
computers

Article

An UML Based Performance Evaluation of Real-Time
Systems Using Timed Petri Net

Tanuja Shailesh 1,* , Ashalatha Nayak 1 and Devi Prasad 2

1 Department of Computer Science and Engineering, Manipal Institute of Technology,
Manipal Academy of Higher Education, Manipal 576104, India; asha.nayak@manipal.edu

2 Software Consultant, Manipal 576104, India; dprasadm@gmail.com
* Correspondence: tanuja.s@manipal.edu

Received: 23 October 2020; Accepted: 24 November 2020; Published: 27 November 2020 ����������
�������

Abstract: Performance is a critical non-functional parameter for real-time systems and performance
analysis is an important task making it more challenging for complex real-time systems.
Mostly performance analysis is performed after the system development but an early stage analysis
and validation of performance using system models can improve the system quality. In this paper,
we present an early stage automated performance evaluation methodology to analyse system
performance using the UML sequence diagram model annotated with modeling and analysis of
real-time and embedded systems (MARTE) profile. MARTE offers a performance domain sub-profile
that is used for representing real-time system properties essential for performance evaluation. In this
paper, a transformation technique and transformation rules are proposed to map the UML sequence
diagram model into a Generalized Stochastic Timed Petri net model. All the transformation rules are
implemented using a metamodel based approach and Atlas Transformation Language (ATL). A case
study from the manufacturing domain a Kanban system is used for validating the proposed technique.

Keywords: software engineering; timed petri nets; UML; metamodel; performance evaluation; PIPE

1. Introduction

Model-driven engineering (MDE) is considered a new paradigm in the field of Software
Engineering where models play a vital role in system representation. MDE is proposed by Object
Management Group (OMG) and it focuses on using models as main artifacts for understanding domain
conceptual models for a specific problem. In MDE based system development, models can be used to
model different system components and interaction between them, capturing the system behaviour.
Particularly for a complex system, models can give an abstract view of the entire system and can be
explored to analyze system functionality at an early stage of system development.

The Integration of system performance analysis and understanding system functionality at an
initial stage of system development has gained popularity among researchers during recent times.
During the initial stage of system development, Unified Modeling Language(UML) [1] is the standard
modeling language used for system representation. UML is a semi-formal language that could
be used for system presentation and analysis, even as an input to tools for further analysis and
automated generation of software prototypes within computer-aided software engineering (CASE)
tools. Integrating formal techniques and formal models with UML can lead to a path in achieving early
stage system performance analysis using UML and formal models. Modeling real-time properties and
performance analysis requirements are possible through UML supported real-time profiles.

In this paper, we adopt modeling and analysis of real-time and embedded systems (MARTE) [2]
profile for extending UML model with real-time properties. There exist other works that propose the

Computers 2020, 9, 94; doi:10.3390/computers9040094 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0003-4916-3807
http://dx.doi.org/10.3390/computers9040094
http://www.mdpi.com/journal/computers
https://www.mdpi.com/2073-431X/9/4/94?type=check_update&version=2


Computers 2020, 9, 94 2 of 31

mapping of semi-formal models into formal models, such as Petri net [3–6], Queueing Petri net [7] and
others [8,9].

The approach we propose here is motivated to influence the software development process
with model-driven approach. The software industry focuses more on the programming approach to
provide solutions for user requirements rather than modeling approaches. Currently, the impact of
model-driven approach in the software industry is limited, as the adoption of model-driven approach
could require a series of the social, organizational issue concerned with the management of changes as
discussed in [10,11]. and also evaluate the outcome. but it can be improved by exposing the ability
of formal models in modeling and analyzing the system during development. The model driven
approaches can be implemented using model-driven transformation for mapping information’s from
the input source model to target models. Considering the domain of software engineering, UML is
the de-facto standard used for input models and the target models can be automatically generated
using model transformation techniques. Some of the commonly used transformation languages in
the literature are Atlas Transformation Language (ATL), Epsilon family (ETL), Kermata, Query view
Transformation language (QVT) etc. [12–14].

In this paper, we use a UML sequence diagram as an input model to represent real-time system
scenarios and Generalized Stochastic Petri net (GSPN) as the target model to study system behaviour.
Generalized Stochastic Petri net is a Timed Petri net model with the mathematical background well
suitable to be used as a performance model [15]. Generalized Stochastic Petri net is described with
arcs and nodes represented as the transition to describe events occurring and places describing
conditions within the system. Places and transitions are connected by directed arcs to define the
flow of control(execution). GSPN includes two types of transition: timed transition and immediate
transition [16]. Timed transitions include exponential distribution suitable to model random delay and
immediate transitions suitable to model logical actions that do not consume time (zero delay). Since in
real-time scenario all software activities do not require a probabilistic delay, GSPN is most suitable to
model the real-time systems with activities associated with delay as well as zero delay.

An approach for integrating UML/MARTE models with the Generalized Stochastic Petri net
model using Java and ATL transformation language is proposed in this paper. ATL is developed
as a part of the ATLAS Model Management Architecture (AMMA) platform [17] and ATL is a
metamodel based language that supports both metamodel syntax and textual concrete syntax.
The proposed method will aid in improving design quality and eventually the system under
development. The methodology uses a metamodel based approach to transform UML/MARTE model
into the Generalized Stochastic Petri net model using Petri Net Markup Language (PNML) as the
intermediate model. PNML is a standard interchange format used within the Petri net community to
support the exchange of information between Petri net tools [18]. PNML intermediate model supports
interoperability among different Petri net tools. The advantage of the PNML intermediate model is
the flexibility to use the derived formal model with different Petri net tools and their functionalities.
The proposed methodology is different in the way that it uses the existing models and metamodels
rather than designing from scratch.

Earlier works have proposed mapping of UML models into Petri net models with transformation
rules designed considering a specific kind of Petri net model and tool for analysis and hence does not
provide a generalized approach to extend across different types of Petri net modeling tools. The main
advantage of our paper is the transformation of UML model into a standard interchange format and
its applicability across different types of Petri net modeling tools.

In summary, the proposed research implements a model-driven approach to transform
UML/MARTE sequence diagram to the Generalized Stochastic Petri net model. The approach is
implemented using Java and ATL transformation language. In the process of transformation, we define
the following objectives.



Computers 2020, 9, 94 3 of 31

1. To design UML/MARTE based sequence diagram metamodel and PNML metamodel.
2. To design and implement ATL transformation rules and automate the mapping of the UML/MARTE

sequence diagram into PNML based GSPN.
3. To verify the usability of the proposed methodology using a real-time system and analysing the

system performance parameters.

The rest of the paper is organized as follows: Section 2 offers an overview of the state of the art,
Section 3 provides an introduction to preliminaries, Section 4 provides an overview of methodology
and transformation rules, Section 5 discusses an example on the manufacturing system and Section 6
provides concluding remarks and future work.

2. State of the Art

The proposed approach covers different aspects of research, such as use of model transformation
languages, implementation of generalized representation of performance model, and use of UML
profiles for performance evaluation. There exist other related works using UML models and
performance models for an early stage performance evaluation of systems. These works include
either of these three aspects mentioned above. These works are presented in the following order:
Use of transformation languages (Section 2.1), use of UML profiles (Section 2.2), and other related
works (Section 2.3).

2.1. State of the Art: Use of Transformation Languages

Li Dan [8] proposes a method for mapping sequence diagrams to Communication Sequential
Processes (CSP). The mappings are designed and developed based on the standards, such as Meta
Object facility (MOF), QVT, and Extensible Stylesheet Language Transformations (XSLT). This work
uses a metamodel based approach and XSLT rule-based style templates are used for the mappings.
For an XSLT engine, the input model is an XMI file of sequence diagram and then the XSLT engine
executes the XSLT templates to produce an XML file of the CSP model. The target CSP model used
in this work supports only verification of system properties in contrast to the Petri net used in our
proposed work which can be used for both properties checking and quantitative performance analysis.

Elkamel Merah et al. [19] presents a meta model-based transformation approach to map UML
sequence diagram to Petri net. The transformation approach is implemented using the Atlas
Transformation Language (ATL). The paper proposes a set of ATL transformation rules for mapping a
few sequence diagram elements into Petri net elements. This work considers the basic Petri net type
and very few sequence diagram elements for transformation.

Joao Antonio Custodio Soares et al. [3] propose an automated approach of transforming the UML
sequence diagram to Coloured Petri Nets (CPNs). CPN can be used as a formal model for future
analysis. In this work, the author has used Epsilon Transformation Language to design transformation
rules for mapping UML sequence diagram elements into the CPN model. This approach generates an
end-to-end mapping from sequence diagram to CPN tool and hence does not provide a general format
to be used across different Petri net tools and hence missing a unified approach.

Hassan Reza and Amrita Chatterjee [6] use Architecture Analysis and Design Language (AADL)
for specification and verification of real-time embedded systems non functional properties. Since AADL
lacks the formal semantics necessary to verify critical safety properties authors in this paper propose a
method to supplement AADL with exiting formal methods and supporting tools for automatically
verifying the critical system properties. The formal model used is Petri net and Petri Net Markup
Language is used as a standard interface for different classes of Petri net. Hence, the author proposes an
automated mapping of AADL elements into PNML elements using XSLT transformation techniques.

Yousra Ben Daly Hlaoui et al. [20] proposes a meta-model based transformation technique to
specify and verify workflow applications of cloud services. The paper provides an approach for the
reasoning of sequence diagram using the Event-B method. KerMeta transformation environment was
used for the development of a tool using the proposed transformations.



