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Abstract: In this paper, an efficient implementation of the Tau method is presented for finding the
open-loop Nash equilibrium of noncooperative nonzero-sum two-player differential game problems
with a finite-time horizon. Regarding this approach, the two-point boundary value problem derived
from Pontryagin’s maximum principle is reduced to a system of algebraic equations that can be
solved numerically. Finally, a differential game arising from bioeconomics among firms harvesting
a common renewable resource is included to illustrate the accuracy and efficiency of the proposed
method and a comparison is made with the result obtained by fourth order Runge–Kutta method.
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1. Introduction

Differential game theory, as a natural extension of optimal control theory, deals with the problem
where each control agent (player) tries to maximize his own profit, which conflicts with others, and it
has received considerable attention in economics and management sciences in recent decades. It covers
a large area in macroeconomics, microeconomics, resource management and bioeconomics. Some of
the applications of this theory have been considered in many textbooks. In [1], an introduction to the
theory of noncooperative differential games and its applications, such as marketing, natural resources
and environmental economics are offered. Advertising competition and the Lanchester model are
studied in [2]. Both deterministic and stochastic cooperative differential games are covered in [3],
and some applications in resources and environmental economics are contained therein.

The Nash strategy is regarded as an equilibrium solution for simultaneous games, in which
players cannot improve their payoffs by deviating unilaterally from it [4]. There exist two main types
of equilibrium solutions for differential games, namely, closed-loop (or feedback) and open-loop.
The closed-loop equilibrium is where each player’s strategy is a function of time and state variables,
whereas in open-loop equilibrium, the strategy of each player is a function of time and initial state.
To identify the open-loop Nash equilibrium in a differential game, the system of two-point boundary
value problems (TPBVPs) derived from Pontryagin’s maximum principle as the necessary conditions
for the existence of an open-loop Nash equilibrium must be solved [5]. Regarding this approach,
the obtained system of TPBVPs is reduced to a system of algebraic equations that can be solved using
well-known analytical and numerical techniques for systems of ordinary differential equations [6].
Solving differential game problems numerically is the most logical way to treat them as their analytical
solutions are not always available. The main research studies in this field contain obtaining open-loop
Nash equilibrium in linear quadratic dynamic games [7–11]. In [12], solving a nonlinear differential
game arising from a pollution control problem is considered. The quasi-equilibrium of a special case of
nonlinear differential games is found by studying the state-dependent Riccati equations [13]. In [14],
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a dynamic programming approach is presented to obtain the saddle point of a kind of nonlinear
zero-sum differential game.

One of the best methods in terms of accuracy and efficiency, for a numerical solution of different
kinds of differential equations by means of truncated series of orthogonal polynomials, is the spectral
method [15–19]. There are three well-known spectral methods, namely, the Galerkin, Tau, and collocation
methods, and the selection of the suitable spectral method depends on the type of differential equation
and the boundary conditions governed by it [20,21]. The aim of this paper is to propose a numerical
approach based on Pontryagin’s maximum principle and the Tau method to find the open-loop Nash
equilibrium of noncooperative nonzero-sum differential games.

The remainder of the paper is organized as follows: In Section 2, the definition of a noncooperative
nonzero-sum two-player differential game, open-loop Nash equilibrium, and the analytical form of the
necessary conditions for an open-loop Nash equilibrium are revised. In Section 3, the Tau method for
obtaining the open-loop Nash equilibrium of such games is introduced. In Section 4, a differential
game arising from bioeconomics is presented to illustrate the accuracy and efficiency of the proposed
method. Finally, the paper is concluded with a conclusion.

2. Problem Statement

In this section, we deal with a noncooperative nonzero-sum two-player differential game that is
described by the following definition:

Definition 1. A noncooperative nonzero-sum two-player differential game is defined as follows [22]:

max
ui(.)

Ji
(
ui(.), u j(.)

)
= max

ui(.)

T∫
0

Li
(
t, x(t), ui(t), u j(t)

)
dt +ψi(x(T))

·
x(t) = f (t, x(t), u1(t), u2(t))
x(0) = x0 ∈ R

(1)

with i, j ∈ {1, 2} and i , j.

