
Key distribution systems should also only be arranged in IoT networks in which pre-authentication
make sense; otherwise, key distribution schemes can demand resources from IoT devices without
proportionally secure returns [36,166].

7.6. Cryptography and Encryption

In order to avoid tampering and ensure the confidentiality, privacy, and integrity of data
transactions, data between devices must be encrypted. There is a debate as to whether symmetric or
asymmetric encryption is preferred, but generally because of device limitations, algorithms which
consume less power are preferred. Algorithms such as RSA have been applied with success in the
past, encryption, combined with authentication, can also help prevent illegal access to nodes [29].
Cryptographic hash mechanisms are used to check data integrity for data transmission between nodes
and detection of errors on the network layer [31]. Homomorphic encryption is often used within
the processing layer as a secure measure of data transmission, but requires high computing power.
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Encryption, in general, can be applied to overcome various interception or sniffing style of cyberattacks,
as well as circumvent otherwise exploitable side-channel attacks [26,167]. Furthermore, encryption
can be applied in various forms, and should be designed and allocated according to device resources
and functionality. The balance of functionality and processing power in a device should be equivalent
to the framework of cryptography used within it, as well as the risk assessment of using said device
in its respective setting [36,168]. The use of shared key cryptography for secure communication
reduces the overhead for IoT gateways, which compared is important due to lower power consumption
capabilities [34]. While symmetric key and/or public key cryptography suites provide better security
than alternatives, their high-power consumption is often a challenge. However, lightweight alternative
frameworks can provide similar security standards on minimal hardware, on which additional research
has been conducted [41,168,169]. Some studies have shown that Hybrid encryption models are the best
for securing information robustness and confidentiality in data exchanges at optimal speeds, without
having to sacrifice power consumption [8,57]. Service Level Agreements (SLA) can be used to provide
data encryption within the processing layer [30]. Since many encryption suites are compromised
because of misconfiguration or user error, it is important to deploy accurate user configurations
in addition to cryptographic systems for security [28]. Since devices are not heterodox, deployed
encryption standards can differ between devices. Devices that communicate with each other should
optimally use the same cryptographic suites. Alternatively, a standardized cryptographic method
would eliminate many of the risks arising from device heterodoxy [42]. Multi-factor cryptographic
schemes are best suited for larger networks with vital security applications, such as in smart cities or
healthcare systems [166].

7.7. Digital Signatures

Digital signatures, encapsulated often in hybrid encryption technique models, are one specific
cryptographic technique used in heterogeneous deployments to prevent cyberattacks and ensure both
the integrity and confidentiality of transmitted data. These techniques require lower processing speeds
than algorithms such as AES, and also faster processing speeds than RSA [164]. Digital signatures
can also be deployed as a measure of warding off “puppet attacks.” However, certain forms of digital
signatures are dependent on the routing protocols used by individual IoT devices [170].

7.8. Processing Protocols

Protocols in the processing layer, such as “Fragmentation redundancy” scattering, minimize data
theft by splitting and allocating data into fragments between a cloud and a direct transfer between
devices [26]. End-to-end data protection frameworks are best suited for transmissions that happen
in this layer as well for assuring the security of data during its life cycle between devices. Service
Level Agreements can be implemented to ensure protections for sensitive data, and also to reduce DoS
attacks [30].

7.9. Application Security

Application layer security, through Access Control Lists, can moderate traffic by whitelisting
or blacklisting both incoming and outgoing requests [26,36]. Similar to physical layer selections,
the assessment of protocols used in the application layer can help to balance risk with functionality.
Bluetooth leaves open the risk of “bluejacking”, for example, so applications built around Bluetooth
should not be created in a way that their functionality lends themselves to this risk outweighing the
functionality of the device [27]. Proper access control helps ensure confidentiality, while authentication
in the application layer helps ensure integrity. “Service Level Agreement[s] (SLA)” and “Virtual
Machine Monitor[s] (VMM)” are processes deployed in the application layer alongside Intrusion
Detection Systems in order to achieve availability and protect data during downtime or malicious
attacks [30]. Data loss prevention systems can also be implemented within IoT networks in order to
prevent data theft [28,36].
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7.10. Patching

Regular updates to software and firmware on IoT devices can help to mitigate vulnerabilities
and lower risks associated with individual devices. However, this is often left to user responsibility,
as auto-patching software must be balanced alongside other security measures against available system
resources [28,30].

