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Abstract: Computer programmers require various instructive information during coding and
development. Such information is dispersed in different sources like language documentation,
wikis, and forums. As an information exchange platform, programmers broadly utilize Stack
Overflow, a Web-based Question Answering site. In this paper, we propose a recommender system
which uses a supervised machine learning approach to investigate Stack Overflow posts to present
instructive information for the programmers. This might be helpful for the programmers to solve
programming problems that they confront with in their daily life. We analyzed posts related to two
most popular programming languages—Python and PHP. We performed a few trials and found
that the supervised approach could effectively manifold valuable information from our corpus.
We validated the performance of our system from human perception which showed an accuracy of
71%. We also presented an interactive interface for the users that satisfied the users” query with the
matching sentences with most instructive information.

Keywords: text classification; supervised learning; crowd knowledge; recommender system

1. Introduction

In the field of software engineering, learning is a life-time pursuit for professionals seeking to
maintain competency. It has been well-established in educational and training circles that fostering
communities of learners can facilitate the achievement of learning goals. Online social networks
clearly have a strong role to play in this aspect. At present, many websites are available to share
information and exchange knowledge with peers. Stack Overflow is one such popular Web repository
that helps programmers to share and obtain useful information about programming. Launched in
the year of 2008 by Jeff Atwood and Joel Spolsky, StackOverflow.com has become a widely used
forum for people to interact on topics related to computer programming. Over a period of time, it has
gained the reputation of being a reliable forum where users get quick responses to their questions,
and that too with high level of accuracy. Stack Overflow data have been a pool for research from many
perspectives. Such researches have helped to understand the power of programming-specific question
and answering (Q&A) forums and how far these forums are serving as a learning platform.
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In computer programming, learning is an actual interest for the programmers who thrive off
increasing their proficiency. In the rapid pace of technological changes, the official documentation
of programming languages are often lagging behind [1]. Bacchelli et al. [2] stated that the project
documentations are commonly inadequate, manuals tend to be outdated, and books may be hard
to retrieve or link to the actual task. Online social platforms are found to be promising to fill this
gap. The reason is that the programming tasks often demand knowledge that are diversified among
numerous people with different specializations and skills [1].

Due to this fact, Stack Overflow has picked up the notoriety of being a solid gathering, where users
get nimble responses to their inquiries identified with computer programming and with an elevated
level of precision [3,4]. Stack Overflow data has been a pool for research from many perspectives.
Such researches [1,5-11] have assisted with understanding the intensity of programming-explicit
Q&A discussions and how widely these forums are filling in as learning stages. It is even inferred
that the appropriate responses on Stack Overflow often become a substitute for authentic item
documentation where the official documentation remains to be inadequate [12]. Parnin et al. [5]
asserts that Stack Overflow has developed into an enormous storehouse of user-engendered content
that could supplement conventional specialized documentations. Nonetheless, jam documentation
is made in a casual way with no extensive association or express connects to API components [5,13].
Even though we can surmise the estimation of group documentation by a number of contributors and
commitments present, for understanding the extent of contributions or assessing the worth and nature
of those legacies, we have not done much yet. Additionally, common studies have not considered the
intricacy of cases to make documentation versatile to various degrees of developer experience.

Although there are some research [14,15] to recommend tags for Stack Overflow discussions,
to the best of our knowledge there is no efficient technique for recommending learning materials
to the users from Stack Overflow discussion. Considering this fact, we develop a technique to
recommend appropriate learning materials for the two popular programming languages—Python
and PHP. The main goal of this research is to build a recommendation system using a supervised
machine-learning technique to suggest richer discussion posts to the programmer on demand.
The contribution of this research is the development of a system that can automatically identify
richer discussion posts and recommend them to the users from Stack Overflow repositories. We have
achieved satisfactory results by validating with the machine extracted information from human
perception. Our framework provides users with the appropriate guidance complementary to the
original software documentation. This work is an extended version of our previous paper [16].
The main contributions of this work can be summarized as follows:

o  We exploit the knowledge repository available from the Stack Overflow discussions to generate
learning materials related to PHP and Python.

o  We use supervised learning techniques to satisfy users” queries with a matching Q&A discussions
those are the most insightful.

e  We develop an user friendly interface to help users in easy interaction with the system.

o  We perform subjective and objective evaluation of the system to check the efficiency of our system.

