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Abstract: The Internet of Things (IoT) revolution leads to a range of critical services which rely on
IoT devices. Nevertheless, they often lack proper security, becoming the gateway to attack the whole
system. IoT security protocols often rely on stream ciphers, where pseudo-random number generators
(PRNGs) are an essential part of them. In this article, a family of ciphers with strong characteristics
that make them difficult to be analyzed by standard methods is described. In addition, we will
discuss an innovative technique of sequence decomposition and present a novel algorithm to evaluate
the strength of binary sequences, a key part of the IoT security stack. The density of the binomial
sequences in the decomposition has been studied experimentally to compare the performance of the
presented algorithm with previous works.
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1. Introduction

Breakthroughs in electronics and telecommunications fields have made Internet of Things
(IoT) a reality, with an every day growing number of sensors and devices around us. Nowadays,
diverse critical services, such as smart-grid, e-health, agricultural or industrial automation, depend on
an IoT infrastructure. At any rate, as the services around IoT grow dramatically, so do the security
risks [1,2].

Low-cost IoT devices, currently characterized by their resource constraints in processing power,
memory, size and energy consumption, are also recognizable by their minimal or non-existent security.
Combining this lack of security with their network dependability, they become the perfect target as
a gateway to the whole network [3]. There are already some attacks where a vulnerable IoT sensor
was used to gain control over the whole system (in [4], wireless sensors are used to gain access to an
automotive system).

This is the reason why general research [5], 5G-related research [6] or specific calls such
as that of NIST for lightweight cryptography primitives [7], are addressing this concerning
topic. Although different protocols of communication and orchestration are being proposed [8],
lightweight cryptography in general and stream ciphers in particular are the stepping stones on which
such protocols are built to guarantee both device and network security.

Currently, linear feedback shift registers (LFSRs) are key components in stream ciphers, often used
as pseudo-random number generators (PRNG). A representative example of LFSR-based practical
design is the J3Gen, a pseudo-random number generator for low-cost passive radio frequency
identification (RFID) tags. Such a generator has been analyzed and revised in [9,10], respectively.

In addition, we present the generalized self-shrinking generator, a family of ciphers suitable
for cryptography [11]. This generator remains strong against different algorithms that analyze the
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cryptographic strength (e.g., linear complexity) of its sequences. Such algorithms can be enumerated
as follows: (1) the well-known Berlekamp–Massey algorithm [12], (2) the sequence decomposition
algorithm developed by Cardell et al. in [13] and (3) the folding sequence decomposition algorithm
introduced in this paper. To our knowledge, no other algorithms to calculate the parameter linear
complexity of binary sequences are described in the literature.

The study of the generalized self-shrinking generator is not a random choice. Indeed, it produces
not only sequences that are difficult to be analyzed by the Berlekamp–Massey algorithm, but also it
has been implemented in hardware [14] along on RFID devices [15]. Studying the robustness of these
sequences could prevent vulnerabilities on the IoT devices and the services built on them.

The paper is organized as follows. Section 2 includes a succinct revision of LFSRs and sequence
generators based on irregular decimation, a wide type of generators including the generalized
self-shrinking generator. Section 3 describes the characteristics and generalities of the binomial
sequences (BS), binary sequences that constitute the foundations of the two last algorithms mentioned
above. The main contributions of this work are in Section 4, where we analyze three algorithms to
calculate the linear complexity of binary sequences: (a) the standard Berlekamp–Massey algorithm,
(b) the basic binomial sequence decomposition (b-BSD) algorithm, an improved version of the
algorithm developed in [13], that analyzes different properties of the binary sequences and (c) the
folding binomial sequence decomposition (f-BSD) algorithm, the novel proposal based on the symmetry
of the binomial sequences. Section 5 includes the discussion and comparison among the three previous
algorithms. Finally, conclusions and possible future research lines in Section 6 end the paper.

2. Sequence Generators Based on Linear Feedback Shift Registers

Linear feedback shift registers (LFSRs) [16] are linear structures currently used in the generation
of pseudo-random sequences. The LFSRs are electronic devices included in the majority of sequence
generators described in the literature. The main reasons for such a generalized use of LFSRs are:
these devices provide high performance when used for sequence generation, they are particularly
well-suited to hardware implementations, and such registers can be easily analyzed by means of basic
algebraic techniques.

According to Figure 1, a LFSR consists of: (a) L interconnected stages numbered from left to
right (0, 1, . . . , L− 1) where each of them stores one bit, (b) the feedback polynomial p(x) of degree
L notated

p(x) = xL + c1xL−1 + c2xL−2 + . . . + cL−1x + cL,

with binary coefficients ci and (c) the initial state or stage contents at the initial time. LFSRs generate
sequences by means of shifts of the stage contents and linear feedback to the last stage.

an+L−1 an+L−2 an+L−3 · · · an+1 an

c1 c2 c3 · · · cL−1 cL

+ + · · · + +

an+L

Figure 1. Sketch of a linear feedback shift register (LFSR) of length L.