7.11. Intrusion and Threat Detection

Intrusion Detection Systems (IDS) secure ecosystems by producing alarms when detecting
threats that either are hostile, suspicious, or uncertain within the application layer [26,36,159,171].
The application of intrusion and threat detection can be used to quell vulnerabilities that are not picked
up upon by active defensive systems or firewalls; since anomalies are recorded, logs can be traced
to malicious or suspicious activities. For this reason, it is important for threat detection systems to
transcend all IoT layers; threat detection must include “physical damages, attacks, malicious codes,
vulnerabilities, [and] misuses” [172]. Because of the often small storage on IoT devices, best practice
is for security warnings from these systems to be forwarded to a secondary source, such as over
email, SMS, or logs on a remote cloud [172]. There are two popularly used types of IDS for IoT
devices, “Host-based Intrusion Detection Systems (HIDS)” and “Network-based Intrusion Detection
Systems (NIDS)”. They typically are deployed for securing the network layer, but can also run on the
application layer depending on the needs of the device [30]. In a general sense, most well-known
forms of network attacks can be prevented by an IDS, which include brute forcing, DDoS attacks,
and malware requests [28]. If nuances in security as distinguished by sensors can be detected by threat
detection systems, then systems can be stated to be more secure on the physical layer [40]. Due to the
sheer diversity of the IoT ecosystem, some studies have recommended the introduction of adaptive
intrusion systems to better combat against vulnerabilities arising from a heterogeneous environment.
This has been recommended through the notion of using machine learning techniques as opposed to
matching threats to database records [36,173].

7.12. Antivirus/Firewall

Web application scanners can help identify threats, especially when deployed alongside firewalls
for detecting potential attackers. Firewalls, when deployed alongside ACLs, can block unauthorized
access and assist in packet filtration on the application layer. Antivirus software can also work on this
layer to detect and mitigate known threats, vulnerabilities, and cyberattacks from a database, but must
be balanced with computational power for the device they are stored on [26]. Since Antivirus software
and firewalls are not universal, they are best paired alongside IDS and/or Honeypot detection software
in order to best mitigate attacks [28,30,171].

7.13. Blockchain

Some studies have proposed blockchain as a multi-layer solution for securing IoT networks.
Blockchain networks can be deployed in either centralized or decentralized models, with their own
weaknesses and strengths. The former is better for processing large data transfers from heterogeneous
devices, while the latter is better for flexibility and real-time services. Blockchain can help standardized
transactions among different forms of devices, as well as increase trust factors between heterodox
communications or device functionalities which cross-communicate. Proposed blockchain techniques
ensure an increased level of security through global trust and universal identification, standardized and
high-level authentication, contextual privacy, and exponential mitigation against high-level attackers
without an exponential increase in capabilities, which diminish IoT flexibility [32,33].
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7.14. Honeypot Detection

Honeypot detection is another form of intrusion and/or threat detection based on system and
network architecture. Instead of simply logging vulnerabilities or attacks, honeypot detection helps
prevent attacks by the presentation of a separate zone outside of the typical scope of the network,
such as in a “DMZ”; in this approach, vulnerabilities can still be detected and logged without putting
the rest of the IoT network at larger risk [26,172]. Because honeypot detection systems do not need to
be stored within the device itself, but just on the same network, they can act as a tool for measuring the
dynamic nature of threats and preventing intrusion without burdening system resources [174].

7.15. Standardization

The lack of universal standards for IoT devices has resulted in a largely heterodox field, which has
spawned a complexity for developing cross-device security methods. Researchers [43,44] have
suggested that the standardization of security protocols would be one form of mitigating risks which
spawn from device nuances [36,41]. In lieu of a lack of standardization, some studies have suggested a
lack of device to device communication at all to prevent cross-device communication vulnerabilities
from arising [159]. Standardization is most important on the network layer rather than the physical layer.
Standardized protocols ensure a safe and simplified ecosystem for cross-device communications [30,36].
Just as the standardization of protocols for home and professional computing helped create a more
secure world wide web, research has shown that a foundational standardization of protocols helps
ensure an “interoperability” of security between IoT devices [40,42,45]. Software-defined networking
(SDN) has also been proposed as an alternative to hardware standardization, which ensures a similarly
secure return with a greater level of manufacturing and performance flexibility [175].

7.16. Traffic Filtering

Filtering traffic signals between IoT devices on the physical layer, even without IDS or threat
detection on software-based layers, is one form of securing IoT networks and preventing malicious
signals or cross-communications. Depending on the filter, this is also one way of implementing security
despite a lack of device standardization [30]. Traffic filtering employed alongside an IDS can result in a
significant decrease in malicious attacks, as well as general lessened risks within an IoT ecosystem [28].