The rest of the paper is organized as follows: Section 2 provides a short review of the related
literature. Section 3 presents the design consideration and techniques used for the proposed framework.
Section 4 details the implementation and experimental results. Finally, we conclude the paper in
Section 5.

2. Literature Review

In computer programming, continuous learning is important using online resources. Despite the
short history of Stack Overflow, many studies have put a great effort to investigate the contents,
available metadata, and user-behavior of this online forum. Existing works identified in our
review are categorized into empirical study of stack overflow data, harnessing stack overflow data,
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and improving programming language usage documentation utilizing social media channels. We have
also reviewed works on stipulating automatic standard appraisal in other advanced archives of
text-based information.

2.1. Empirical Study of Stack Overflow Data

With the particular objective of revealing fundamental discussion points, elementary outbuildings
and courses with time, Barua et al. [17] represents an approach for analyzing Stack Overflow data.
This is a semi-automatic method and it’s analysis gives an estimate of the requirements and needs of
the concurrent implementer. Similar research was done by Wang et al. [4] who performed both text
and graph-based analyses to derive subjects from questions and distribute an inquiry to a few points
with certain probabilities. They also investigate the distribution of participants who ask questions and
respond to the questions in Stack Overflow and observed their behavior. The main limitation of this
study is that they analyzed only 385 questions manually which is not sufficient to analyze such a huge
system like Stack Overflow.

Barzilay et al. [1] reviewed Stack Overflow from the perspective of its design and social
communication features. This study also explored its usage in terms of model-driven programming
worldview and the role it plays in the documentation view of software development. Rosen et al. [18]
performed a study on the issues confronted by the mobile application developers. This study examined
13,232,821 Stack Overflow posts related to mobile application development. The findings of this study
help in highlighting the challenges met by mobile developers that require more consideration from
the research of software engineering and development groups for going forwards. Another similar
work has been done by Linares-Vasquez et al. [19], where they performed an explanatory analysis
of mobile application development issues utilizing Stack Overflow. However, this study has broken
down only 450 Android related posts manually to decide on the issues. Bajaj et al. [20] analyzed
fine-grained parts of Stack Overflow with current Web application improvement. They did a subjective
investigation of more than 5,000,000 Stack Overflow addresses which were identified with the Web
improvement, and removed the noteworthy bits of intuitions from the information for the developers
and research groups.

2.2. Harnessing Stack Overflow Data

An Eclipse integrated development environment (IDE) plug-in is proposed by Bacchelli et al. [2]
for integrating Stack Overflow contents automatically which can establish questions from the context
of IDE. They show the exchange view of results with the ranked index. The disconnection of the tool
from the IDEs and the absence of the team efforts have confined their maximum capacity for program
design which is a limitation of the system. Ponzanelli et al. [21] proposed another tool that gives
the IDE related information retrieval from Stack Overflow. They graded their work’s significance by
notifying the developers about existing help if a particular level of threshold is crossed. Their system
shows high efficiency when it deems itself to have enough recommendations that does not force
developers to invoke any additional suggestions.

2.3. Improving Programming Language Usage Documentation

Campbell et al. [22] questioned whether the developer-written documentation provides enough
guidance for programmers based on the observation of hundreds of thousands of programming-related
questions posted on Stack Overflow. They managed to find topics related to PHP and Python languages
in need of tutorial documentation using the Latent Dirichlet Allocation (LDA) technique. However,
the project’s documentation cannot address sufficiently the manual analysis of the topics guided by
their method.

An automated comment generator has been presented by Wong et al. [23] for concentrating code
sections from Stack Overflow, and introduces this information to consequently create explanatory
comments for comparable code sections in open-source ventures. The authors applied their method to
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deal with Java and Android projects and automatically figured out 102 comments for 23 projects. In a
survey, most members found the produced comments precise, sufficient, brief, and valuable in helping
them comprehend the code. This study worked on small-sized code-depiction mapping databases
by including Stack Overflow answers that do not have the most noteworthy vote check. It cannot
supplant the code clone identification apparatus with one that can identify expansion and reordering
of lines to expand the number of code matches.

Treude et al. [24] analyzed Java API related posts in Stack Overflow to extract useful information
which are unavailable in the documentation. Seemingly, this work is the most similar to our work
since it likewise harnesses the content of natural language accessible on Stack Overflow. As far as
utilizing Artificial Intelligence (Al) to find content on Stack Overflow, there are some basic subjects
among our own and crafted by de Souza et al. [8] who built up an improved Web search tool utilizing
the machine learning techniques to find content on Stack Overflow. This study has made a qualitative
manual analysis of their system with the consideration of only 35 programming problems on three
different areas (Swing, Boost and LINQ).