The output of an LFSR with nonzero initial state is a binary sequence denoted by {an}
(n = 0, 1, 2, . . . ). If the polynomial p(x) is primitive [16], then the output sequence is called
PN-sequence (or pseudo-noise sequence). In addition, the period of a PN-sequence is T = 2L − 1 bits
with 2L−1 ones and 2L−1 − 1 zeros.

The linear complexity of a sequence, notated LC, quantifies the number of bits necessary to reconstruct
the whole sequence. For particular applications of binary sequences, e.g., cryptographic applications
(stream ciphers), LC must be as large as possible. Moreover, the linear complexity is a parameter closely
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related to the concept of LFSR. In fact, the linear complexity of a sequence is defined as the length of the
shortest LFSR that generates such a sequence.

Although an LFSR in itself is an excellent generator of pseudo-random sequence, in practice
it has undesirable linearity properties which reduce the security of its use. Due to these linearities,
LFSRs exhibit a very low LC of value just L. Consequently, in the process of generation of the
pseudo-random sequence, any type of nonlinearity must be introduced. The irregular decimation
of PN-sequences is one of the most popular techniques to destroy the inherent linearity of the
LFSRs [17,18]. In brief, this procedure is based on the fact of removing some bits of a PN-sequence
according to the bits of another one.

Inside the type of irregularly decimated generators, we can enumerate: (a) the shrinking generator
introduced in [19] that includes two LFSRs, (b) the self-shrinking generator [20] that involves just
one LFSR and (c) the generalized self-shrinking generator proposed in [21] that is considered as a
simplification of the shrinking generator as well as a generalization of the self-shrinking generator.
In this work, we focus on the last type of generator, that is, the generalized self-shrinking generator.

The Generalized Self-Shrinking Generator (GSSG)

The generalized self-shrinking generator can be described as follows:

1. It makes use of two PN-sequences: {an} a PN-sequence produced by an LFSR with L
stages and a shifted version of such a sequence denoted by {vn}. In fact, {vn} = {an+p},
thus {vn} corresponds to the own sequence {an} rotated cyclically p positions to the left with
(p = 0, 1, . . . , 2L − 2).

2. In order to generate the output sequence, it relates both sequences by means of a simple
decimation rule.

For n ≥ 0, the decimation rule is defined as follows:{
If an = 1 then vn is output,

If an = 0 then vn is discarded and there is no output bit.

Thus, for each value of p, an output sequence {sn}p = {s0 s1 s2 . . .}p is generated. Such a
sequence is called the p generalized self-shrunken sequence (GSS-sequence) or simply generalized
sequence associated with the shift p. Recall that {an} remains fixed while {vn} is the sliding sequence
or left-shifted version of {an}. If p ranges in the interval [0, 1, . . . , 2L − 2], then we obtain the
2L − 1 members of the family of generalized sequences based on the PN-sequence {an}. Since the
PN-sequence has 2L−1 ones, the period of any generalized sequence will be 2L−1 or divisors of this
number, in any case, a power of 2. In addition, the LC of every GSS-sequence is upper-bounded
by 2L−1 − (L − 2) [22] (Theorem 2). Next, an illustrative example of a family of GSS-sequences
is introduced.

Example 1. For an LFSR with primitive polynomial p(x) = x4 + x+ 1 and initial state (1, 1, 1, 1), we generate
the generalized sequences depicted in Table 1. The bits in bold in the different sequences {vn} are the digits of
the corresponding GSS-sequence associated to the corresponding shift p. The PN-sequence {an} with period
T = 24 − 1 is written at the bottom of the table in columns 2 and 5.

There are two particular facts that differentiate the GSS-sequences from the PN-sequences
generated by LFSRs:

• The period of the GSS-sequences is a power of 2, in contrast to PN-sequences whose period is
2L − 1. This difference arises from the fact that PN-sequences cannot have a run of zeros of the
length of its internal state.

• The LC of PN-sequences equals L, while that of the GSS-sequences is near to 2L−1 [22,23].
This property is desirable because such sequences exhibit a great LC with very low resources.
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Table 1. GSS-sequences for an LFSR with polynomial p(x) = x4 + x + 1, in bold the bits of the sequence
that form the GSS-sequence.