7.17. End-to-End and Point-to-Point Security

End-to-end security mitigates risks in any wireless communication between devices, regardless of
the protocol used; however, different suites must be applied depending on the protocol(s) used within
respective layers [34]. Similarly, point-to-point connectivity solutions, which may take the form of
IPSec VPNs or MPLS, provide similar security as end-to-end, but with greater power consumption
needs [30,159]. It has also been noted that one critical strength of end-to-end security trust models is
the circumvention of tertiary vulnerabilities. As cloud-reliant systems are only as secure as the remote
systems facilitating processes and security, end-to-end security systems circumvent security risks
proposed by such [176]. End-to-end security has also been proposed as a form of maintaining data
integrity and privacy within a peer-to-peer networking system, although it is not inherently dependent
on that form of networking architecture [163].

7.18. Authentication

Secure authentication is important for risk mitigation across all layers. On the physical layer,
device authentication and identification must take place before signals are sent or received [35].
Authentication mechanisms prevent illegal access to data on sensor nodes in the network layer.
The most common type of attack on this layer are DoS attacks, which authentication can assist
in preventing [26]. Furthermore, authentication techniques can be deployed in a variety of ways,
depending on the needs of the device and device application(s); these are usually, in best practice,
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deployed alongside access controls [36]. Various forms of authentication can be done through key
exchanges, username/password (login) systems, or unique techniques such as “Identity Authentication
and Capability-based Access Control (IACAC)” [37]. Furthermore, Message Authentication Codes
used for device authentication can help prevent man-in-the-middle attacks [13]. An issue often pointed
to for authentication is the heterodoxy of the IoT ecosystem; while some research has suggested
standardization for this, authentication can still be achieved through methods such as cryptography
suite-based access control, or a multitude of other formats. However, this heterodoxy means that
devices which are not homogeneous and require safeguarded authentication should not be used
within the same network [36,41]. Different forms of authentication are implemented at different layers,
with respective security nuances based on such. Physical authentication can be achieved versus
RFID-based identity authentication, whereas application authentication can be achieved through prior
mentioned forms of authentication such as login or key exchanges. In comparison to these forms of
authentication, physical authentication can help secure software layers additionally, but software layers
cannot secure physical layers bi-directionally [177]. Applying authentication methods into sensor
nodes of IoT devices is required in order to prevent malicious attacks; some studies have suggested
that this is best achieved through symmetric cryptography suites. Furthermore, authentication should
be setup in a distributive form, so users and nodes can only ever be authenticated to aspects that access
needs to directly be attained. This can be done, for example, through Attribute-Based Access Control
(ABAC); studies such as [30] propose that ABAC is most suitable over other access control methods
because it requires minimal resources, is based on attribute instead of user, and uses randomized values
per-session [30]. ABAC could potentially be used as a defense against man-in-the-middle, sniffing,
replay, and node capture attacks [30]. Devices that connect to cloud servers and “control” devices
are most in need of forms of user authentication, as well as input validation [28]. Authentication can
also be deployed as a way of circumventing spoofing attacks on geospatial data [178]. Multi-factor
authentication can ensure a high layer of security, but at the cost of flexibility of capabilities. In highly
sensitive environments however, this trade-off is important to consider [166].

Another promising method for access control, which has been proposed within the sphere of IoT,
has been NoSQL authentication. NoSQL provides performance, flexibility, and scalability for handling
high data volumes, and has already found a place within the data storage and analysis layer(s) of
the Internet of Things [93]. Using NoSQL as a framework for authentication within the Internet of
Things is thus intuitive, especially because of the aforementioned need for implementation of access
controls. Studies such as [93] have shown that NoSQL datastores can be used to implement access
controls. In the past, using NoSQL for this purpose has been subject to criticism, as NoSQL datastores
suffer from poor data protection; the aforementioned study [93] proposes a fix to this, and thus a
possible springboard for IoT systems, by the integration of “fine-grained access controls” (FGAC).
FGAC has previously been used in other systems, such as social networks and service and mobile
applications [93]. The usage of FGAC allows for straightforward enforcement mechanisms and policy
encoding, which suit the access control needs of IoT devices. [93]

7.19. Trust Establishment

Third parties are often introduced for trust establishment techniques, such as third-party-based
key exchanges, or certification. In order to do this, devices must be able to access third parties typically,
or have these trust stores built into their architecture by default. Trust stores help with safeguarding
uniform transactions and preventing untrusted communications and attacks, but, depending on
their implementation, must also be balanced with reverse engineering risks, or the need for constant
remote authentication [34]. Trust establishment is best used alongside authentication frameworks
or mechanisms in order to prevent trust tampering. This goes hand in hand with key distribution;
best practices show that unique device IDs and distributive permissions are best practices [13,30].
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7.20. Active Defense