Kim et al. [11] presented a framework which recommended the users the API documentations.
This framework uses a Web mining technique to embed summaries of coding related posts to the
API. However, the database which is related to programming for addressing their cases may not
be representable for utilizing eXoDus. A hands-on, analytical approach for connecting program
code examples to the documentation of related API is proposed by Petrosyan et al. [25] and
Subramanian et al. [10]. Petrosyan et al. [25] used classification based method for discovering helpful
tutorials for a provided API. They used supervised classification of text yielding linguistic features.
Subramanian et al. [10] implemented an approach called Baker which retrieves JavaScript and Java
API documentation with a high precision of about 97%.

2.4. Other Related Work

Le et al. [26] have mined the posts from “Brainly”, a community question-answering site,
to determine what constitutes answer quality. They built their classification model by integrating
different groups of features: personal, community-based, textual, and contextual. Their findings
indicate that personal and community-based features have more prediction power in assessing answer
quality. Their approach also achieved high values on other key metrics such as Fl-score and Area
under Receiver Operating Characteristic (ROC) curve. Numerous answers were erased from their site
because of low-quality and were not clear. However, it was not clarified by the authors well how the
removal of the questions could influence their system’s performance.

Shah et al. [27] conducted a large scale analysis of knowledge sharing within “Yahoo! Answers”.
They considered the notion of users satisfaction as the indication of answer quality and employed
logistic regression to predict which of the answers to a given question the user would pick as the
best. They demonstrated the robustness of their custom model by validating the results from human
perception. As this study selects answer arbitrarily based on prior information, the classifier may fail
to address the best quality answer if it has not been trained with a sufficient amount of good quality
training data.

Maity et al. [28] studied “Quora” to build an efficient mechanism to characterize the answerability
of the questions asked. They investigated various linguistic activities to discriminate between the open
and answered questions. Their research discovered the correspondence of language usage patterns to
quality factors in the forum. They have made a comparison among different models related to their
mechanism and showed that their system outperforms with a accuracy of 76.26%.

We have reviewed several research studies related to our work and come up with a consideration
of a methodology by crawling data from Stack Overflow followed by pre-processing the data and
performing a sort of recommendation using classification. This methodology is implemented as a
framework for finding helpful learning materials from Stack Overflow for popular programming
languages- Python and PHP.
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3. Methodology

Figure 1 depicts the architecture of the proposed system. The system consists of an interface
module, a search module, a processor module, and an input-output module. In the offline
phase, data from Stack Overflow undergoes pre-processing and feature building followed by
training set annotation and incorporation of machine learning to predict desired information from
never-before-seen-data. Meanwhile, tags available on Stack Overflow are categorized into three distinct
sets: novice, intermediate, and expert. All these data are stored in the database. In the online phase, a
user interacts with the system and vets to measure the user’s expertise on a particular field and the
predefined list of tags is leveraged to retrieve appropriate data from the database.
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Figure 1. System architecture of the proposed framework.

3.1. Dataset Description

Stack Overflow makes its data publicly available online (https://archive.org/details/
stackexchange/) in Extensible Markup Language (XML) format under the Creative Commons (CC)
license. We downloaded a data dump containing a total of 33,456,633 posts, spanning from July 2008
to September 2016, and imported the XML files into a MySQL relational database. We used simple
SQL queries to identify PHP and Python-related questions and find the matching answers. This query
resulted in a dataset containing 930,429 “answer-type” posts. We observed that the dataset contained
incomplete records and since such data might mislead the machine learning techniques which we
intend to apply, we got rid of those incomplete data and the size of our initial dataset was reduced to
323,801 posts. Next, we extracted the corresponding questions to the answers in our dataset as the
“question-type” posts contained extra information concerning the question-answer pair. Then we got
rid of records with incomplete information and the size of the dataset is further reduced to 190,215
posts. Following this reduction, we further excluded corresponding posts from the “answer-type”
corpus. We included the reputation score of each asker and answerer which was calculated based
on their activity on the site. Finally, a total of 190,215 posts were left which were exported from the
database as Comma Separated Value (CSV) format to undergo pre-processing.


https://archive.org/details/stackexchange/
https://archive.org/details/stackexchange/