Shift p {vn} Sequences GSS-Sequences Shift p {vn} Sequences GSS-Sequences

0 1111111111110001110011111101110 11111111 8 0000001111110101111111100000001 0011110 0
1 1111111110000010000111100010001 11100100 9 0001111110001011111100000001110 0110100 1
2 1111110000000100001100011101111 11000011 10 1111110001110111111000000010000 1101100 0
3 1110000000001001111011100011111 10001101 11 1110001110001111110000011100001 1010101 0
4 0000000001110011110100011111111 00011011 12 0001110001111110000011100001111 0101010 1
5 0000001110000110001011111111110 00100111 13 1110001111111100000100000011110 1011000 1
6 0001110000001101110111111110000 01001110 14 0001111111111000001000011110001 0111001 0
7 1110000001111010001111111100000 10010110 −− 0000000000000000000000000000000 00000000

1111111111110001110011111101110 1111111111110001110011111101110

3. Binomial Sequences: Characteristics and Generalities

In this section, we introduce the binomial sequences as a new representation of the binary
sequences whose period is a power of 2. Next, the close relationship between binomial sequences and
Sierpinski’s triangle is also considered.

3.1. Concepts and Fundamentals of the Binomial Sequences

The binomial number (n
i ) is the coefficient of the i-th power xi in the polynomial expansion of

(1 + x)n. For every non-negative integer n, it is a well-known fact that (n
0) = 1, as well as (n

i ) = 0 for
all i > n.

The concept of binomial sequence is defined in terms of the binomial coefficients (n
i ) reduced

modulo 2.

Definition 1. Given an integer i ≥ 0, the sequence {bn}i (n = 0, 1, 2, . . .) is called the i-th binomial sequence
if its elements are binomial coefficients reduced modulo 2, that is bn = (n

i ) mod 2.

Binomial sequences are currently notated {(n
i )}mod 2 (n = 0, 1, 2, . . .) and the integer i is the index

of the binomial sequence. When n takes successive values, the binomial coefficients modulo 2 define
the terms of a binary sequence with its corresponding period and linear complexity.

Table 2 shows the eight first binomial sequences {(n
i )}, i = 0, 1, . . . , 7, see [24], where Ti and LCi

denote period and linear complexity, respectively.

Table 2. The eight first binomial sequences, their periods and linear complexities.

Binomial Coeff. Binomial Sequences {(n
i)} Period Linear Complexity

(n
0) {1, 1, 1, 1, 1, 1, 1, 1, . . .} T0 = 1 LC0 = 1
(n

1) {0, 1, 0, 1, 0, 1, 0, 1, . . .} T1 = 2 LC1 = 2
(n

2) {0, 0, 1, 1, 0, 0, 1, 1, . . .} T2 = 4 LC2 = 3
(n

3) {0, 0, 0, 1, 0, 0, 0, 1, . . .} T3 = 4 LC3 = 4
(n

4) {0, 0, 0, 0, 1, 1, 1, 1, . . .} T4 = 8 LC4 = 5
(n

5) {0, 0, 0, 0, 0, 1, 0, 1, . . .} T5 = 8 LC5 = 6
(n

6) {0, 0, 0, 0, 0, 0, 1, 1, . . .} T6 = 8 LC6 = 7
(n

7) {0, 0, 0, 0, 0, 0, 0, 1, . . .} T7 = 8 LC7 = 8

Next, fundamental properties of the binomial sequences that will be used throughout the work
are introduced.

1. Given the binomial sequence
{
( n

2r+i)
}

, with 0 ≤ i < 2r and r being a non-negative integer,
we have that [13] (Proposition 3):
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(a) This binomial sequence has period T = 2r+1.
(b) The period of such a binomial sequence has the following structure:

{(
n

2r + i

)}
0≤n<2r+1

=

{
0 if 0 ≤ n < 2r + i,

(n
i )mod 2 if 2r + i ≤ n < 2r+1.

2. Every binary sequence whose period is a power of 2 can be written as a linear combination of a
finite number of binomial sequences [13] (Theorem 2). Such a combination is called the binomial
sequence decomposition (BSD) of the sequence under consideration.

3. The linear complexity of the binomial sequence
{
(n

i )
}

with i ≥ 0 is LC = i + 1, see [13]
(Theorem 13).

4. Given a sequence with BSD ∑t
k=0

{
(n

ik
)
}

, where i0 < i1 < · · · < it are integer indexes, then its
linear complexity is given by LC = it + 1, see [13] (Corollary 14).

5. Given a sequence with BSD ∑t
k=0

{
(n

ik
)
}

, where i0 < i1 < · · · < it are integer indexes, then its

period T is that of the binomial sequence
{
(n

it)
}

, see [24] (Theorem 1).

According to the previous properties, two important remarks are derived:

Remark 1. The period T of the binomial sequences {(n
i )} (i ≥ 0) can be quantified as follows:

• 20 binomial sequences with period T = 21.
• 21 binomial sequences with period T = 22.
• 22 binomial sequences with period T = 23.
• . . . and so on.
• In general, 2i binomial sequences with period T = 2i+1 with i ≥ 0.

On the other hand, the linear complexity of the binomial sequences is different for each binomial sequence
{(n

i )} and takes the value LC = i + 1.