In contrast to antivirus or firewallesque software, “deep packet inspection” has been proposed as
a method of real-time detection of abnormal data or behavior. This type of behavior often indicates
malicious activity; this behavior could be contrasted with IDS systems, but done directly as traffic is
received or sent, rather than within a separate software process [159]. Active defense can be considered
the primary segment of defense architecture and can encapsulate a number of other mechanisms,
such as backup, authentication, access control, and encryption; however, this is based on both the
needs and capabilities of the device. As active defense cannot inherently prevent all forms of threats,
but generally known or up-front ones instead, it is important to be coupled with other mitigation
tactics [172]. Active defense techniques are most important for devices with remote connections,
such as to cloud servers, and are best deployed alongside antivirus, IDS, and firewalls, as a system
administrator would otherwise secure a non-IoT computational network [28].

7.21. Location-based Data Security

GPS spoofing occurs as an attack within the network layer. Techniques such as the “GPS Location
Technique” [179] have been used to successfully mitigate location-based system attacks [26]. In order to
counter spoofing, techniques that match identity and location to service requests can be deployed [176].
Authentication, as well as geo-spatial validation, can be deployed in order to combat most vital
spoofing attacks [178].

8. Open Research Ideas

Current open areas of research into Internet of Things have primarily been focused on addressing
countermeasures for recognized security and usability flaws. More broadly, this has included topics
such as security, scalability, and standardization, as described in Figure 9. Research has been focused
on areas of improvement surveyed for application in fields such as smart environments (such as
cities), and healthcare. As such, there has been an emphasis on the aforementioned importance
of universalized security paradigms and standardization of device operations [27,42,180]. This has
manifested in studies over proposed architectures and protocols; although there has not been a
consensus on this, some proposals have been shown to be more recurrent than others, such as structural
decentralization [181] and involvement of blockchain [32,33,163,182].
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Architectural Internet of Things research has primarily been divided into two fields from a
wider pool of options, three-layer architecture and SoA-based architecture [180]. However, alternate
architectural frameworks have been drafted and proposed as a result of distinct perspective issues
in individual layers, such as the physical and network layers. These new architectures have largely
been driven by a secure desire for standardization, especially within the field of research itself, due to
dissonance in research resulting from industry fragmentation [183].

The lack of standardization within the field has created a vacuum for large-scale deployability.
Because of the “multidisciplinary” nature of the field, research has demanded a universal, international
standardization for Internet of Things protocols and communications [27,184]. Standardization,
however, has proved to be a regulatory challenge, because of the mass variation of both consumer and
industrial needs within the field internationally, as operations which result from legal and physical
challenges, as shown for example by the impact of 5G technology, as well as the recent trend of
technology-focused digital legislature, such as the European GDPR [35].

The relationship between the wider Internet and the Internet of Things has remained a tenuous
topic for both security and functionality reasons. Open research has been done into the development
of Web-based APIs for the purpose of devices securely accessing the web for functional reasons [185]
as well as theoretical implementation of TCP as a transport-layer protocol, based on past historical
applications of such in the field [186]. While this research exists, there has yet to be a generalized
consensus on the usability of such in a wider scope. This, of course, relates back to the issue of lack
of standardization, as the development and applicable testing of protocols and other proposals are
predicated on their ability to be universally deployed, which is not currently viable without a consensus
within the field [30,187].

Similarly, lack of standardization is also an issue that has pervaded studies into security
improvements. However, it has not had as critical of an effect, due to many security proposals
being intrinsically proposed in a vacuum for mitigating threats within certain architectures, or as
a response to certain externalities [187]. Authentication, for example, has remained an open area
of research; consensus agrees that authentication must be utilized in any secure Internet of Things
architecture, but individual application of such has differed. Some open-ended papers have proposed
protocols for key management schemes to strengthen resilience against cyber attacks [45,166,188].
Other research has taken a more generalized approach, surveying threats (which have shown to be
more widely agreed upon) and proposing hybrid encryption schemes to protect against both data
theft and hijacking [189]. However, besides standardized practices, other challenges are proposed
for Internet of Things devices compared to more traditional computing; balancing security alongside
energy consumption and available resources, for example, has remained a large problem, due to
the complexities of stronger encryption competing with available system resources [158,187,189].
Looking to balance such attributes, studies have shown a sharp contrast in proposed solutions;
some have proposed authentication through continuous authorization, or authentication based on
direct user interaction [189]. Other studies have taken the route of providing security through
cloud, or “fog computing” solutions [183]. Many studies, however, have incorporated security
concerns into architectural proposals; this, typically, has intersected with proposals for Blockchain
and decentralization [32,33,163,181,182]. Going back to Section 3 and in particular discussing access c,
many approaches have been proposed to provide control access.