In performance index Ji(ui(.), ui(.)) given in (1), ui(.) and u j(.) are the controls (strategies) of
players i and j, respectively; function Li is player i’s instantaneous payoff, and function ψi is terminal
payoff. The goal of game for players is maximizing their performance indices by choosing suitable
control actions ui, i = 1, 2.

A player’s open-loop strategy is the planned time path of his action. This type of equilibrium
concept is time consistent, meaning that along the equilibrium path, no player is incentivized to deviate
from his original plan [23]. Thus, the definition of an open-loop solution concept (equilibrium) can be
as follows:

Definition 2. The ordered pair
(
φ1,φ2

)
of functions φi : [0, T]→ R , i = 1, 2 is called an open-loop Nash

equilibrium if, for each i, an optimal control path ui of the problem (1) exists and is given by the open-loop Nash
strategy ui = φi[1].

An open-loop Nash equilibrium is characterized by introducing the Hamiltonian functions for
formulating the first order necessary conditions of optimality for nonzero-sum differential games (1),
and are introduced as the following [24]:

Hi
(
t, x, ui, u j,λi

)
= Li

(
t, x, ui, u j

)
+ λi f

(
t, x, ui, u j

)
, i, j ∈ {1, 2}, i , j,

where the variables λi, i = 1, 2 are called the costate variables or the adjoint variables associated with
the state variable x.
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To simplify the notation in the Hamiltonian functions, the time dependence has been neglected in
the functions x, ui, u j, λi.1

Assuming that all functions f , L1, L2,ψ1,ψ2 in (1) are continuously differentiable, first order
necessary conditions for optimality are provided by Pontryagin’s maximum principle.

Based on Pontryagin’s maximum principle, the set of necessary conditions for the open-loop Nash
equilibrium of a nonzero-sum differential game is obtained as follows:

·
x = f (t, x, u1, u2) (2)

·

λi = −
∂Hi
∂x

(t, x, u1, u2,λi) (3)

∂Hi
∂ui

(
t, x, ui, u j,λi

)
= 0 (4)

x(0) = x0

λi(T) =
∂ψi(x(T))

∂x
with i, j ∈ {1, 2} and i , j.

Algebraic Equation (4) can be solved to obtain an expression for ui, i = 1, 2 in terms of x and λi;
that is,

ui = φi(t, x,λi).

Substituting this expression into Equations (2) and (3), a system of differential equations is obtained
involving only t, x and λi, i = 1, 2. This system of TPBVPs can be expressed as:

·
x = f (t, x,φ1,φ2) (5)

·

λi = −
∂Hi
∂x

(t, x,φ1,φ2,λi) (6)

x(0) = x0 (7)

λi(T) =
∂ψi(x(T))

∂x
(8)

where φi = φi(t, x,λi) for i = 1, 2.
In general, this system of TPBVPs is nonlinear with split boundary values, hence obtaining an

exact and analytical solution for the open-loop Nash equilibrium is difficult. Therefore, using a suitable
numerical method is indispensable.

3. The Tau Method for Nonzero-Sum Differential Games

In this section, the implementation of the Tau method for solving the system of TPBVPs and
finding the open-loop Nash equilibrium of a nonzero-sum differential game is presented.

The fundamental idea of this approach is the expansion of the function f (x) ∈ Lk
w(−1, 1) into the

form of a finite series of basis functions as

f (x) ≈ fN(x) =
N∑

i=0

fiPi(x),

where Pi(x) , i = 0, 1, . . . , N are Legendre polynomials and fi , i = 0, 1, . . . , N are spectral coefficients [25].

1 The removal of variable t in the remaining parts of the paper has also been done for simplification matters.
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Definition 3. The Legendre polynomials Pn(x) , n = 0, 1, 2, . . . are the eigenfunctions of the singular
Sturm–Liouville problem

(1− x2)Pn
′′ (x) − 2xPn

′(x) + n(n + 1)Pn(x) = 0.

They are orthogonal on the interval [−1, 1] with respect to the weight function w(x) = 1 and
satisfy the following recurrence formula:

Pn+1(x) =
2n + 1
n + 1

xPn(x) −
n

n + 1
Pn−1(x), n = 1, 2, . . . ,

where P0(x) = 1, P1(x) = x.