Remark 2. The generalized sequences are binary sequences whose period is a power of 2. Consequently, they can
be written in terms of binomial sequences satisfying all the previous properties.

3.2. The Sierpinski’s Triangle

When the binomial coefficients are arranged into rows for the successive values of n = 0, 1, 2, . . .
(a row for each value of n), then the generated structure is the well-known Pascal’s triangle depicted in
Figure 2a. If we color the odd numbers and shade the even ones in such a triangle, then we get the
Sierpinski’s triangle whose version reduced mod 2 is depicted in Figure 2b.

Figure 2. Pascal and Sierpinski’s triangles.
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Recall that the successive diagonals of the Sierpinski’s triangle in Figure 2b correspond to the
successive binomial sequences

{
(n

i )
}

, (i = 0, 1, 2, . . .) with n ≥ i. That is, each diagonal of the triangle
starts at the first 1 of the corresponding binomial sequence. Consequently, the binomial sequences can
be found inside the Sierpinski’s triangle mod 2, as well as they can also be found inside certain linear
cellular automata, e.g., cellular automata with rules 102 and 60 in Wolfram’s notation. See [13] for
more details.

4. Algorithms to Calculate the Linear Complexity

In this section, we describe and develop different algorithms to calculate the linear complexity of
binary sequences. Except for the first algorithm (Berlekamp–Massey algorithm), the remaining may
be applied exclusively to sequences whose length (period) is a power of 2. They are based on the
characteristics and properties of the binomial sequences.

Once the Berlekamp–Massey algorithm has been considered, this section introduces in detail
the basic binomial sequence decomposition algorithm (b-BSD) and possible improvements to
its implementation.

Next, a new approach to the binomial sequence decomposition is developed, giving rise to
the folding binomial sequence decomposition algorithm (f-BSD). Such an algorithm improves the
throughput of previous methods thanks to the symmetry of the binomial sequences.

A comparison among Berlekamp–Massey, b-BSD and f-BSD algorithms will be presented in the
next section of this work.

Previously to the algorithms, we introduce a particular notation to be used systematically in
the sequel.

NOTATION: For the sake of simplicity, in the successive algorithms of this section, the binomial
coefficient (n

k) will denote the corresponding k-th binomial sequence. Then, the term (n
k)i,j stands

for the binary sub-sequence of (n
k) between the bits i and j, while (n

k)j denotes the j first bits of the
binomial sequence (n

k).

4.1. Berlekamp–Massey Algorithm

Traditionally, the general method of calculating the linear complexity of a sequence is the
Berlekamp–Massey algorithm [12]. It can be applied to sequences of any length, not necessarily
a power of 2. Consequently, it is the most general among the algorithms that calculate the linear
complexity of a sequence.

Given a binary sequence, this algorithm provides one with a general solution to the problem
of synthesizing the shortest LFSR that generates such a sequence. At each step, the algorithm
incrementally adjusts the length of the LFSR and the feedback polynomial to generate the sub-sequence
analyzed to that point. The algorithm terminates when the whole sequence has been generated.

In order to work, this algorithm needs to process 2 ∗ LC bits of the sequence with a computational
complexity of O(LC2) [25].

4.2. Basic Binomial Sequence Decomposition (b-BSD)

Based on the mathematical results provided in the previous section, a basic binomial sequence
decomposition algorithm (b-BSD) can be designed in order to calculate the LC of a given sequence.
In particular, two facts are used:

• A sequence of length l can be decomposed in t + 1 binomial sequences (item 2. in Section 3.1):

seql =

(
n
k0

)
+ · · ·+

(
n
kt

)
.
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• The linear complexity of a sequence can be calculated from the binomial sequence of maximum
index in its BSD (item 3. in Section 3.1). Since the binomial sequences are written in increasing
order, then LC satisfies the following expression:

LC = max0≤i≤t

((
n
ki

))
+ 1 = kt + 1. (1)

The resulting algorithm can be seen in Algorithm 1. It takes the sequence to be analyzed as input
and checks for every bit equal to 1. When biti is equal to 1, it sums the sequence with the corresponding
binomial sequence (seq = seq + (n

i )), stopping when all the binomial sequences have been already
found. In that case, the resulting sequence seq is the identically null sequence.

Once the BSD has been obtained, the binomial sequence (n
kt
) allows us, via the

Equation (1), to calculate LC. A step-by-step example of the algorithm decomposing a sequence
seq16 = 00100100 10111101 of length l = 16 can be seen in Table 3.

Algorithm 1 Basic Binomial Sequence Decomposition (b-BSD).
Require: seq : intercepted bits

binom = [∅]
for i = 0; i < length(seq); i++ do

if seqi 6= 0 then

seq+ = (n
i )

binom.add(i)
end if

end for
return binom : Binomial decomposition of the intercepted bits

Table 3. Step by step b-BSD example on seq16.