Computers 2020, 9, 94 4 of 31

It is observed that there exist works using specific transformation languages but most of the
work support either the quantitative or qualitative analysis and lacks an automated approach for
supporting both variants. Furthermore, the transformations are supported for only a few of the UML
model elements, and specific to the output model format. Hence, there exists scope for more extensive
transformation techniques with a unified approach.

2.2. State of the Art: Use of UML Profiles

S. Bernardi et al. in [21] proposes the Model-Driven approach for evaluating Reliability.
Availability, Maintainability aspects of a real-time system. The author uses UML/MARTE profile and its
extension dependability modeling and analysis (DAM) framework. The applicability of this approach
is studied using the railway application. Model transformations using MARTE-DAM specifications
are defined to generate Repairable Fault Tree and Bayesian Network models. This paper demonstrates
the flexibility of the MARTE profile in extending its feature according to domain requirements.
The approach shows only the transformation approach and lacks the result analysis to verify the
transformation approach.

Davide Brugali [9] proposes an automatic approach for modeling and verification of non-functional
properties of a robotic system. In this paper, the author has proposed an extension known as
Autonomous Robot Modeling (ARM) profile to the UML/MARTE profile with robotic-specific
non-functional requirements. The use of the proposed extension is discussed with a robot navigation
system model. UML MARTE sequence diagram annotated with ARM is transformed into a Constraint
Satisfaction Problem (CSP) model and non-functional requirements are verified.

J.I Requeno et al. [22] proposes a unique approach for modeling and performance analysis of
real-time storm applications. The storm concepts are added as stereotypes into the UML MARTE profile.
The author proposes transformation patterns for mapping UML activity and deployment diagrams
and concepts into Generalized Stochastic Petri Nets for performance evaluation. The storm concepts
are represented using customized stereotypes leading to the question of validity and acceptance level
of these new stereotypes.

Vittorio Cortellessa et al. [23] proposes a bi-directional model transformation technique between
UML state machines and GSPN model. The transformations are based upon the input UML state
machine metamodel and the output GSPN metamodel. The paper focuses on the problems related to
software availability. In our proposed method the transformation rules are designed for the input UML
sequence diagram and output PNML metamodel. The obtained GSPN model in the proposed method
is the standard form and hence it is possible to use the derived Petri net model across different Petri
net tools. The interoperability across the different Petri net tools using the standard PNML format is a
unique contribution of the proposed transformation technique. We have implemented a lightweight
transformation technique using ATL and Java programming languages which does not require any
additional software except Eclipse IDE.

Some of the works [24–26] have focused on transformation rules and their challenges involved in
transforming UML annotated models into a specific performance analysis tool. In these works,
GreatSPN is the tool used for analyzing the system performance. In [27], the authors provide
the performance assessment of an industrial project INREDIS architecture using UML models and
software performance evaluation (SPE) procedure. For the performance evaluation, ArgoSPE tool
is used that generate GratSPN based GSPN model. In [28], uses a model-driven prediction method
called Q-ImPrESS on a large-scale process control system from ABB Corporate Research to trade
off the different architecture alternatives for determining the predicted performance accuracy,
reliability prediction, and sensitivity analysis.

In summary few of the works have used the customized sub-profiles specific to their domain
requirements and applications. The works also suggest that the MARTE profile can be extended
accordingly. However, there exist very few works that use the existing MARTE sub-profiles for system
performance evaluation, and hence we show the applicability of the existing MARTE profile and



Computers 2020, 9, 94 5 of 31

sub-profile. The proposed technique generates the output model in a standardized form which is
missing in other works

2.3. State of Work: Other Related Works

Sebastian Ehmes et al. [29] proposes a general purpose tool for simulation of stochastic processes
which can be used to study the scenarios in real-time systems. In this paper, the author uses a graph
transformations for stochastic processes and it is possible to apply graph based approach for different
domains that have stochastic processes.

Jieshi Shen et al. [5] offers a method to overcome the difficulty of analysis and verification of
dynamic behaviour of the system using SysML state diagrams and formal Petri net. The authors
transform state machines into the Petri net models for the study. Earlier studies focus on the one-to-one
correspondence between SysML elements and Petri nets. Innovative investigation of the transition
between two or more concurrent SysML state machines is suggested in this paper. The formal model
used in this work is a basic Petri net and hence cannot support deeper performance analysis required
for studying complex systems.

Federico Ciccozzi et al. in [30] proposes a systematic study and review of different works carried in
the field of model-driven engineering and the use of UML models in system development. This paper
particularly focuses on the execution of UML models and their contribution to developing an efficient
system. The paper suggests that a lot of research is carried out in this field but still, there is a lot of
scope in various aspects such as support execution of incomplete or partial UML models, solution for
model-level debugging, less use of empirical methods. Hence, there exists scope for conducting
research in model-driven engineering and add to the knowledge.

Jie Ding et al. [31] discovers the compositional structures of a given Petri net model. The paper
proposes a sorting algorithm for analyzing the compositional structures of a Petri net model using
an incidence matrix. The paper enhances the compositional analysis ability of Petri net. Large scale
system is usually composed of complex compositional structures. Most of the modeling tools require
composition and here the author proposes a method to identify the different possible composition
structures of a Petri net model.

Vu Van Doc and Thang Huynh Quyet [32] discuss the transformation rules for mapping only a few
sequence diagram elements and lack the rules for combined fragments such as “alt”, “par”, “loop” etc.
The paper also does not provide the details of the transformation approach and any qualitative results
of analyzing the derived Queueing Petri Net.

There also exist other commercial frameworks such as [33–35] that support the early stage
modeling and performance evaluation of a system. However, most of these frameworks support only
a specific analysis tool for example [34] uses Petri net as a formal model and derives the Petri net
format specific for GreatSPN tool and hence it lacks a standard format of Petri net model. The DICE
simulation tool proposed in [35] is close to our approach in a way that both approaches uses UML
models as input and GSPN model as output and uses standard PNML format, gaining the possibility
to use other Petri net analyzers. However, in DICE the input models are annotated with specially
created DICE profile and are focused toward data intensive applications and Big-Data technology.
As in our approach, we are using MARTE profile with annotation and stereotypes suitable for real-time
and embedded systems. We have implemented a light weighted transformation techniques using ATL
and Java programming languages and do not require any additional software.

In summary, most of the earlier works concentrate on a particular type of Petri net model and tool
for transformations and do not provide a unified approach to support different Petri net tools into the
MDE development approach. The main advantage of our approach is that it uses UML models extended
with MARTE profile stereotypes and represents real-time system requirements and specifications which
lacks in most of the earlier works. There exist very few works implementing quantitative evaluation of
a system using UML models as considered in our work. Besides, our approach is the approach that
implements a generalized intermediate PNML representation of the input model that is translated into



Computers 2020, 9, 94 6 of 31

a Petri net model for further evaluation using different Petri net tools. This offers an advantage to
share the Petri net model across different users. Such interoperability is not possible using end-to-end
transformation between a given type of input and output models as implemented in most of the
earlier works.

3. Preliminaries

3.1. Timed Petri Net

In this section, we present the definition, theories, and analysis methods for Timed Petri nets used
in subsequent parts of this paper. Detailed discussion is provided in [15,36].

Petri net is a mathematical modeling language used for discrete event-based distributed systems.
It is graphically a directed graph with two types of nodes places and transition. Places are drawn as
circles and transitions drawn as bars. These two nodes are connected with arc. Places can contain
tokens, represented as back dots within places.

Petri net can be formally defined as N = (P, T, A, M0, W), where:

P = (p1, p2, . . . , pn) is a finite set of places,
T = (t1, t2, . . . , tn) is a finite set of transitions,
A ⊆ (P×T)∪(T×P) is a set of directed arcs, with each transition connected to at least one place.

For each transition t ∈ T we define input and output set of arcs as follows: →t = p∈P : {In(t,p)>0},

t→ = p∈P : {Out(p,t)>0}

• In(t) and Out(t), represents the multiset of input and output places of transition t, respectively
• In(t,p) and Out(p,t) represents the multiplicity of Place p in the multiset T(t)

M0:P→N is the initial marking function, that assigns to each place a natural number {0,1,2,. . . }. In the
marking function, M(p) for p∈ P, is the number of tokens in place p in marking M,
W: F→ (1,2,. . . ) defines a weight function to assign weights for arc.

The dynamics of the Petri net model is described by the changes in markings influenced by the
transition firings. In timed Petri nets, each transition is associated with a random firing rate [37].
Transition firing results in an increase or decrease of tokens and it is governed by “enabling rule” and
“firing rule” defined as follows:

Definition 1 (Enabling Rule). A transition t in Marking M is enabled if each of the input places of transition t
is marked with at least W(p, t) tokens, where W(p, t) is the weight of the arc from p to t. Formally it is defined as:

∀p ∈→ t, M(p) ≥W(p, t)

Definition 2 (Firing Rule). A firing of a transition t in marking M creates a new marking M′ and removes
W(p, t) tokens from all the input place of t, and adds W(t, p) tokens to each output place of transition t,
where W(t, p) is the weight of the arc from t to p.

The firing rule defines the evolution of a Petri net model and creates a reachability set defined
as follows:

Definition 3 (Reachability Set). The Reachability Set of a PN system with initial marking M0 is denoted
RS(M0), and is defined as a set of markings reachable from M0.

Given a reachability set, we cannot get information about the sequence of transition firing to
reach any marking. This information is provided by the reachability graph. In reachability, each node
represents a reachable state and an arc from marking M1 to M2 if and only if the marking M1 is directly
followed by M2.