Computers 2020, 9, 57 6 of 16

3.2. Data Preprocessing

In the official data dump of Stack Overflow, standalone code snippets are surrounded with
HTML tags <pre> and </pre>. We removed these code snippets because many code elements in such
code snippets are defined by the askers or answerers of questions for illustration purposes and these
code elements do not refer to software-specific entities that the other developers are concerned with.
However, we kept small code elements embedded in the post texts that are surrounded by <code>
and </code> tags. These small code elements often refer to APIs, programming operators, and simple
user-defined code elements for explanation purposes. Removing them from the texts will impair
the completeness and meaning of sentences. Finally, we stripped all other HTML tags from the post
texts. All these were done using “pandas” (a data analysis library that provides high performance
data structures and analysis tools) [29] and “Ixml” (a feature-rich library for processing XML and
HTML) [30]. Next, the posts were divided into individual sentences. Accordingly, we dived into one
of the grand challenges in Natural Language Processing (NLP) called Sentence Boundary Detection
(SBD). Surprisingly, the state-of-the-art tools could not perfectly account for the unique characteristics
in case of informal programming related discussion not found in other texts. We examined several
NLP libraries, such as “NLTK” [31], “segtok” (http:/ /fnl.es/segtok-a-segmentation-and-tokenization-
library.html) and “spaCy” [32], and finally selected the “spaCy” as it was found to be performing
better on our corpus. Our dataset was divided into 719,614 sentences on which our research was
conducted. Since we divided the threads into individual sentences, we assigned a unique identifier
to each sentence. This identifier was later used to append the parent posts” attributes to the child
sentences. Algorithm 1 summarizes the data pre-processing steps.

Algorithm 1 Preprocessing Algorithm.

1: procedure PRE-PROCESSING

2: for each post in document do
3: if pattern match = “< pre > (.+?) < /pre >" then
4: replace with “~ HEREWASSOMECODE ~”
5: else
6: if pattern match = “< ahref = .+? > ((.4?) < /a >)*" then
: replace with “~ HEREWASAURL ~”
8: remove html — tags
9: if pattern match = “\rx\n+" then
10: remove
11: if pattern match = “\s+" then
12: remove
13: split at sentence
14: sentence < “ID” and “PARENT-POST-ID”

15: end procedure

3.3. Training and Test Set Generation

Supervised learning requires labeled data. We selected a batch of 1000 sentences from our
constructed subset and manually annotated them with a yes/no rating to indicate whether it was
informative. We defined “informative sentences” as the ones that are “meaningful on its own
and conveys specific and useful information”. Such a sentence is supposed to bring a thorough
understanding or a fresh standpoint to the topic at hand. However, it should be noted that everyone
can make his or her own subjective judgements on the quality of content depending on various
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measurements. In Table 1, we list a few sentences that were considered informative. During manual
labeling, we followed a set of rules proposed by Treude et al. [24]. The handcrafted set of 1000
sentences described previously was appended with corresponding features to build our training and
test set. These sets were excluded from the dataset obtained by data pre-processing (Subsection 3.2)
and the remaining 718,614 sentences constituted the validation set. In the next step, we generated
the Attribute-Relation File Format (ARFF) files from the training, test, and validation sets. This is the
native format for the machine learning tool we used.

Table 1. Example of informative sentences.

Sentence Post ID (stackoverflow.com)

When an upload occurs , the target script is executed when the upload is 949415
complete, so PHP needs to know the maximum sizes beforehand.

After a DeadlineExceededError, you are allowed a short amount of grace 2248811
time to handle the exception, e.g., defer the remainder of the computation.

If an element is containing floating element, the wrapping element then 12663826
needs a overflow:auto or a clear:both; to get the height it needs to add
background to it.

The standard escape character for .htaccess regular expressions is the 34464235
slash (“\”).

The types of sentences that were not considered as informative are: the sentence resulted from a
parsing error, the sentence contains an explicit reference to another sentence, the sentence contains
explicit reference to a piece of context that’s missing, the sentence requires another sentence to be
complete, the sentence contains a comparison that is incomplete (i.e., one part of the comparison is
missing), the sentence starts with “but”, “and”, “or” etc., the sentence contains references to “it”, “this”,
“that” etc. which is not resolved within the sentence, the sentence that is grammatically incomplete,
the sentence which is a question, the sentence that contains only a link, the sentence itself is a code
snippet or is prefacing one (often indicated by a colon), the sentence references code elements that
come from user examples, the sentence references specific community users, the sentence contains
communication between Stack Overflow users, the sentence contains a reference to something that is
not an obvious part of the Python or PHP language, and the sentence is a generic statement that is
unrelated to the Python or PHP language. A few example sentences are listed in Table 2.