Step Op. Seq.
Bit Position

0 4 8 12

0 seq 0 0 1 0 0 1 0 0 1 0 1 1 1 1 0 1
+ (n

2) 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 = seq 0 0 0 1 0 1 1 1 1 0 0 0 1 1 1 0
+ (n

3) 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

2 = seq 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1
+ (n

5) 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

3 = seq 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0
+ (n

6) 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

4 = seq 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1
+ (n

8) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

5 = seq 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0
+ (n

9) 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

6 = seq 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
+ ( n

10) 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

end = seq 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

seq = (n
2) + (n

3) + (n
5) + (n

6) + (n
8) + (n

9) + ( n
10)

LC = kt + 1 = 10 + 1 = 11.

Thus, the b-BSD algorithm is able to calculate LC, as the Berlekamp–Massey algorithm does,
but after having processed only LC bits of the sequence instead of 2 ∗ LC. The complexity of b-BSD
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algorithm, which performs the sum of two sequences of l bits (l additions) for every binomial sequence,
is O(t ∗ l), t being the number of binomial sequences in which the main sequence is decomposed
with t� l.

Moreover, the logic of the algorithm can be improved by avoiding the sum of the sub-sequences
that are zero. On the one hand, thanks to item 1 (b) in Section 3.1, we know that (n

k) = 0, ∀n < k.
On the other hand, at each step of the b-BSD algorithm, the sequence begins with zeros. That is, at step
i, the ki first terms of the sequence are zeros.

If these two facts are combined, then the number of operations performed by the algorithm can
be reduced. When the algorithm detects the first 1 in the i-th position of seq, instead of performing the
sum of two sequences of l bits (seq + (n

i )), it just sums both sequences between the i-th and (l − 1)-th
bits (seqi,l−1 + (n

i )i,l−1), as the beginning of both sequences (from bit 0 up to bit i− 1) are made up
of zeros.

Compared with t ∗ l, the number of operations is reduced as follows:

kt

∑
ki=k0

(l − ki) < t ∗ l.

In addition, for sequences whose LC is upper bounded, we do not need to perform the sum of
any binomial sequence after the binomial of maximum index is attained. This is the case for every
GSS-sequence produced by the generalized self-shrinking generator. Since the linear complexity of
this family of sequences satisfies the inequality:

LC ≤ 2L−1 − (L− 2),

and its maximum length is l = 2L−1 (L being the number of stages in the LFSR that generates the
GSS-sequences), then

LC ≤ l − log l + 1.

Therefore, the maximum index kmax in the BSD of these sequences is:

kmax = l − log l, (2)

and the final number of operations in the algorithm will be:

kt

∑
ki=k0

(kmax − ki) <
kt

∑
ki=k0

(l − ki) < t ∗ l.

Thus, at each algorithm step, the number of operations is incrementally reduced.
To upgrade the code in Algorithm 1, only the summation limits must be changed, which will now

be seq = seqi,kmax + (n
i )i,kmax

, with kmax given in Equation (2).
In brief, the b-BSD algorithm will require at most (l − log l) bits of the sequence to calculate the

LC with a complexity less than O(t ∗ l).

4.3. Folding Binomial Sequence Decomposition (f-BSD): Theoretical Foundations

Despite the improvement in both complexity and length requirements between b-BSD and
Berlekamp–Massey, there is still room for enhancing the decomposition mechanism.

In the next subsection, a new algorithm design is explained, improving the results of the b-BSD
algorithm by taking advantage of the symmetry of the binomial sequences.

In this subsection, we develop new properties of the binomial sequences, particularly symmetric
properties, on which the f-BSD algorithm is based.
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First of all, a result that relates the index k of a binomial sequence with the period of such a
sequence is introduced.

Theorem 1. For every binomial sequence (n
k) with k > 0, there exists an integer m > 0, such that 2m is the

period of the binomial sequence, as well as the index k satisfying the inequality:

2m−1 ≤ k < 2m.

Proof. In fact, any integer k > 0 can be written in the range 2m−1 ≤ k < 2m, where 2m−1 and 2m are
two consecutive powers of 2 and m ≥ 1. In this case,

k = 2m−1 + j, (3)

j being an integer in the interval 0 ≤ j < 2m−1. Thus, the binomial sequence can be written as:(
n
k

)
=

(
n

2m−1 + j

)
,

and, according to item 1. (b) in Section 3.1, its period will be l = 2m.

Therefore, the index k determines the period of the binomial sequence (n
k). Moreover, recall that

in Equation (3)

• if j = 0, then k takes the minimum value k = 2m−1,
• if j = 2m−1 − 1, then k takes the maximum value k = 2m − 1.

Thus, k ranges in the interval k ∈ [2m−1, 2m − 1] and the next corollary follows directly:

Corollary 1. The number of different binomial sequences (n
k) with the same period (l = 2m) is 2m−1.