Computers 2020, 9, 94 7 of 31

Petri net model supports various properties that can be verified or proved using several analysis
techniques. The state space analysis or it is also known as reachability analysis is one such technique
that can be used to study Petri net properties as well as to derive performance parameters [38].
Reachability analysis is based upon the initial marking and construction of a reachability graph of the
Petri net.

In this paper, we derive performance parameters using the reachability set and reachability
analysis technique.

3.2. MARTE Profile for Performance Modeling and Analysis

In this section, we describe briefly the MARTE profile required for the partial implementation
of the first objective that involves designing UML/MARTE metamodel and also for designing the
UML/MARTE sequence diagram of a system. MARTE is an extension of the UML standard to provide
a mechanism for model-driven development of real-time and embedded systems. Such an extension
can be used as an assistant for specification, design, verification, and validation stages of system
development. MARTE profile is organized into two subsections: the MARTE design model and the
MARTE analysis model. The former design model is used for modeling features of real-time and
embedded systems and the latter is used for analysis purposes. MARTE model is very convenient
as it is modular and a user can use only the required model needed for their purpose In MARTE,
different performance modeling and analysis concepts and requirements are added as stereotypes in
different packages. MARTE stereotypes are specified within angle brackets (<<>>) and serve as
extension mechanisms in UML. Stereotypes can have properties specific to a domain or specialized
usage. Further described are the features of the MARTE profile required for our work. Performance
related concepts are represented in italics.

Performance modeling and analysis concepts are obtained from the Performance Analysis
Modeling (PAM) package which extends the Generic Quantitative Analysis Modeling (GQAM) domain.
GQAM contains domains for analysis based on the performance and schedulability behaviour of
the system. PAM is such a specialized domain that offers features for modeling concepts related to
performance analysis. PAM is subdivided into two packages PAM_Workload and PAM_Resources.
The PAM_Workload package incorporates real-time features such as WorkloadEvent description
of arriving events. MARTE:GQAM:GaWorkloadEvent is the <<stereotype>> for modeling the
WorkloadEvent in UML models. PAM_Workload also offers the description of different types of
workload such as open and closed workload, workload generators, etc. as attributes and features of
MARTE:GQAM:GaWorkloadEvent for describing system scenarios models and steps. The stereotype
<<PaStep>> is used to annotate the steps of a scenario and properties of <<PaStep>> are given to
provide performance interpretations. PAM_Resources package extends the Generic Resource Modeling
(GRM) package used for modeling general resources or platforms required for executing real-time
embedded systems.

During the system modeling phase, different sequence diagram elements can be annotated
with MARTE stereotypes. The sequence diagram lifeline element can be represented as logical
resource annotated with <<PaRunTInstance>>, workload event of the scenario is annotated with
<<GaWorkloadEvent>> stereotype and messages representing exchange of information is annotated
with <<PaStep>> stereotype.

This overview of MARTE illustrates a few of the concepts related to performance modeling and
analysis and MARTE concepts can be retrieved from UML models. MARTE sub profiles such as
GQAM, GRM, and PAM essential for performance modeling and analysis are described in Table 1.

3.3. Metamodel

ATL based transformation process uses the metamodel concept for both input and output
models. A metamodel is a “model of a model” and generating a metamodel is called metamodeling.
A metamodel is considered as an abstract view of the actual model or it is also treated as development



Computers 2020, 9, 94 8 of 31

rules and constraints in creating the corresponding model. Metamodel can represent different elements
and relationships between the elements. The development of an appropriate metamodel is one of
the requirements in ATL based implementation and thus the base for developing the transformation
process. Hence, as a part of the first objective and in the process of implementing transformation
rules we represent sequence diagram metamodel and PNML metamodel for input and output models,
respectively. The description of sequence diagram metamodel and PNML metamodel are as follows:

Table 1. Mapping of MARTE PAM profile concepts.

Concepts MARTE STereotypes MARTE Sub-Profile

Workload Event <<PaRunTInstance>> GQAM_Workload
Run Time Instance <<PaRunTInstance>> UML::Classes::Kernal
Logical Resource <<PaLogicalResource>> MARTE::GRM
Units of scenario <<PaStep>> MARTE::GQAM

Communication step <<PaCommStep>> MARTE::GQAM
Execution Host <<GaExecHost>> MARTE::GRM

3.3.1. Sequence Diagram Metamodel

The sequence diagram metamodel is designed based upon the standard metamodel provided by
OMG [1]. Figure 1 represent the sequence diagram metamodel that conforms the OMG metamodel.
The presented metamodel is different from the OMG standard as the classes in the sequence diagram
metamodel are extended with modeling and analysis of real-time and embedded systems (MARTE) [2]
attributes to represent different real-time requirements of a system. It offers specifications for modeling
foundational aspects used in the real-time and embedded domain, for making possible the detailed
description of software and hardware execution platforms and also handles the model-based analysis
of system performance. Hence, the use of MARTE specifications or attributes in the UML sequence
diagram metamodel will enable the system designers and developers to extend or create the UML
models with MARTE attributes.

In sequence diagram the root element represents the Interaction which consists of sequence
diagram elements Lifeline, Message and InteractionFragment. A Lifeline represents an object or roles
that are invoked in the system scenario been modeled. Basically, the interaction takes place between
different lifelines by the exchange of messages. A Message is communication between sender and
receiver and involves sendEvent and receiveEvent that is shown as two message ends in Figure 1.
A Lifeline is extended by a Resource in the metamodel that represents the system resources to be used by
an object. Hence, a separate class for representing a set of resources is created in the sequence diagram
metamodel which is not available in the metamodel provided by OMG. Currently, the class represents
only hardware resources later it can also be extended for software resources.

An ordered set of Combined Fragments can cover a lifeline, and each Combined Fragment
represents several forms of control flow and also includes one or two interaction operands. An interaction
operand consists of an interaction constraint in the form of a guard, used as the constraint for
control flow. The interaction operator will decide the type of a Combined Fragment. There exist
different types of Combined Fragment such as alternative (alt), option (opt), parallel (par) and loop
which are able to model the given constructs expressed in the requirements. The sequence diagram
metamodel represents the combined fragment, interaction operand, and interaction constraints using
CombinedFragments, InteractionOperand, and InteractionConstraint classes, respectively.



Computers 2020, 9, 94 9 of 31

Figure 1. Sequence diagram metamodel.

3.3.2. PNML Metamodel

Petri Net Markup Language is a standard interchange format published on 11 November 2009,
for Petri net models and developers in the Petri Nets community [39]. Petri net models are developed
across different countries with different tools available. A standard format for exchanging Petri
net models was needed to facilitate Petri Net tool users from different locations to exchange and
take advantage of recent and new facilities of other tools, such as, for analysis, simulation or
implementation [18]. PNML is flexible for a variety of Petri nets and also with different types of
Petri net tools. Works such as [18] and [40] have proposed a generalized PNML metamodel and
additional classes related to the structured PNML concepts. We have modified this generalization
with specific classes for graphical information such as graphics class, composed of two more classes
offset and position and the attributes of Petri net elements with PNML metamodel. This has led to the
simplification in the implementation of the transformation rules for mapping the Petri net attributes as
well as including graphical information. Figure 2 represents PNML metamodel depicting different
parts of PNML and their relationship.

The root node pnml in Figure 2 represents the PNML document of the Petri net. The pnml is
extended with net class for Petri net type. The basic elements of a Petri net are place, transition and arc.
Each of the Petri net elements are represented in the PNML metamodel by their respective classes as
shown in Figure 2. Classes place, transition and arc are inherited from base class object. The position
of each object in pnml document is managed by a graphics class, which in-turn is composed of
two more classes offset and position to represent the relative position and actual position of each
object, respectively.

The PNML metamodel class initialMarking represents the token information for Petri net place and
timed class is used to represent the two types of transitions “timed” and “immediate” using different
value in PNML document. The class value is common class used to represent value for number of
tokens, type of transition and place name. The class rate is used to represent rate of transitions and
hence it is associated with transition class.



Computers 2020, 9, 94 10 of 31

Figure 2. PNML metamodel.

4. Methodology

The proposed method is metamodel based and is implemented in two major steps, the first being
to design UML/MARTE based sequence diagram metamodel and PNML metamodel and the later
step is to design and implement transformation rules and automate the mapping of UML/MARTE
annotated sequence diagram into PNML based Petri net performance model. UML/MARTE sequence
diagram and Petri net model must adhere to the sequence diagram metamodel and PNML metamodel,
respectively. In the literature there exists a metamodel for both sequence diagram and PNML but,
in this paper, we present a simplified version of metamodels. The proposed metamodels consist
of minimal and all essential concepts required for modelling and analysis purpose. The proposed
metamodels are designed after several modifications and execution of the proposed method to generate
thePetri net model from the UML sequence diagram.

Models and metamodels are widely used and applied concepts in MDE-based approaches.
Model is the demonstration of a system expressed using a modelling language and metamodel
is the conceptual foundation of the modelling language. The sequence diagrams are annotated with
performance related information and these annotated information can be automatically extracted from
the system’s sequence diagram for performance analysis. In the proposed methodology, the later step
is implemented using one of the commonly used transformation language ATL.