Theorem 1. Let f (x) ∈ Hk
w(−1, 1) (Sobolev space), fN(x) =

N∑
i=0

fiPi(x) be the best approximation of f (x) in

L2
w − norm, then

‖ f (x) − fN(x)‖L2
w[−1,1] ≤ C0N−k

‖ f (x)‖Hk
w(−1,1),

where C0 is a positive constant, which depends on the selected norm, independent of f (x) and N.

Proof of Theorem 1. [26]. �

Regarding Theorem 1, it is concluded that approximation rate of Legendre polynomials is N−k.
The basic results of the presented approach and theoretical treatment of its convergence are based

on the well-known Weierstrass approximation theorem.

Theorem 2. (Weierstrass approximation theorem) Let f ∈ L2
w[−1, 1] and N ∈ N. Then there exists a

unique f ∗N ∈ PN, the space of all polynomials of degree at most N, such that

‖ f − f ∗N‖w = inf
fN∈PN

‖ f − fN‖w,

where

f ∗N(x) =
N∑

i=0

_
f kηk(x),

_
f k =

〈
f , ηk

〉
w

‖ηk‖
2
w

,

and
{
ηk

}N
k=0 form an L2

w− orthogonal basis of PN.

Proof of Theorem 2. [27]. �

To use the Legendre polynomials on interval [0, T], it is necessary to shift the defining domain by
the following variable substitution:

x =
2t
T
− 1

It is assumed that the solutions x and λi , i = 1, 2 of the TPBVPs 5–8 are approximated by a linear
combination of the shifted Legendre polynomials as follows:

x ≈ xN =
N∑

i=0

aiPi
∗ (9)

λ1 ≈ λ1N =
N∑

i=0

biPi
∗ (10)
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λ2 ≈ λ2N =
N∑

i=0

ciPi
∗, (11)

where ai,bi and ci are unknown coefficients and Pi
∗ = Pi

(
2t
T − 1

)
, i = 0, . . . , N is the shifted Legendre

polynomial on interval [0, T].
The first derivative of x and λi , i = 1, 2 can be approximated as follows:

·
x ≈

·
xN =

2
T

N∑
i=0

aiPi
∗′ (12)

·

λ1 ≈
·

λ1N =
2
T

N∑
i=0

biPi
∗′ (13)

·

λ2 ≈
·

λ2N =
2
T

N∑
i=0

ciPi
∗′. (14)

Equations (9)–(14) can be restated as the following vector forms:

x ≈ xN = ATP∗ (15)

λ1 ≈ λ1N = BTP∗ (16)

λ2 ≈ λ2N = CTP∗ (17)
·
x ≈

·
xN = ATS (18)

·

λ1 ≈
·

λ1N = BTS (19)
·

λ2 ≈
·

λ2N = CTS , (20)

where
AT = [a0, . . . , aN], BT = [b0, . . . , bN] , CT = [c0, . . . , cN],

P∗ = [p0
∗, . . . , pN

∗]T, S = 2
T [p0

∗′, . . . , pN
∗′].

To implement the Tau method, Equations (15)–(20) are substituted at first into the understudied
differential Equations (5) and 6 to form the residuals as follows:

R1 =
·
xN − f (t, xN,φ1N,φ2N)

R2 =
·

λ1N + ∂H1
∂xN

(t, xN,φ1N,φ2N,λ1N)

R3 =
·

λ2N + ∂H2
∂xN

(t, xN,φ1N,φ2N,λ2N)

Then, the residuals are multiplied by P∗i , i = 0, . . . , N − 1, integrated over the domain [0, T] and
finally set equal to zero. This procedure, along with the initial and boundary conditions 7 and 8,
generate the following system of algebraic equations:

T∫
0

R1P∗i dt = 0

T∫
0

R2P∗i dt = 0

T∫
0

R3P∗i dt = 0

xN(0) = x0

λ jN(T) =
∂ψ j(xN(T))

∂xN
, j = 1, 2,
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where unknown coefficients of the vectors A, B and C are determined by solving it.

4. Illustrative Example

In this section, a differential game arising from a bioeconomic model is investigated to demonstrate
the accuracy and efficiency of the Legendre Tau method (LTM). In this model, each firm harvests a
common natural renewable resource (e.g., in a fishery).