Table 2. Example of non-informative sentences.

W hat you're trying to do here is rather unusual, to say the least.

See the next step if you need a mutable list.

You might be surprised to find out that in your sample code, s1 == s2 returns true!

3.4. Feature Extraction

We defined 18 attributes to characterize our data. The construction of our feature set was based
on careful inspection of our corpus. We also took advantage of some previous studies [6,24,33,34]
that worked with Stack Overflow data. It is safe to say that our feature set captures the structural,
syntactic, and metadata information of the dataset. Out of these 18 attributes, three were related to
the number of occurrences of keyword terms in the “question body” and “answer body” of a post,
four were related to the presence or absence of source code in the “question body” and “answer body”,
and the remaining attributes were either directly obtained or calculated from the post metadata. Our
procedure of building the feature set is depicted in Algorithm 2 and the resulting attributes were
outlined in Table 3. The Algorithm 2 parsed the dataset to find information like the size and age of an
answer, the time taken by the question to get answered, if the answer contains any code, the position
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of each sentence in the answer post, if the sentence started with lower-case letter and if the sentence
was only a code-snippet.

Algorithm 2 Feature Extraction Algorithm.

1: procedure FEATURE-EXTRACTION

2:

3:

10:

11:

12:

13:
14:

15:

16:

17:

18:

19:
20:

21:

22:
23:

24:

25:

26:

27:

for each post in post_document do
if “~ HEREWASSOMECODE ~' is in “POST-BODY” then
“has_code” < “1”

else”has_code” < “0”

select “age”

“age” < today minus “A-CREATION-DATE”

convert “age” into seconds

select “timedifftoq”

“timedifftoq” < “A-CREATION-DATE” minus “Q-CREATION-DATE”
convert “timedifftoq” into seconds

select “size”

“size” < length of “POST-BODY”

for each sentence in sent_document do
select “s_token”
“s_token” < length of “SENT-BODY”
if “SENT-BODY” = “~ HEREWASSOMECODE ~’ then
“s_is_code” + “1”

else”s_is_code” + “0”
if “SENT-BODY[0]” = “[a — z]” then

“s_starts_lc” + “1”

else”s_starts_lc” < “0”
for each sentence in sent_document do

if sent_document.”ID” == post_document.“ID” then
append
select “s_pos_inpost”

“s_pos_inpost” < position of sentence in post

28: end procedure
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Feature Name

Description

1 s_pos_inpost position of the sentence in the original answer post
2 s_token number of tokens in the sentence
3 s_is_code if the sentence is a code snippet
4 s_start_lc if the sentence starts lowercase
5 a_score score obtained by the original answer post
6 timedifftoq time interval between asking of the question and accepting an answer
7 a_size length of the original answer post
8 a_age age of the original answer post
9 a_has_code if the original answer contains any code snippet
10  anserer_rep reputation earned by the user providing the answer
11  g_score score obtained by the question post
12 g_favcount number of favourable votes acquired by the question post
13 q_viewcount  number of times the question has been viewed
14 g_anscount number of answers submitted against the question
15 qg_size length of the question post
16 q_age age of the question post
17 q_has_code if the question post contains any code snippet
18  asker_rep reputation earned by the user asking the question

3.5. Classification Experiment

To conduct supervised learning from our training dataset, we used the WEKA workbench which is
recognized as a landmark system in data mining and machine learning [35]. Initially, WEKA identified
that our data was imbalanced towards “not informative” instances. To fix this issue, we applied the
Synthetic Minority Oversampling Technique (SMOTE) [36] and increased the number of “informative”
instances by oversampling. After SMOTE filtering, cross-validation of the dataset led to choosing
k = 5 in the case of Support Vector Machine classifier and k = 3 in the rest of the cases. We tested
five different machine learning algorithms including ensemble approaches on our training set. These
algorithms were recommended by previous researchers [8,37] for text classification in the software
engineering domain: J48 (Decision Tree) [38], SMO (Support Vector Machine) [39], PART (Decision
List) [40], IBk (k-Nearest Neighbour) [38], and Random Forest [41]. For model training and testing,
we have used 10-fold cross-validation [42,43] to reduce the risk of over-fitting.