4.1. Implementation

The metamodels described in the previous section are designed as a UML class diagram in Eclipse
modeling Framework [41] followed by a series of steps for mapping UML/MARTE sequence diagram
elements to Petri net elements using PNML. The process of conversion begins by considering the
XML format of the UML Sequence diagram. The XML Metadata Interchange (XMI) is a standard
notation based on XML used to represent the UML model. The main use of XMI is to allow metadata
exchange within different modeling tools. Eclipse Modeling Framework (EMF) and Papyrus modeling



Computers 2020, 9, 94 11 of 31

plugin are used for creating UML/MARTE sequence diagram. In the Eclipse tool XMI format is
automatically created for UML models and this format is used to save/retrieve the information about
UML metamodel.

The proposed methodology for mapping sequence diagram into a Petri net is shown in Figure 3.
The proposed method is different in the way that it generates a standard intermediate format in PNML
form from UML models and enable Petri net users to exchange information between different Petri net
tools. Usually, it is common in Petri net community that different users use different Petri net tools
and each tool may have its own proprietary representation, making it difficult to exchange Petri nets
between the tools. Hence, PNML is used as a standard framework for th export and import of Petri net
representation with Petri net tools.

Figure 3. Proposed Methodology for mapping UML Sequence diagram into Petri Net.

Implementation of the proposed methodology as shown in Figure 3 consists of the following steps:

1. Modeling: The first step begins with modeling UML/MARTE sequence diagram in the Eclipse
modeling framework and the Papyrus plug-in. The corresponding XMI file of the sequence
diagram is automatically generated and is preprocessed in the next step. Figure 4 show a
snapshot of the XMI representation of the UML sequence diagram.

2. Input parser: The second step consists of preprocessing the generated XMI file, as it consists
of several non-relevant metadata information. Only the relevant data elements belonging to a
sequence diagram metamodel need to be extracted from the original XMI input file. Hence, in the
second step, an input parser is implemented for extracting the required relevant information from
the sequence diagram XMI file. The input parser is implemented using Java.

3. ATL mapping rules: Once a preprocessed XMI file is generated, next, in the third step, a set of
mapping rules are designed and implemented using ATL transformation language for mapping
sequence diagram elements into PNML elements to generate and render Petri net model.
The preprocessed XMI file is used as input for the ATL program.

4. Output Parser: The execution of ATL program creates a XML file representing the Petri net model
based upon PNML metamodel. Figure 5 shows PNML representation of Petri net model elements
transition, place and arc. However, the obtained file cannot be rendered directly into the Petri net
tools due to compatibility issues between Petri net tools and EMF. Hence, to overcome this issue



Computers 2020, 9, 94 12 of 31

an output parser is implemented as the last step to convert the ATL output model into the tool
supported format and render the output Petri net model. The output parser is implemented
using Java.

Figure 4. Snapshot of XMI representation of UML sequence diagram.

<transition id="T18"
name="x3">
<graphics>
<position x="590"
y="420"/>
</graphics>
<timed>
<value>true</value>
</timed>
<rate>
<value>1.0</value>
</rate>
</transition>

(a)

<place id="P0alt" name="x2">
<graphics>
<position x="100" y="150"/>
</graphics>
<initialMarking>
<value>1</value>
</initialMarking>
</place>

(b)

<arc source="P3loop"
target="T3">
<graphics">
<position x="100" y="150"/">
<position x="400" y="190"/">
</graphics">
<inscription">
<value>1</value">
</inscription">
</arc">

(c)

Figure 5. PNML representation of Petri net elements. (a) Transition, (b) Place, (c) Arc.

In this work we use an open source Java based tool Platform-Independent Petri Net Editor (PIPE)
for rendering the transformed output Petri net model [42].

The proposed methodology is implementated using the steps depicted as “transformation rules”
block in Figure 3. The output of this “transformation rules” block is a PNML document in XMI format
and is ready for rendering into Petri net tools.

4.2. Transformation Rules

This subsection presents a set of ATL transformation rules for mapping UML/MARTE sequence
diagram elements into Timed Petri net models. A transformation rule consists of mapping a concept
described in the input model to a corresponding concept in the output model. The main concepts
of sequence diagram that must be mapped to the target model are the basic interaction elements
that include interaction, messages and different combined fragments such as alt, par, loop, opt etc.



Computers 2020, 9, 94 13 of 31

We divided the transformation rules into two categories namely: basic interaction rules and combined
fragment rules. The different transformation rules are as follows:

• Basic Interaction Rules:

1. Rule for Interaction: In this rule a sequence diagram interaction is mapped to a Petri net
model and hence for an Interaction object in sequence diagram metamodel a corresponding
PetriNet object is created. The attribute name of the sequence diagram is mapped as name for
Petri net model. Now the Petri net model will encapsulate the different sequence diagram
elements created using the defined rules.

2. Rule for Message element: This rule maps the Message element from sequence diagram
metamodel. Each message has two MessageOccurences events “sendEvent” and “receiveEvent”
and a message transfer operation to be considered for mapping. Mapping begins by creating
a Petri net place for SendEvent followed by a transition for transfer operation and a place for
receiveEven and a transition for message execution delay. Petri net arc is created between
places and transitions. For example, in Figure 6, the message M1 is exchanged between
Lifeline1 and Lifeline2 and for the sendEvent at Lifeline1 a place P0 is created, for receiveEvent
at Lifeline2 place P1 is created and for the transfer of message, a transition T0 is created
followed by transition T1 for the processing delay at the receiver is created in the Petri net
model as shown in the Figure 7.

Figure 6. Message Element.

Figure 7. Petri Net representation of Message.



Computers 2020, 9, 94 14 of 31

• Combined Fragment transformation Rules: The following set of rules are used for mapping
different combined fragment and the interaction operand in each of the combined fragments.
As shown in Figure 1 each Interaction can have zero or more InteractionFragment that is
inherited by CombinedFragment. Each combined fragment is differentiated by interaction operator

“interactionOp" attribute. The different combined fragment transformation rules are implemented
and executed by extracting the embedded interaction operator.

1. Rule for Combined fragment “alt”: Alternate fragments denoted by “alt” represent a choice
of behaviour in sequence diagrams. For each interaction operand of “alt” representing this
choice of behaviour a sub-Petri net model is created. We start the mapping by creating a
common Petri net place (Pi) to represent interaction operator “alt” and for each interaction
operand we create a transition (Ti) that can be followed by the Petri net models of other
sequence diagram elements present within the interaction operand. For example, Figure 8
shows the combined fragment “alt” with two interaction operands, messages M1 and M2 in
the first operand and M3 and M4 in the second operand. The corresponding Petri net model
is shown in Figure 9 in which place P0 represents the beginning of interaction operator “alt”
and T0 and T1 transitions represent each interaction operand. Messages M1, M2, M3, and M4
inside each interaction operands are mapped to the corresponding Petri net model of the
message according to the basic interaction rule 2 represented as rectangular boxes in Figure 9.

2. Rule for Combined fragment “par”: Parallel fragments denoted by “par” represents a parallel
operation in sequence diagrams. For each interaction operand of "par" a sub-Petri net model
is created. We start the mapping by creating a common place (Pi) followed by a transition (Ti)
to represent interaction operator “par” and for each interaction operand we create a place
(Pj) followed by a transition (Tj) that can be further followed by the Petri net models of other
sequence diagram elements present within the interaction operand. The synchronization of
parallel operations is represented by creating two places, one for each operand and a common
transition connecting the places and transition using Petri net arc. For example, Figure 10
shows the combined fragment “par” with two interaction operands, messages M1 and M2
in the first operand and M3 and M4 in the second operand. The corresponding Petri net
model is shown in Figure 11 in which place P0 and transition T0 represents the beginning of
interaction operator “par” and place P1 and transition T1 represent one interaction operand
and P2 and T2 represent another interaction operand. Messages M1, M2, M3 and M4 inside
each interaction operands are mapped to the corresponding Petri net model of the message
according to the basic interaction rule 2 represented as rectangular boxes in the Figure 11.
The synchronization aspect is shown by the places P12 and p13 connecting the common
transition T12.

Figure 8. Combined fragment alt.



Computers 2020, 9, 94 15 of 31

Figure 9. Petri Net representation of alt.

Figure 10. Combined fragment par.

3. Rule for Combined fragment “loop”: Loop combined fragment denoted by “loop” represents
looping operation in sequence diagrams. Mapping of “loop” begins with Place(Pi) followed
by two transitions “(Ti) and (Tj). Transition “Ti” represents the true condition for the
repetition of loop “N” times and transition “Tj” is an immediate transition that represents
the exit condition for loop and is enabled when the loop has executed “N” number of times.
The input arc for Transition Tj is mapped with a weight equal to the loop iteration count “N”
and Tj being immediate has higher priority than Ti. A sub-Petri net is created according to
the basic interaction rules 2 to represent the exchange of messages within the loop fragment.
Under the true condition, the “Ti” transition is triggered and sub-Petri net is executed and
repeated for “N” times and triggers Tj. For example, Figure 12 shows the combined fragment
“loop” with two message M1 and M2 exchanged between lifelines. The corresponding Petri



Computers 2020, 9, 94 16 of 31

net model is shown in Figure 13 with place P0 representing the loop operator and transition
T0 and T3 representing true and false conditions, respectively. Messages M1 and M2 are
mapped to the corresponding Petri net model of the message according to the basic interaction
rule 2 represented as rectangular boxes.

Figure 11. Petri Net representation of par.

Figure 12. Combined fragment loop.