Symmetry of (n
k )

There are different properties regarding the symmetric structure of the binomial sequences and
their relation to the powers of 2 that are explained in the following.

Every binomial sequence (n
k) with length l = 2m (m > 0) can be divided into two sub-sequences

of length l
2 as follows: (

n
k

)
l
=

((
n
k

)
0, l

2−1
,
(

n
k

)
l
2 ,l−1

)
. (4)

On the other hand, recall that the binomial sequence (n
k) starts with k zeros. Therefore, if k ≥ l

2 ,
then such a sequence can be divided in the following way:(

n
k

)
l
=
(
zeros l

2
,
(

n
k

)
l
2 ,l−1

)
,

where zeros l
2

represents the sub-sequence identically null of length l
2 .

In fact, this is a simplification of a stronger result, defined in the next theorem.

Theorem 2. Every binomial sequence (n
k)l can be divided into two sequences of length l

2 as follows:

1. If k ≥ l
2 , then (

n
k

)
l
=

(
zeros l

2
,
(

n
k− l

2

)
l
2

)
.



Computers 2020, 9, 100 10 of 17

2. If l
2 < k, then (

n
k

)
l
=

((
n
k

)
0, l

2−1
,
(

n
k

)
0, l

2−1

)
.

Proof. 1. Since k ≥ l
2 , it can be written as k = 2m−1 + i with 0 ≤ i < 2m−1. Then,(

n
k

)
l
2 ,l−1

=

(
n

2m−1 + i

)
l
2 ,l−1

=

(
n
i

)
l
2

=

(
n

k− 2m−1

)
l
2

=

(
n

k− l
2

)
l
2

.

2. Since k < l
2 = 2m−1, it can be written as k = 2j + i with 0 ≤ i < 2j, where i and j are integers as

well as j < m− 1. The binomial sequence (n
k) = ( n

2j+i) has length 2j+1, that is a power of 2, as well
as 2j+1 < 2m. Thus, the first and second sub-sequences in Equation (4) are equal.

In Table 4, where the binomial decomposition of seq16 is represented with l
2 = 8, the condition 1

of the Theorem 2 is observable on the binomial sequences (n
8), (

n
9) and ( n

10). In contrast, the binomial
sequences (n

2), (
n
3), (

n
5) and (n

6) satisfy the condition 2, where the eight first bits repeat themselves.

Table 4. Binomial Sequence Decomposition at a glance.

Seq 0 0 1 0 0 1 0 0 1 0 1 1 1 1 0 1

(n
2) = ((n

2) l
2
, (n

2) l
2
) 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

(n
3) = ((n

3) l
2
, (n

3) l
2
) 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

(n
5) = ((n

5) l
2
, (n

5) l
2
) 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

(n
6) = ((n

6) l
2
, (n

6) l
2
) 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

(n
8) = (zeros l

2
, (n

0) l
2
) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

(n
9) = (zeros l

2
, (n

1) l
2
) 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

( n
10) = (zeros l

2
, (n

2) l
2
) 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

seq = (n
2) + (n

3) + (n
5) + (n

6) + (n
8) + (n

9) + ( n
10)

Putting together the facts regarding the symmetry of the binomial sequences, they can be classified
in two groups depending on the value of their index. This fact is explained in Algorithm 2.

Algorithm 2 Binomial Sequences Classification.

For a given sequence (n
k)l :if k < l

2 then
(n

k)l := ((n
k) l

2
, (n

k) l
2
)

else
(n

k)l := (zeros l
2
, (( n

k− l
2
)

l
2

)
end if

If the binomial sequences are divided as seen in Algorithm 2, then the binomial representation of

a sequence results in a block matrix M =

(
M0 M1

M2 M3

)
, that is, a matrix representation of the BSD,

as follows:
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( n

k0
)

...
(n

kt
)

 =



( n
k0
)

...
( n

ki−1
)

(n
ki
)

...
(n

kt
)


ki−1<

l
2≤ki

=



( n
k0
) l

2
( n

k0
) l

2
...

...
( n

ki−1
) l

2
( n

ki−1
) l

2

0 l
2

( n
ki− l

2
)

l
2

...
...

0 l
2

( n
kt− l

2
)

l
2


=

(
M0 M1

M2 M3

)
. (5)

Three important characteristics about the matrix representation shown in (5) are the core of the
folding BSD algorithm.

• M0 = M1.
• M2 = 0.
• As the length of the sequence is of the form l = 2m, the matrix representation can be extended

in a recursive way, taking M3 and repeating the same process until it cannot be divided
anymore (length = 1).

(
M0 M1

M2 M3

)
=

 M0 M1

M2
M3,0 M3,1

M3,2 M3,3

 =


M0 M1

M2

M3,0 M3,1

M3,2
M3,3,0 M3,3,1

M3,3,2 M3,3,3

 = . . . (6)

The following expression (7) is an example of the matrix representation of the sequence
decomposition of Table 4.