3.6. Ranking and Categorization of Result

During the classification operation, WEKA measured a level of confidence for each prediction
made on the “never-before-seen” instances. We exploited this information to rank the “informative”
sentences extracted from our test set. To devise a categorization rule in our framework, we followed
the approaches used in a few researches [13,20] on topic-modeling. We grouped relevant tags by
leveraging the query option of the “Stack Exchange Data Explorer” site (https://data.stackexchange.
com/stackoverflow /). We inspected this list of tags, and partitioned the most popular tags into three
categories: novice, intermediate, and expert. These categories were maintained during the presentation
of data through our user interface.
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3.7. Persistent Data Store

We chose a NoSQL database to work at the back-end of our interface. MySQL is adequate for
storing the raw data obtained from Stack Overflow. However, in case of integrating a corpus built from
our information retrieval approach, it does not provide the flexibility that a document-based database
such as MongoDB can provide. MongoDB implements the B-Tree data structure which allows the
query optimizing component to quickly sort through and order the documents. Han et al. [44] have
documented the access speed in MongoDB to be 10 times than MySQL.

3.8. User Interface

The user interface was designed for simplicity. It could supply users of the system with
appropriate documents on particular topics. Figure 2 provides a sample output.

) Python Material Viewer = B

Youseemtobe INTERMEDIATE inPython To e

Object-Orientation v [Top 10| Find

A class instance has a namespace implemented as a dictionary which is the first place in which attribute references are searched.

Extended interpolation uses ${section:option} to denote a value from a foreign section.

The nonlocal statement causes the listed identifiers to refer to previously bound variables in the nearest enclosing scope.

By default, Python classes are instances of the type class (the only exception is under Python 2, which has some legacy "old style" classes, which ...
When an object is indexed, the special method __getitem__is looked for first in the object's class.

Using super is recommended as it will also deal correctly with calling constructors only once in multiple inheritance cases (as long as each class in...
Space is saved because __ dict__ is not created for each instance.

When the parser sees an assignment in the code in a local scope, the variable on the lefthand side of the assignment is marked as local.

Like you create an instance of the class by calling the class, Python creates a new class (when it executes the 'class' statement) by calling the met .

To call the correct next parent class function in the Method Resolution Order (MRO), the child classes that may be using cooperative multiple inheri

Figure 2. User interface.
4. Experimental Settings and Results

This section notes our experimental setup, quantifies the performance of our approach and
provides a qualitative evaluation.

4.1. Experimental Setup

The system has been developed in a machine running on Intel Core i5 2.5 GHz CPU and 4 GB
RAM. We have used Python and MySQL for data processing and WEKA for analytics. The front-end
was developed using Visual C# and MongoDB NoSQL database is used at the back-end.

4.2. Performance Evaluation

To evaluate the performance of the classifiers in our experiment, we took both accuracy and
f-measure as performance metrics. The logic behind taking f-measure as a performance metric is that it
allows us to remove any choice biases as most of the instances were annotated as “not informative”.
We found that the Random Forest classifier showed the most promising performance. Table 4 shows
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the accuracy, precision, recall, and f-measure for the classifiers. From the results of Table 4, we can
see that in case of the three classifiers the precision and recall values are identical. This is because the
number of false positives and the number of false negatives generated by these there classifiers are
found to be almost same.

Table 4. Performance of different classifiers.

Classifier Accuracy Precision Recall F-Measure
Decision List 95.3093% 0.953 0.953 0.953
Decision Tree 95.8763% 0.959 0.959 0.959
k-NN 89.7938% 0.901 0.898 0.898
Random Forest  98.3505% 0.984 0.984 0.984
SVM 72.2165% 0.723 0.722 0.722

The confusion matrix produced from 10-fold cross-validation of the Random Forest classifier on
our training data is shown in Table 5. It can be seen that out of 1940 instances 1048 instances were
classified correctly achieving an accuracy of 98.3505%. It is evident from the analysis that our approach
is quite successful in both identifying “informative” and “not informative” sentences. The trained
model of the Random Forest classifier was re-evaluated on the test set to predict the class labels.
It predicted 6886 sentences to be “informative” from the “never-before-seen” 718,614 sentences in our
test set.

Table 5. Confusion Matrix.