The usage of “fog computing” as a proposed solution has spurred a diverse sector of research [190].
The term itself, “fog computing”, refers to a computing architecture which extends cloud computing
methodology through employing peer entry nodes as middle-men between communicative devices and
cloud networks. Some studies focus on more peer-to-peer based implementations, while others treat
fog-computing as a layer in otherwise traditional cloud-computing architectures [190]. “Fog computing”
has competed against cloud-computing within IoT spheres by providing similar security benefits
but with overcoming many of the challenges cloud-computing otherwise faces, such as “latency
requirements” or “bandwidth” or “resource” “constraints” [190]. Similar to cloud-computing, it allows
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for external and on-demand access to additional computing resources and virtual infrastructures
with remote deployability and management [190]. As this is an open field of research, however,
exact implementations of fog computing are not fully agreed upon. Many of the considered benefits
have overlapped between studies, but implementations have widely varied. Some studies, for example,
believe that Blockchain should be used to foster fog computing paradigms [191], while others believe
that fog computing should simply act as a middleware-type framework for otherwise traditional cloud
computing methods [192]. The exact architecture is also highly debated between studies [190,192,193];
some focus on optimized architecture for real time performance [190,192], while others are focused more
on synchronization between nodes [193]. Others acknowledge the need for both synchronization and
real-time efforts, but instead focus on adjacent implementations, such as sensor virtualizations [190].

While both Blockchain and decentralized architectures (generally, peer-to-peer or end-to-end)
are fairly common, even within such proposals, there is a large distinction between papers as to
theoretical implementation of such, and little case study or proof of concept within the field, due to
the inherent large scale of such proposals [187]. Blockchain is often used as a means of proposing
trust-based systems for ensuring integrity and non-repudiation [182]. Proposals have been more
uniform among peer-to-peer studies, generally focusing on challenging the status quo by providing
decentralized solutions based on improving scalability and privacy [176]. Most of these proposals
have discussed forms of end-to-end encryption in tandem, but there are disagreements stemming from
such, for example, how to distribute keys, or how to ensure standardization within a decentralized
system across different hardware, manufacturers, and applications [159,176,180].

Other research has been conducted on scalability, which also intersects with proposals of
standardization and security. Solutions regarding IPv6 for the further scalability of device connectivity
has been proposed [194] but has yet to manifest as proof of concept with tangible results outside of
theory. The scalability of the Internet of Things has remained an open topic, since, while it relies on
standardization, it is also immediately striking as relevant technology is rolled out to consumer and
industrial causes [187].

9. Conclusions

IoT is exponentially becoming part of our daily lives to increase efficiency, provide unlimited
services, to increase the quality of life, and provide convenience via connecting different technologies,
devices, and applications. As the number of IoT devices increases and adopted in different domains
and applications, the number of threats and enormous security and privacy risks increase, creating an
Internet of Vulnerabilities (IoV).

In this survey paper, we perform an in-depth systematic, comprehensive review and taxonomy of
the state of the art and urgent security and privacy concerns that most matter to IoT. First, we present
an overview of IoT, its underlying technologies and its limitations, approaches, as well as applications
of IoT in different domains. Then, we follow that up with the coverage of previous diverse and
significant similar related work that has been done for the past few years and the contribution of each
work. Moreover, we explain the need for security in the context of IoT and why it is different from
other systems due to its different applications’ heterogeneity. In addition, we explore the most recent
IoT security frameworks that address security and privacy concerns in IoT and propose a solution to
maintain security and give more opportunities for IoT to become an integral part of different domains
and fully embraced.

Moreover, the paper investigates attacks, threats and vulnerabilities and provides classification
of them based on the severity and impact according to NIST’s FIPS 199 definitions on the violation
of Confidentiality, Integrity and Availability (CIA), which, to the best of our knowledge, is a unique
contribution of this work and the first article to describe attacks, threats and vulnerabilities based on this
criterion. Furthermore, we provide a multi-faceted approach to the mitigation of, and countermeasures
to, these security concerns.
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Finally, we discuss several current research challenges associated with IoT ecosystem that
need further research and investigation in order for IoT to be fully adopted from convenience to
mission-critical applications.
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