4. Rule for Combined fragment “opt”: Option or choice combined fragment denoted by “opt”
represents a choice operation in sequence diagrams with only one operand and either the
operand happens or nothing happens. Mapping of “opt” begins with Place (Pi) followed
by two transitions “(Ti)” and “(Tj)”. Transition “Ti” represents the true condition for the
execution of the single operand and transition “Tj” represents the exit condition for opt under
the condition being false. Following the transition “Ti” sub-Petri net is created according to
the basic interaction rules 2 to represent the exchange of messages within the opt operand.
Under the true condition the “Ti” transition is triggered and sub-Petri net is executed and if



Computers 2020, 9, 94 17 of 31

the condition is false then transition “Tj” is triggered and the opt operand is not executed.
For example, the Figure 14 shows the combined fragment “opt” with two messages M1 and
M2 exchanged between lifelines. The corresponding Petri net model is shown in Figure 15
with place P0 representing opt operator and transition T0 and T1 representing true and
false conditions, respectively. Messages M1 and M2 are mapped to the corresponding
Petri net model of the message according to the basic interaction rule 2 represented as
rectangular boxes.

Figure 13. Petri Net representation of loop.

In the implementation of transformation rules identifying and arranging the relevant data
elements and the relationship between data elements within the UML XML file was a challenging task.
We could not use the original XML file of the UML model directly with ATL transformation language
hence, a new XML file representing the structure of elements compatible with sequence diagram
metamodel was generated. In this process, we extracted only the elements belonging to the sequence
diagram metamodel and also establish the relationship between the different elements according to the
metamodel. The hierarchical relationship according to the metamodel had to be preserved between
different sequence diagram elements. With several iterations, the input parser for preprocessing the
original XML file in step 2 (Input parser) of implementation was developed. This Java based input
parser was developed using Java DOM Parser.



Computers 2020, 9, 94 18 of 31

Figure 14. Combined fragment opt.

Figure 15. Petri Net representation of opt.

Another challenge in the implementation was managing the format of the output file generated
by ATL transformations. The XML file produced by ATL does not have any hierarchical relationship
between elements which is a requirement for rendering Petri net models in Petri net tools. The generated
output file was not compatible with Petri net tools. Hence, to overcome this challenge another Java
based output parser was developed using Java DOM parser for creating Petri net tool compatible
output file.

4.3. Composition Algorithm

In this sub-section, we propose a sequence based composition algorithm to combine the different
sub-Petri net models developed using the proposed transformation rules. The composition of sub-Petri
nets is an essential step in the proposed methodology to develop an automated approach for deriving
a Petri net model from a UML sequence model. Generally, it is possible that composition logic may
yield a complex Petri net model with additional places and transitions adding to the complexity of
the performance analysis process. Thus, addition of places and transition will impose an additional
operation of model checking, which could be infeasible for large models [43].



Computers 2020, 9, 94 19 of 31

The proposed composition algorithm uses the order of occurrences of the sequence diagram
elements in the UML model to combine the individual sub-Petri net models of the corresponding
sequence diagram elements. Thus, retaining the same order of occurrences in the final combined
Petri net model. The composition process is achieved without an overhead of creating additional
places or transitions and retaining the structural properties of individual sub-Petri net models.
Hence, the advantage of the proposed algorithm is, the additional operation of the model checking the
final Petri net model can be avoided as the original sequence of operation and structural properties are
not altered.

The initial step of the composition algorithm is to extract the order of occurrences of the sequence
diagram elements. To extract this order of occurrences we perform the parsing operation on the XMI
file of the UML model and extract the following information.

1. XMI IDs of message and interaction operands of combined fragments alt, par, loop and opt
2. Type of the sequence diagram element: message, alt, par, loop and opt
3. XMI IDs of the sequence diagram elements: message, alt, par, loop and opt

These extracted information’s are maintained under the following one dimensional array in the
composition algorithm:

α1 : An array f or XMI id′s o f message, Combined f ragment′s operands
α2 : An array to represent type o f sequence diagram element,
Size_o f (α2) : size o f array α2
α3 : An array f or XMI id′s o f sequence diagram elements
The composition algorithm is developed as a set of rules using the extracted information from the

UML model. In the sequence diagram, the elements alt, par, loop, opt and message can occur in any
order leading to the several combination of sequence of occurrences. Hence, to handle such several
possibilities of occurrences the set of rules are designed for each sequence diagram elements: alt, par,
and loop, opt and message.

For example consider the current element as alt, that can be followed by any element such as par,
loop, opt, message and also alt. In this situation for the composition, alt is considered as source element
and its following element is considered as destination element. Once the source and destination
elements are obtained then according to the proposed rules an arc is inserted from the last transition
of the source element to the first place of the destination element. The component details of the
composition algorithm is depicted in Figure 16 and the set of rules are depicted in the following
Algorithm 1.

Figure 16. Component details of composition algorithm.



Computers 2020, 9, 94 20 of 31

Algorithm 1 Composition Algorithm for Sub-Petri net

Require: α1, α2, α3

Composition Algorithm for “message" Sub-Petri net
1: for each Operator i in α2 do
2: if α2[i] = message then
3: for each Transition T in Petri net model do
4: if T.label = α2[i] then
5: src = T.id
6: end if
7: end for
8: if α2[i + 1] =alt ∨ α2[i + 1] =par ∨ α2[i + 1] =loop ∨ α2[i + 1] =opt ∨ α2[i + 1] =message then
9: for each Place P in Petri net model do

10: if P.label = alpha3[i + 1] then
11: dst = P.id
12: end if
13: end for
14: end if
15: Draw the arc between src and dst
16: end if

Composition Algorithm for “alt" Sub-Petri net
17: if α2[i] = alt then
18: for each Transition T in Petri net model do
19: if T.name = α1[i] then
20: src1 = T.id
21: end if
22: if T.name = α1[i + 1] then
23: src2 = T.id
24: end if
25: end for
26: if α2[i + 1] =alt ∨ α2[i + 1] =par ∨ α2[i + 1] =loop ∨ α2[i + 1] =opt ∨ α2[i + 1] =message then
27: for each Place P in Petri net model do
28: if P.label = α3[i + 1] then
29: dst = P.id
30: end if
31: end for
32: end if
33: Draw the arcs from src1 and src2 to dst
34: end if

Composition Algorithm for “par" Sub-Petri net
35: if α2[i] = par then
36: for each Transition T in Petri net model do
37: if T.id = T1_Com then
38: src = T.id
39: end if
40: end for
41: if α2[i + 1] =alt ∨ α2[i + 1] =par ∨ α2[i + 1] =loop ∨ α2[i + 1] =opt ∨ α2[i + 1] =message then
42: for each Place P in Petri net model do
43: if P.label = α3[i + 1] then
44: dst = P.id
45: end if
46: end for
47: end if
48: Draw the arcs between src and dst
49: end if
50: CompositionAlgorithm f or“loop”Sub− Petrinet
51: if α2[i] = loop then
52: for each Transition T in Petri net model do
53: if T.label = loopt11 then
54: src = T.id
55: end if



Computers 2020, 9, 94 21 of 31

56: end for
57: if α2[i + 1] =alt ∨ α2[i + 1] =par ∨ α2[i + 1] =loop ∨ α2[i + 1] =opt ∨ α2[i + 1] =message then
58: for each Place P in Petri net model do
59: if P.label = α3[i + 1] then
60: dst = P.id
61: end if
62: end for
63: end if
64: Draw the arcs between src and dst
65: end if

Composition Algorithm for “opt" Sub-Petri net
66: if α2[i] = opt then
67: for each Transition T in Petri net model do
68: if T.label = α1[i] then
69: src = T.id
70: end if
71: end for
72: if α2[i + 1] =alt ∨ α2[i + 1] =par ∨ α2[i + 1] =loop ∨ α2[i + 1] =opt ∨ α2[i + 1] =message then
73: for each Place P in Petri net model do
74: if P.label = α3[i + 1] then
75: dst = P.id
76: end if
77: end for
78: end if
79: Draw the arcs between src and dst
80: end if
81: end for

4.4. Performance Analysis

Once the GSPN is derived, it is ready for analysis to derive the desired non-functional
performance parameters. In the process of GSPN behavioral analysis, steady-state distribution is
basic for quantitative evaluation in deriving performance parameters. Utilization and throughput
are performance parameters considered in this paper. Utilization of resources is calculated using the
average number of tokens in the Petri net places representing system resources and throughput is
calculated by considering the average number of times a transition fires representing an initiation or
completion of an event in a unit time.

This quantitative evaluation of performance parameters can be computed using reward functions.
A reward function is defined over the markings of Petri net. Here, we denote a reward function as
R(M) over the GSPN markings and an average reward is derived using the steady-state probability
distribution of the GSPN [15]. The average reward function can be calculated as follows:

AR = ∑
Mi∈RS

R(Mi)ηi (1)

Here RS represents the set of reachability set of derived Petri net and ηi represents steady state
probability of marking Mi. Different performance indices (parameters) can be computed using proper
reward function. The utilization is defined by the reward function as follows:

Ru(M) = n i f f M(Pj) = n (2)

where M(pj) represent the number of token in place Pj in marking M. In other words, we use a subset
S(j, n) of reachability set (RS) for which the number of tokens in place Pj is “n” and is given as follows:

S(j, n) = {Mi ∈ RS : Mi(Pi) = n} (3)



Computers 2020, 9, 94 22 of 31

Equation (3) is considered to compute the average reward function for utilization as follows:

ARu = ∑
n>0

[nP{A(j, n)}] (4)

Here P{A(j, n)} is steady state probability of markings belonging to set S(j, n).
Similarly, for throughput the reward function assumes the value “wj ” the firing rate of transition

in every marking that enables Tj and is given as

Rt(M) =

{
wj if Tj ∈ E(M)

0 otherwise
(5)

and the average reward function for throughput is defined as

ARt = ∑
Mi∈Aj

wjηi (6)

Here
Aj = Mi ∈ RS : Tj ∈ E(Mi)) (7)

is the subset of marking in which the given transition is enabled and ηi represents steady state
probability of marking Mi. Similarly it is possible to evaluate different performance measures using
different reward functions over Petri net model elements.