(n
2)

(n
3)

(n
5)

(n
6)

(n
8)

(n
9)

( n
10)


=



0011 0011 0011 0011
0001 0001 0001 0001
0000 0101 0000 0101
0000 0011 0000 0011
0000 0000 1111 1111
0000 0000 0101 0101
0000 0000 0011 0011


=

(
M0 M1

M2 M3

)
→ M3 =


1111 1111
0101 0101
0011 0011

∅ ∅

 = . . . (7)

In order to calculate the LC of the given sequence, only the highest binomial sequence of its
decomposition is needed. Thus, the f-BSD algorithm will benefit from the symmetry of the binomial
sequences, by reducing recursively the length of the sequence to analyze, as depicted in the matrix
expression (6) .

4.4. Folding Binomial Sequence Decomposition Algorithm

The previous subsection described all the elements needed by the f-BSD algorithm. In fact,
the algorithm locates the maximum binomial sequence to calculate LC. At every step, it sums the first
half of the sequence with the second half. If the result is different from zero, then it continues with
the resulting sequence. Otherwise, it continues with half the previous sequence. The procedure ends
when only one bit is left.

At every step, the folding mechanism reduces the length of the studied sequence by 2. It performs
a bit sum of the successive halves of the sequence, with a total of log l steps. Given a sequence seq with
length l, the number of operations of the algorithm can be calculated as follows:

l
2
+

l
2
2
+

l
4
2
+ · · · = l

2
+

l
4
+

l
8
+ · · · =

log l

∑
i=0

l
2i ≈ l
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The final pseudo-code of the algorithm, for a given binary sequence of length l (although we can
reduce it to (l − log l), as explained in Section 4.2) and complexity O(l), can be found in Algorithm 3.
The way that this algorithm searches for the maximum binomial sequence is similar to that of the
binary search algorithm. The difference results in the binary search only performing one comparison
in each step, while our algorithms need to perform length(l)

2i operations per step.
Let us see how it works with an example.

Example 2. Take the same sequence as before seq16 = 00100100 10111101.

• Step 1:
0010 0100

+ 1011 1101
1001 1001

As aux = 1001 1001 6= 00,7, then seq = aux = 1001 1001 and k = 8.

• Step 2:
10 01

+ 10 01
aux = 00 00

As aux = 00,3, then seq = 1001.

• Step 3:
1 0

+ 0 1
aux = 1 1

As aux 6= 00,1, then seq = aux = 1 1 and k = 8 + 2.

• Step 4:
1

+ 1
aux = 0

As aux = 0, then seq = aux = 0.

• End: the maximum binomial sequence is ( n
10)→ LC = k + 1 = 10 + 1 = 11.

A representation of the algorithm workflow can be seen in Figure 3.

Figure 3. f-BSD algorithm flowchart.
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Algorithm 3 Folding Binomial Sequences Classification.
Require: seq : intercepted bits

k = 0
while length(seq) > 1 do

l = length(seq)
aux = seq l

2 ,l−1 + seq0, l
2−1

if aux 6= 0 l
2

then

seq = aux
k+ = l

2
else

seq = seq0, l
2−1

end if
end while
return k: maximum binomial sequence

5. Algorithm Discussion

The three algorithms for linear complexity calculation we have visited in our work have different
properties and capabilities. Thus, it is worth discussing all of them. In Table 5, there is a simple
comparison between the sequence length required and the computational complexity in each one of
these algorithms.

Table 5. Algorithm comparison.

Algorithms Length Required Complexity

Berlekamp–Massey 2 × l O(l2)
b-BSD l − log l O(t× l)
f-BSD l − log l O(l)

The Berlekamp–Massey algorithm is the classic algorithm to calculate the linear complexity of any
sequence. Nevertheless, for sequences whose LC is near their length, e.g., the GSS-sequences, it needs
twice the length l of the sequence and its computational complexity is O(l2). When it is applied to
LFSR-based sequences, this result can become impractical, particularly when these sequences may
exhibit a length of 2128 bits, for instance, the GSS-sequences in cryptographic applications.

Concerning the basic binomial sequence decomposition algorithm (b-BSD), it allows an
improvement in the amount of sequence required regarding the Berlekamp–Massey algorithm.
Nevertheless, its computational complexity can be tricky to assess, because it depends on the number t
of binomial sequences that appear in the BSD of the sequence under consideration.

5.1. Number of Sequences in the Decomposition

The number of sequences in the binomial decomposition, t, has not been studied previously in
the literature. This is one of the facts that makes it difficult to measure the actual improvement of the
b-BSD algorithm, whose computational complexity depends on this specific parameter.

In order to study the behavior of t and its dependency on the original sequence, some experiments
were carried out.