Classified as
Yes No Total
True class  Yes 960 10 970
No 22 948 970
Total 982 958 1940

4.3. Human Validation

Like any human activity, our classification is prone to human bias. So, the prediction of the
classifier was made subject to human-scrutiny to uncover threats to validity. For this purpose,
we randomly selected 100 sentences from the 6,886 sentences extracted by our supervised approach.
We asked two personnel with a background in computer science (a master’s student and a software
developer) to participate in the study. Each of them independently rated each sentence as being
one of the following: (a) meaningful and conveys useful information; (b) meaningful but does
not provide any useful information; (c) requires more context to understand; (d) makes no sense.
The inter-rater agreement matrix illustrated in Table 6 shows that out of the 100 pairs of ratings,
71 were in perfect agreement. The highest number of disagreements was related to sentences that
were either type-b (meaningful but does not provide any useful information) or type-c (requires more
context to understand). On the whole, it is safe to say that the human raters have found our experiment
result to be correct up to 71%.

Table 6. Inter-rater agreement matrix.

a b ¢ d
a 51 12 2 O
b - 6 14 0
c - - 11 1
d - - - 3
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We also perform validation of several chunks containing K-ranked sentences from human
perception. The aforementioned participants were called in again to render their services. The results
are listed below in Tables 7-9.

Table 7. Inter-rater Agreement Matrix (K = 5).

a b ¢ d
a 4 1 0 0
b - 0 0 0
c - - 0 O
d - - - 0

Table 8. Inter-rater Agreement Matrix (K = 10).

a b ¢ d
a 8 1 1 0
b - 0 0 0
c - - 0 O
d - - - 0

Table 9. Inter-rater Agreement Matrix (K = 20).

a b ¢ d
a 15 3 2 0
b - 0 0 0
c - - 0 0
d - - - 0

We calculate the performance metrics for each case as well. We devise the following heuristics
during computation: From the 4x4 matrices in Tables 7-9, we consider cell (1,1) as True-Positive; sum of
cells (1,2) and (1,3) as False-Positive; sum of cells (2,2), (3,3) and (4,4) as True-Negative; sum of cells (1,4),
(2,3), (2,4) and (3,4) as False-Negative.The result of the comparative study is summarized in Table 10.

Table 10. Evaluation for different values of K.

Top5 Top10 Top 20

ACCURACY  80% 80% 75%

PRECISION 0.8 0.8 0.75

RECALL 1 1 1

F-MEASURE 0.889  0.889 0.857

It is observed that the classification predictions with high confidence match more with human
rating. That is why the accuracy and precision/recall of top (more confidently predicted) posts
according to our model was higher when matched against human validation results compared to less
confidently classified posts. This is an indication that all the evaluation outcomes were consistent.



Computers 2020, 9, 57 13 of 16

5. Discussion

In this paper, several models for were constructed for evaluating content quality of Q&A sites
based on literature review and found that the Random Forest classifier showed the most promising
performance. We also found that for three classifiers the precision and recall values are identical.
This happened because the number of false positives and the number of false negatives generated by
these there classifiers in our system were found to be almost same. We also conducted some tests to
demonstrate the robustness of answer quality via 10-fold cross-validations. The trained models also
have been applied to a larger "never-before-seen” dataset. We designed a software-specific tutorial
extraction system that presents “informative” sentences from Stack Overflow. We realized that one
must first understand the unique characteristics of domain-specific texts that bring unique design
challenges. We considered the metadata available on Stack Overflow along with natural language
characteristics to construct our information extraction process. Then, based on the understandings of
these design challenges, we used state-of-the-art supervised machine learning and NLP techniques
to develop our system. We considered several techniques to check the efficiency of our system.
The predictions made by our model was further verified by potential users of the system. An interface
was built to present the extracted “informative” sentences in a user-friendly manner.

6. Conclusions

Stack Overflow is a popular website among the programmers for finding important information
about different programming related issues. Although there are several methods for recommending
tags to the users while posting a question at Stack Overflow website, according to our knowledge,
there is not any suitable work to obtain quality answers for the users. Considering this fact, in this paper,
we provided a method to recommend efficient learning materials for the programmers. In our work,
we presented an approach to leverage QA crowd knowledge. By building models and experimenting
with several classifiers, the most significant features for predicting answer quality were discovered.
As future work, we plan to extend this work beyond Python and PHP and to experiment with more
features that capture the grammatical structure of sentences on Stack Overflow discussions.
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