5. Case Study: A Manufacturing System

The application of the proposed transformation rules on a manufacturing system is shown in this
section. As a case study, we have considered a pull strategy based manufacturing system from the
production industry. A pull strategy is a type of production system that depends on the requirement
and a new product or the part of the product is generated only when there is a demand for it. One of the
categories of pull strategies is the Just-In-Time strategy (JIT) which ensures that the work in progress is
maintained as minimal as possible.

In this paper we have considered a Just-In-Time control method based, a Kanban system adopted
from [44] and [45] to avoid bias in the results and also to validate the obtained results. From the
literature for example [46,47], it is observed that for a Kanban system Pull production system we have
four main aspects that can be considered as uses cases: supply, demand, information, and production
management for successful Kanban system. In this paper we consider the production management use
case of the Kanban system to model and analyse the in-process inventory system. A Kanban system
uses cards and the movement of cards to control the movement of different manufacturing elements
in the manufacturing process. A linear system of production cell is used in the Kanban system with
every cell accountable for generating and handling of a unique part. There exists a pre-defined count
of cards (K) within each cell that represents the number of parts within a cell. Thereby, every cell has a
fixed number of cards within it. Each cell is based upon Just-in-Time strategy and each cell produces a
part only when there is a requirement for it from the next cell. A cell Ci can request for a part from
Ci−1 cell and only then the cell Ci−1 produces the part and supplies. Every cell Ci has two buffers an
input buffer to store the part produced from the cell Ci−1 and an output buffer to store the part from
the cell Ci. The part in the output buffer is transferred to the input buffer of the next cell Ci+1 if and
only if a card ki+1 is posted by the cell Ci+1.

For simulating the working of the Kanban System each production cell Ci is implemented using the
following two functions and consists of the following components. Figure 17 shows the diagrammatic
representation for the structure of a Kanban system.



Computers 2020, 9, 94 23 of 31

Figure 17. Structure of a Kanban system.

1. An input buffer for parts waiting for processing by Ci;
2. An output buffer for parts completed by Ci;
3. A Bulletin board to hold a fixed set of cards;
4. Machine for processing the parts within the cell.

Function 1: When a part arrives in the input buffer of Ci.
Step (i): Attach a card Ki to the new part;
Step (ii): If the machine is available then decrease the card count of Ci by 1 and process the part.
Function 2 : When a part is completed by Ci.
Step (i): Insert the completed part into the output buffer of Ci if (cell Ci+1 consists a cardk+1);

Step (ii): Insert the completed part from Ci output buffer into the Ci+1 input buffer; Step (iii): Insert
the card Ki into Ci board and this increases the number of cards in Ci by one.

We show the implementation of the Kanban system using GSPN and demonstrate the performance
evaluation of the same. Furthermore, we used the UML sequence diagram to represent the Kanban
system and apply the proposed transformation rules to derive the corresponding GSPN model.
Finally, the results of performance evaluation from the original GSPN and the derived GSPN model
are compared to validate the proposed transformation technique.

5.1. Implementation Details

The GSPN model of the Kanban system with a single cell is shown in Figure 18 and Table 2
describes the different Petri net elements within the model. A single cell model of the Kanban system
can be composed in a sequence to model a generalized n-cell Kanban system. Each cell will then
represent the individual components of a Kanban system. Figure 19 represents a 2-cell kanban system
which is considered for further analysis in this paper.

In Figure 18 the place P0 and tokens in it represent the bulletin board and the number of cards,
respectively. Places P2 and P4 are the input and output buffer, respectively. Places P1 and P3 represent
the idle and busy states of the machine, respectively. The token in place P1 indicates that the machine
is idle and similarly the token in place P3 represents that the machine is processing the part and
hence busy. The transition represents the events occurring in the system. For an n-cell Kanban
system, we merge the last transition of a cell Ci and the first transition of the cell Ci+1. For a 2-cell
Kanban system shown in Figure 19 when the first cell has a finished part in its output buffer (place
p2) and if there is the availability of a card in the next cell (token in place P11) then the transition
T2 is enabled indicating the availability of a part for processing and firing of the transition adds a
token to place P7 indicating the part moved into the input buffer. Next, if there exists a token in place
P10 indicating the machine is in an idle state then the transition T6 fires indicating that the part is
processing. Finally, after a certain delay, the transition T7 is enabled and fires and moves the processed
part into the output buffer Place P9 (adds a token). This entire process is continued for n-cells.



Computers 2020, 9, 94 24 of 31

Figure 18. Description of one Kanban cell using GSPN model [45].

Figure 19. Description of 2-cell Kanban system using GSPN model.

Table 2. Description of one cell GSPN model.

Element Description

P0 Represent the bulletin board with tokens within it represents the number of the cards in the cell
P1 A token here represents the condition ’cell Ci is idle
P2 Represent the input buffer
P3 A token here represents the condition ’cell Ci is busy
P4 Represent the output buffer
T0 A part and card entering input buffer : Rate assumed (1.0)
T1 A machine starts the processing: Immediate transition no delay
T2 A part entering the input buffer of next cell: Rate assumed (1.0)
T3 Processing of parts by the machine: Rate assumed (4.0)

The sequence diagram representation of the kanban system shows the flow of control and
movements of the kanban card and the parts produced is developed using the Eclipse papyrus tool.
Figure 20 shows the UML sequence diagram representation of a single cell Kanban system for a
scenario showing the flow and processing of the parts within the production system. Figure 21 shows
the class diagram, which complements the sequence diagram. The class diagram consists of different
classes for each of the lifelines in the sequence diagram composed under a class Kanban cell representing
a kanban cell. The classes define the attributes and operations available for the corresponding lifeline.
The class diagram gives the overall picture of which operations can be activated as a result of the
exchange of messages in sequence diagram. The sequence diagram is described as follows: the four
lifelines Bulletin Board, Input Buffer, Machine and Output Buffer represents the corresponding resources
of a cell. The opt combined fragment is used to check the availability of the card in a cell and initiate
further operation if a card exists in the bulletin board.

The messages named readpart(), processpart(), storePart() and updateCard() represent the operations
activated and flow of information within a cell. Each message is represented by a MARTE stereotype
«PaStep» as a unit of scenario. The message processpert() represents the processing of a input part by the
machine and the computation time is represented by «PaStep» hostDemand attribute and other messages
are assumed with no delay. The proposed transformation rules are applied to the Kanban sequence
diagram for opt combined fragment and message and the corresponding Petri net representation is
derived. The derived Petri net is for the single cell sequence diagram that can be composed in a



Computers 2020, 9, 94 25 of 31

sequence to model a n-cell kanban system. In this paper, we used a 2-cell derived Petri net model as
shown in Figure 22 from the UML sequence diagram for further analysis.

Figure 20. Sequence diagram of 1-cell Kanban system.

Figure 21. UML class diagram of a Kanban cell.

Figure 22. Description of 2-cell Kanban system proposed transformation rules.



Computers 2020, 9, 94 26 of 31

As a part of the case study system performance parameters, throughput, and utilization of a
2-cell Kanban system is analysed in the next sub-section. Currently, we are restricted to only a 2-cell
system to avoid state space explosion problem in the derived Petri net model which can be avoided by
optimizing the derived Petri net model which is beyond the scope of this paper.

5.2. Results

This section presents experimental results carried on for studying the performance of the Kanban
system with a 2-cell Petri net model. The system considered for the study is homogeneous: in the sense,
each cell has the same rate of transition representing the exponential service rate of each machine
and the same number of cards. The performance of the Kanban system is analyzed by calculating
two nonfunctional parameters, utilization, and throughput. We conducted a set of 10 experiments to
determine the variations in system throughput and resource utilization for both the original Petri net
and the derived Petri net models.

• Throughput Analysis:

The throughput analysis is performed as a function of change in the number of system cards in
a 2-cell Kanban system. In the 2-cell Petri net model, the throughput of timed transition T8 in
Figure 19 represents the overall system throughput. The throughput of the transition is calculated
by identifying the markings in which the transitions are enabled in the reachability graph and
using Equation (5). As an example, consider the number of card as 1 in the 2-cell Petri net model
and compute the throughput of the transition T8. Firstly, we need to find the markings in which
the transition is enabled using the reachability graph. Then, the steady state distribution of the
reachable states is determined as:

η0 = 0.14, η1 = 0.04, η2 = 0.36, η3 = 0.07, η4 = 0.14,
η5 = 0.009, η6 = 0.03, η7 = 0.009, η8 = 0.18

The rechability graph is computed using the PIPE tool supported analysis module and according
to the graph the transition T8 is enabled only in M4, M6, M8 markings. Using the reward function
in Equation (5) and average reward function in Equation (6) the throughput of the system is
calculated as:

ART8 = η4 + η6 + η8 = 0.36.

Similarly, we can compute the throughput for other card counts(from 2 to 10) and the set of 10
experiments were conducted by varying the tokens count from 1 to 10 in places P4 and P11 in
Figure 19.