In our experiments, all the employed sequences were the GSS-sequences coming from LFSRs
with polynomials of degrees between five and ten. As a result, we observed on average a number of
binomial sequences given by 2n−2, n being the degree of the LFSR polynomials ∀n ∈ [5, 10]. The plots
corresponding to the number of binomial sequences in the decomposition of all these GSS-sequences
are depicted in the Figure 4.
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The distribution of the number of sequences in a binomial decomposition seems to be close to
a normal distribution, although a thin tail on the left can be noticed, which means that for a few
sequences, the number of binomial sequences will be lower. In those particular cases, this algorithm
will perform better than in the general case.

At any rate, recall that this result t ≈ 2n−2 is backed up by experimental results and no
mathematical proof exists regarding the t parameter behavior.

(a) (b)

(c) (d)

(e) (f)
Figure 4. Number of Binomial Sequences in the decomposition ∀n ∈ [5, 10]. (a) n = 5. (b) n = 6.
(c) n = 7. (d) n = 8. (e) n = 9. (f) n = 10.

5.2. f-BSD Performance

On the other hand, the folding binomial sequence decomposition algorithm (f-BSD) has a set
of characteristics that improves its performance when compared with both Berlekamp–Massey
and b-BSD algorithms. In fact, it requires the same length as that of the b-BSD algorithm and
improves considerably this requirement when it is compared with the Berlekamp–Massey algorithm.
Another interesting characteristic is that its computational complexity does not depend on the number
t of binomial sequences as the b-BSD algorithm does, which introduces a penalty factor of about 2n−2

in the b-BSD algorithm performance.
The reason for its improvement is that, at each step of the algorithm, the length of the resulting

sequence is divided by two, as can be seen in Figure 3. Consequently, the number of operations to be
performed and the memory needed are progressively reduced.

Although the final purpose of this work is not the implementation of the different algorithms,
it is worth pointing out that the f-BSD algorithm can be transformed into a concurrent algorithm for
the linear complexity calculation. This fact theoretically improves its performance when the f-BSD
algorithm is implemented in an environment with concurrent computation capabilities, as opposed
to the b-BSD algorithm, which performs its calculations in a sequential way and cannot operate in a
concurrent fashion.

Finally, a comparison of our work and previous works [26,27] can be summarized in Table 6.
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In such a table, we point out the main contributions of our current work compared to past works:
the introduction of the f-BSD algorithm, the complexity analysis of b-BSD (already introduced in [13]),
backed up by our experiments on the number of sequences in the BSD, and the complexity analysis of
f-BSD, which in the end shows how the f-BSD outperforms the previous algorithms.

Table 6. Comparison between proposed and existing algorithms to calculate LC.

Authors Year Objective Merits Demerits 5G-Focused

To calculate High requirements of
Berlekamp et al. [12] the linear Suitable for sequence length.
(Berlekamp–Massey 1969 complexity sequences of High requirements of N

algorithm) of binary any length. memory during
sequences. execution.

Applicable to
To calculate sequences with

the linear period a power of 2.
Cardell et al. [13] 2019 complexity Improvement in sequence Dependence on t Y

(b-BSD algorithm) of binary length requirements. parameter.
sequences. No experimental

results of t
Sequential.

To calculate Improvement in sequence
the linear length requirements. Applicable to

This proposal 2020 complexity Independence on t. sequences with Y
(f-BSD algorithm) of binary Concurrent. period a power of 2.

sequences. It outperforms
previous algorithms.

6. Conclusions

In this work, a new algorithm, the folding BSD algorithm, has been introduced and developed.
It exhibits a better performance than similar algorithms to compute the lineal complexity of a
binary sequence, especially on sequences that are particularly difficult to be decomposed by the
Berlekamp–Massey algorithm. This is a big step in the study of the binary sequences with period
a power of two, and makes it easier to detect flaws in this kind of sequences. Detecting such
vulnerabilities in a cipher implemented in practical applications could compromise the corresponding
IoT devices and the services behind them.

Moreover, the binomial decomposition of sequences as a way to extract information from a given
sequence is an innovative but powerful tool, and it is left for future work its application to other kinds
of binary sequences.

An experimental approximation to the complexity of the b-BSD algorithm based on the density of
binomial sequences has been introduced, but this topic requires further research to find hard proof on
the number of sequences that appear in a binomial decomposition.

In regard to the f-BSD algorithm presented in this article, it shows better theoretical characteristics
in both complexity and length of the sequence required. Future works may study the algorithm
performance in real world scenarios by applying it to different binary sequences and taking advantage
of the algorithm parallel capabilities.

To compare the performance of the novel f-BSD algorithm with b-BSD, we carried out experiments
to analyze the number of decomposed sequences, as this parameter deeply affects the performance
of the b-BSD algorithm. As a result of our experiments, we were able to approximate the value of
the parameter and the performance of b-BSD, which helps to show how the new algorithm f-BSD
improves its performance when the length of the sequence starts to grow.
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