We performed a similar set of experiments on the derived Petri net model from the UML sequence
diagram as shown in Figure 22. The experiments were conducted and the throughput of timed
transition T16 of the derived Petri net is determined by varying the tokens count from 1 to 10
in places Bulletinbrd1 and Bulletinbrd2. The results in Table 3 show the variations in system
throughput (i.e., transition T8)for the Kanban Petri net model and the derived Petri net model
(i.e., transition T16).

• Utilization Analysis:

The utilization of the machine is determined as a function of change in the number of system
cards for a 2-cell kanban system and is calculated as follows: Firstly we determine the reachability
set of the Petri net model that represents the collection of reachable states and the availability of
tokens in different places at different markings. The part of the reachability set of the 2-cell Kanban
system for Places P3 and P10 are shown in Table 4. The reachability set has nine markings (M0 to
M8). The steady state distribution of these reachable states is mentioned in the earlier throughput
analysis and the same is used for computing the utilization parameter.



Computers 2020, 9, 94 27 of 31

Table 3. Variation in the System Throughput.

Number of Cards Throughput of the Kanban Petri Net Throughput of the Derived Petri Net

1 0.36 0.36
2 0.54 0.54
3 0.65 0.65
4 0.72 0.72
5 0.76 0.76
6 0.79 0.79
7 0.82 0.82
8 0.84 0.84
9 0.85 0.85

10 0.87 0.87

We conducted a set of 10 experiments by changing the tokens count from 1 to 10 in places P4 and
P11 in Figure 19. As an example, consider the number of cards as 1, then find the average number
of tokens in place P3 (representing the idle state of the machine in the first cell) and then compute
the utilization. In Table 4 it can be seen that one token is present in place P3 for markings M0, M2,
M3, M4, M7, and M8 and thus these markings form the subset of the reachability set for which
the reward function specified in Equation (2) is defined. Since there is only one token in Place
P3 for each of these markings the value of “n” in the reward function in Equation (2) is one for
these markings. Next, we find the average number of tokens in place P3 using the steady state
distribution of these marking and Equation (4) as follows and computer the utilization:

A[M(P3)] = η0 + η2 + η3 + η4 + η7 + η8 = 0.90

The utilization of the resource is:

Ru[M(P3)] = 1− A[M(P3)] = 10%

Similarly we compute the utilization for other card count (from 2 to 10).

Table 4. Part of rechability set of the derived Petri net.

Marking P3 P10

M0 1 1
M1 0 1
M2 1 1
M3 1 0
M4 1 1
M5 0 0
M6 0 1
M7 1 0
M8 1 1

We performed a similar set of experiments on the derived Petri net model Figure 22 from the UML
sequence diagram. The experiments were conducted and the utilization of place Machine1idle of
the derived Petri net is determined by varying the tokens count from 1 to 10 in places Bulletinbrd1
and Bulletinbrd2. The results in Table 5 shows the variations in the utilization of resource
(i.e., place P3)in the Kanban Petri the model and the derived Petri net model (i.e., place TMachine1idle).
The results show that resource utilization reaches a saturation after a certain number of cards.
Thus, we can use these results to predict the system behaviour and also make suitable design
changes in the early stage of system development.



Computers 2020, 9, 94 28 of 31

Table 5. Variation in the resource utilization.

Number of Cards Utilization of Place P3 Utilization of Place Machine1idle

1 10% 10%
2 14% 14%
3 17% 17%
4 19% 19%
5 20% 20%
6 20% 20%
7 21% 21%
8 22% 22%
9 22% 22%

10 22% 22%

These results show that the throughput and utilization variation is identical in both of the Petri
net representation. Thus, the obtained performance values from the two analyses verify and validate
the proposed transformation rules and the behavior of the derived Petri net model.

6. Conclusions and Future Work

In this paper, we proposed a UML/MARTE based modeling and performance evaluation of a
real-time system using a formal Timed Petri net model. This paper proposes a methodology to employ
initial stage Performance analysis to enhance the system quality. Real-time systems are performance
critical and hence an early effort to check and verify the system behaviour and system performance
is recommended. If the faulty system behaviour is not handled properly, then it can lead to many
problems, that may hinder system execution and result in heavy system cost.

A metamodel based approach for evaluating system performance using UML sequence diagram
and GSPN enables us to evaluate a given system for both hardware and software parts of the system.
This has several benefits in improving system design and system behaviour. We demonstrate the
feasibility of using MARTE profile annotations for modeling performance related concepts in a real-time
system using the UML sequence diagram. These annotated concepts can be extracted from the UML
model using an automated process for future analysis. This paper discusses an automated process for
extracting these performance concepts from UML sequence diagram elements.

The proposed method involves a set of transformation rules for mapping sequence diagram
elements into sub-Petri nets model using PNML intermediate representation and further composition
of these sub models. The main advantage of this work is the generation of PNML representation
directly from UML models. The applicability of our proposed transformation rules is demonstrated
using a real-time system of a manufacturing domain. The performance parameters such as utilization
and throughput of a manufacturing system is analyzed.

In this paper, we introduced the transformation for few sequence diagram elements, and an
extension is to add more transformations for other sequence diagram elements and identifying other
key performance features other than utilization and throughput.

Author Contributions: Conceptualization, T.S., A.N. and D.P.; methodology, T.S.; software, T.S.; validation, T.S.;
formal analysis, T.S.; investigation, T.S., A.N. and D.P.; resources, T.S.; writing—original draft preparation, T.S.;
writing—review and editing, T.S., A.N. and D.P.; visualization, T.S., A.N. and D.P.; supervision, A.N. and D.P.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Object Management Group. UML Specification, 1st ed.; Object Management Group: Needham, MA,
USA, 2003.



Computers 2020, 9, 94 29 of 31

2. A Uml Profile for Marte: Modeling and Analysis of Real Time Embedded Systems. 2011. Available online:
http://www.omg.org/spec/MARTE/1.1/PDF (accessed on 16 September 2019).

3. Soares, J.A.C.; Lima, B.; Faria, J.P. Automatic Model Transformation from UML Sequence Diagrams to
Coloured Petri Nets. In Proceedings of the 6th International Conference on Model-Driven Engineering and
Software Development, Madeira, Portugal, 22–24 January 2018; pp. 668–679.

4. Phartchayanusit, V.; Rongviriyapanish, S. Safety Property Analysis of Service-Oriented IoT Based on Interval
Timed Coloured Petri Nets. In Proceedings of the 15th International Joint Conference on Computer Science
and Software Engineering, Nakhonpathom, Thailand, 11–13 July 2018.

5. Jieshi, S.; Lei, L.; Xiaoguang, H.; Guofeng, Z.; Jin, X. Evaluate Concurrent State Machine of SysML Model
with Petri Net. In Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications
(ICIEA), Wuhan, China, 31 May–2 June 2018.

6. Hassan, R.; Amrita, C. Mapping AADL to Petri Net Tool-Sets Using PNML Framework. J. Softw. Eng. Appl.
2014, 7, 920–933.

7. Doc, V.V.; Thang, H.Q.; Bach, N.T. Development of the Rules for Transformation of UML Sequence Diagrams
into Queueing Petri Nets. In International Conference on Industrial Networks and Intelligent Systems; Springer:
Berlin/Heidelberg, Germany, 2019.

8. Dan, L. QVT Based Model Transformation from Sequence Diagram to CSP. In Proceedings of the 15th IEEE
International Conference on Engineering of Complex Computer Systems, Oxford, UK, 22–26 March 2010;
pp. 349–354.

9. Davide, B. Modeling and Analysis of safety requirements in robot navigation with an extension of UML
MARTE. In Proceedings of the 2018 IEEE International Conference on Real-time Computing and Robotics,
Kandima, Maldives, 1–5 August 2018. [CrossRef]

10. Hutchinson, J.; Whittle, J.; Rouncefield, M. Model-driven engineering practices in industry: Social,
organizational and managerial factors that lead to success or failure. Sci. Comput. Program. 2014, 89, 144–161.
[CrossRef]

11. Kulkarni, V. Model Driven Software Development: A Practitioner Takes Stock and Looks into Future.
In European Conference on Modelling Foundations and Applications; Springer: Berlin/Heidelberg, Germany,
2013; Volume 7949, pp. 220–235. [CrossRef]

12. Biehl, M. Literature Study on Model Transformations; Technical Report ISRN/KTH/MMK/R-10/07-SE;
Royal Institute of Technology: Stockholm, Sweden, July 2010.

13. Madhavi, K. Model Transformation Languages: State–of–the-art. Int. J. Comput. Sci. Eng. 2017, 9, 404–408.
14. Erata Ferhat, C.M.; Geylani, K. D3.1.1 Review of Model-to-Model Transformation Approaches and

Technologies. Text Model Synchronized Doc. Eng. Platf. 2015, 2015, 70–85.
15. Marsan, M.A.; Balbo, G.; Conte, G.; Donatelli, S.; Franceschinis, G. Modelling with Generalized Stochastic

Petri Nets. SIGMETRICS Perform. Eval. Rev. 1998, 26, 2. [CrossRef]
16. Balbo, G. Introduction to Generalized Stochastic Petri Nets. In Formal Methods for Performance Evaluation:

Proceedings of the 7th International School on Formal Methods for the Design of Computer, Communication,
and Software Systems, SFM 2007, Bertinoro, Italy, 28 May–2 June 2007; Advanced Lectures; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 83–131. [CrossRef]

17. Bézivin, J.; Jouault, F.; Rosenthal, P.; Valduriez, P. Modeling in the Large and Modeling in the Small. In Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; pp. 33–46.

18. Billington, J.; Christensen, S.; Van Hee, K.; Kindler, E.; Kummer, O.; Petrucci, L.; Post, R.; Stehno, C.;
Weber, M. The Petri Net Markup Language: Concepts, Technology, and Tools. In Proceedings
of the 24th International Conference on Applications and Theory of Petri Nets (ICATPN’03),
Eindhoven, The Netherlands, 23–27 June 2003; pp. 483–505.

19. Elkamel, M.; Nabil, M.; Dalal, B.; Allaoua, C. Design of ATL Rules for Transforming UML 2 Sequence
Diagrams into Petri Nets. Int. J. Comput. Sci. Bus. Informatics 2013, 8, 1–21.

20. Hlaoui, Y.B.; Younes, A.B.; Ben Ayed, L.J.; Fathalli, M. From Sequence Diagrams to Event B: A Specification
and Verification Approach of Flexible Workflow Applications of Cloud Services Based on Meta-model
Transformation. In Proceedings of the 2017 IEEE 41st Annual Computer Software and Applications
Conference (COMPSAC), Turin, Italy, 4–8 July 2017; Volume 2, pp. 187–192. [CrossRef]

http://www.omg.org/spec/MARTE/1.1/PDF
http://dx.doi.org/10.1109/RCAR.2018.8621699
http://dx.doi.org/10.1016/j.scico.2013.03.017
http://dx.doi.org/10.1007/978-3-642-39013-5_16
http://dx.doi.org/10.1145/288197.581193
http://dx.doi.org/10.1007/978-3-540-72522-0_3
http://dx.doi.org/10.1109/COMPSAC.2017.135


Computers 2020, 9, 94 30 of 31

21. Bernardi, S.; Flammini, F.; Marrone, S.; Mazzocca, N.; Merseguer, J.; Nardone, R.; Vittorini, V. Enabling the
Usage of UML in the Verification of Railway Systems: The DAM-Rail Approach. Reliab. Eng. Syst. Saf. 2013,
120, 112–126. [CrossRef]

22. Requeno, J.I.; Jose, M.; Simona, B. Performance Analysis of Apache Storm Applications Using Stochastic
Petri Nets. In Proceedings of the 2017 IEEE International Conference on Information Reuse and Integration,
San Diego, CA, USA, 4–6 August 2017; pp. 39–45.

23. Cortellessa, V.; Eramo, R.; Tucci, M. Availability-Driven Architectural Change Propagation Through
Bidirectional Model Transformations Between UML and Petri Net Models. In Proceedings of the 2018
IEEE International Conference on Software Architecture (ICSA), Seattle, WA, USA, 30 April–4 May 2018;
pp. 125–12509. [CrossRef]

24. López-Grao, J.P.; Merseguer, J.; Campos, J. From UML Activity Diagrams to Stochastic Petri Nets: Application
to Software Performance Engineering. SIGSOFT Softw. Eng. Notes 2004, 29, 25–36. [CrossRef]

25. Woodside, M.; Petriu, D.C.; Merseguer, J.; Petriu, D.B.; Alhaj, M. Transformation challenges: From software
models to performance models. Softw. Syst. Model. 2014, 13, 1529–1552. [CrossRef]

26. Bernardi, S.; Merseguer, J. Performance evaluation of UML design with Stochastic Well-formed Nets.
J. Syst. Softw. 2007, 80, 1843–1865. [CrossRef]

27. Gómez-Martínez, E.; Gonzalez-Cabero, R.; Merseguer, J. Performance assessment of an architecture with
adaptative interfaces for people with special needs. Empir. Softw. Eng. 2014, 19, 1967–2018. [CrossRef]

28. Koziolek, H.; Schlich, B.; Becker, S.; Hauck, M. Performance and Reliability Prediction for Evolving
Service-Oriented Software Systems. Empir. Softw. Eng. 2012, 18. [CrossRef]

29. Ehmes, S.; Fritsche, L.; Schurr, A. SimSG: Rule-based Simulation using Stochastic Graph Transformation.
J. Object Technol. 2019, 18, 1–17. [CrossRef]

30. Federico, C.; Ivano, M.; Bran, S. Execution of UML models: A systematic review of research and practice.
Softw. Syst. Model. 2018, 18, 112–126.

31. Billington, J.; Chen, X.; Wang, R. A Compositional Analysis Method for Petri-net Models. IEEE Access 2017,
5, 27599–27610. [CrossRef]

32. Doc, V.; Nguyen, T.B.; Huynh Quyet, T. Formal Transformation from UML Sequence Diagrams to Queueing Petri
Nets; IOS Press: Amsterdam, The Netherland, 2019. [CrossRef]

33. Becker, S.; Koziolek, H.; Reussner, R. The Palladio component model for model-driven performance
prediction. J. Syst. Softw. 2009, 82, 3–22. [CrossRef]

34. Gómez-Martínez, E.; Merseguer, J. ArgoSPE: Model-based software performance engineering. In International
Conference on Application and Theory of Petri Nets; Springer: Berlin/Heidelberg, Germany, 2006; pp. 401–410.

35. DICE Simulation Tools—Final Version. 2017. Available online: http://wp.doc.ic.ac.uk/dice-h2020/wp-content/
uploads/sites/75/2017/08/D3.4_DICE-simulation-tools-Final-version.pdf (accessed on 30 May 2020).

36. Gerogiannis, V.; Kameas, A.; Pintelas, P. Comparative study and categorization of high-level petri nets.
J. Syst. Softw. 1998, 43, 133–160. [CrossRef]

37. Zuberek, W. Timed Petri nets definitions, properties, and applications. Microelectron. Reliab. 1991, 31, 627–644.
[CrossRef]

38. Murata, T. Petri nets: Properties, analysis and applications. Proc. IEEE 1989, 77, 541–580. [CrossRef]
39. Hillah, L.M.; Kordon, F.; Petrucci, L.; Trèves, N. PNML Framework: An Extendable Reference

Implementation of the Petri Net Markup Language. In Applications and Theory of Petri Nets; Lilius, J.,
Penczek, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 318–327.

40. Hillah, L.; Kindler, E.; Kordon, F.; Petrucci, L.; Tréves, N. A primer on the Petri Net Markup Language and
ISO/IEC 15909-2. Petri Net Newsl. 2009, 76, 9–28. (This article was also published at the Tenth Workshop and
Tutorial on Practical Use of Coloured Petri Nets and CPN Tools (CPN ’09), Århus, Denmark, October 2009,
pp. 101–120).

41. Steinberg, D.; Budinsky, F.; Paternostro, M.; Merks, E. Eclipse Modeling Framework; Pearson Education:
London, UK, 2008.

42. Dingle, N.; William, K.; Tamas, S. Pipe2: A tool for the performance evaluation of generalized stochastic
petri nets. ACM Sigmetrics Perform. Eval. Rev. 2009, 36, 34–39. [CrossRef]

43. Arseniy, A.; Victor, K.; Andrey, M.; Dominic, W.; Alex, Y. Improved Parallel Composition of Labelled Petri
Nets. In Proceedings of the Eleventh International Conference on Application of Concurrency to System
Design, Newcastle Upon Tyne, UK, 20–24 June 2011. [CrossRef]

http://dx.doi.org/10.1016/j.ress.2013.06.032
http://dx.doi.org/10.1109/ICSA.2018.00022
http://dx.doi.org/10.1145/974043.974048
http://dx.doi.org/10.1007/s10270-013-0385-x
http://dx.doi.org/10.1016/j.jss.2007.02.029
http://dx.doi.org/10.1007/s10664-013-9297-1
http://dx.doi.org/10.1007/s10664-012-9213-0
http://dx.doi.org/10.5381/jot.2019.18.3.a1
http://dx.doi.org/10.1109/ACCESS.2017.2772829
http://dx.doi.org/10.3233/FAIA190082
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/08/D3.4_DICE-simulation-tools-Final-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2017/08/D3.4_DICE-simulation-tools-Final-version.pdf
http://dx.doi.org/10.1016/S0164-1212(98)10028-6
http://dx.doi.org/10.1016/0026-2714(91)90007-T
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1145/1530873.1530881
http://dx.doi.org/10.1109/ACSD.2011.11


Computers 2020, 9, 94 31 of 31

44. Viswanadham, N.; Narahari, Y. Performance Modeling of Automated Manufacturing Systems; Prentice-Hall, Inc.:
Upper Saddle River, NJ, USA, 1992.

45. Marsan, M.A.; Balbo, G.; Conte, G.; Donatelli, S.; Franceschinis, G. Modelling with Generalized Stochastic Petri
Nets, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1994.

46. Abdul Rahman, N.; Sharif, S.; Mohamed Esa, M. Lean Manufacturing Case Study with Kanban System
Implementation. Procedia Econ. Financ. 2013, 7, 174–180. [CrossRef]

47. Li, Z. Design and Analysis of Robust Kanban System in an Uncertain Environment; KIT Scientific Publishing:
Karlsruher, Germany, 2013; pp. 1–255. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S2212-5671(13)00232-3
http://dx.doi.org/10.5445/KSP/1000036766
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	State of the Art
	State of the Art: Use of Transformation Languages
	State of the Art: Use of UML Profiles
	State of Work: Other Related Works

	Preliminaries
	Timed Petri Net
	MARTE Profile for Performance Modeling and Analysis
	Metamodel
	Sequence Diagram Metamodel
	PNML Metamodel


	Methodology
	Implementation
	Transformation Rules
	Composition Algorithm
	Performance Analysis

	Case Study: A Manufacturing System
	Implementation Details
	Results

	Conclusions and Future Work
	References