The motivation for using this bioeconomic model is that its system of TPBVPs, in contrast to many
other economic models such as the competitive advertising in Sorger [28], is a strong nonlinear one,
which can properly show the accuracy and efficiency of the presented numerical method. To check the
accuracy of the presented method for this example, a comparison is made with the numerical solution
obtained by using the discretization of time and the fourth order Runge–Kutta method (RK4) with
time step ∆t = 10−4.

The rate of change of the natural renewable resource population over the time interval [0, T] is
described by the following state equation and initial condition [29]:

·
x(t) = F(x(t)) − q1x(t)u1(t) − q2x(t)u2(t) , x(0) = x0,

where the differentiable function F(.) : R→ R is the natural growth rate of the renewable resource,

described by the logistic growth function as F(x(t)) = rx(t)
(
1− x(t)

k

)
, where r is an intrinsic growth

rate and k is a carrying capacity. The quantity x(t) > 0 is the population level of the renewable resource
at time t, the quantities u1(t) ≥ 0 and u2(t) ≥ 0 are the harvesting efforts of the firms at time t and the
constants q1 > 0 and q2 > 0 denote the catchability coefficients.

The payoff of each firm over the time interval [0, T] is given by

J1(u1(.), u2(.)) =

T∫
0

(π1q1x(t)u1(t) −
1
2

u1
2(t))dt

for firm 1, and by

J2(u1(.), u2(.)) =

T∫
0

(π2q2x(t)u2(t) −
1
2

u2
2(t))dt

for firm 2, where constants π1 and π2 represent the unit price of natural renewable resource for each
firm. Furthermore, 1

2 u1
2 and 1

2 u2
2 show the harvesting costs at effort levels u1 and u2, respectively [29].

To derive the Nash equilibrium of this bioeconomic game, the Hamiltonian for each firm is defined
as the following:

H1(t, x, u1, u2,λ1) = π1q1xu1 −
1
2

u1
2 + λ1(F(x) − q1xu1 − q2xu2)

H2(t, x, u1, u2,λ2) = π2q2xu2 −
1
2

u2
2 + λ2(F(x) − q1xu1 − q2xu2)

By minimizing H1(t, x, u1, u2,λ1) and H2(t, x, u1, u2,λ2) with respect to u1 and u2, the open-loop
Nash equilibriums for firm 1 and firm 2 are determined respectively by

∂H1
∂u1

= 0 ⇒ π1q1x− u1 − λ1q1x = 0 ⇒
u1 = q1x(π1 − λ1).

(21)

∂H2
∂u2

= 0 ⇒ π2q2x− u2 − λ2q2x = 0 ⇒
u2 = q2x(π2 − λ2).

(22)
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The adjoint dynamic of player 1 is as follows:

·

λ1 = −
∂H1

∂x
= −π1q1u1 − λ1

·

F(x) + λ1q1u1 + λ1q2u2. (23)

Substituting Equation (22) into Equation (23) yields:

·

λ1 = −π1q1
2x(π1 − λ1) − λ1

·

F(x) + λ1q1
2x(π1 − λ1) + λ1q2

2x(π2 − λ2)

and the adjoint dynamic of player 2 is as follows:

·

λ2 = −
∂H2

∂x
= −π2q2u2 − λ2

·

F(x) + λ2q1u1 + λ2q2u2, (24)

where substituting Equation (22)into Equation (24) yields:

·

λ2 = −π2q2
2x(π2 − λ2) − λ2

·

F(x) + λ2q1
2x(π1 − λ1) + λ2q2

2x(π2 − λ2)

Therefore, the system of TPBVPs for this differential game can be expressed as follows:

·
x = F(x) − q1

2x2(π1 − λ1) − q2
2x2(π2 − λ2) (25)

·

λ1 = −π1q1
2x(π1 − λ1) − λ1

·

F(x) + λ1q1
2x(π1 − λ1) + λ1q2

2x(π2 − λ2) (26)
·

λ2 = −π2q2
2x(π2 − λ2) − λ2

·

F(x) + λ2q1
2x(π1 − λ1) + λ2q2

2x(π2 − λ2) (27)

x(0) = x0 (28)

λ1(T) = 0 , λ2(T) = 0 . (29)

Suppose that the unique solution of Equation (25) with the initial condition shown in Equation (28)
is denoted by y. Furthermore, let the unique solutions of Equations (26) and (27) with terminal
conditions shown in Equation (29) be denoted by γ1 and γ2, respectively.

By the following theorem, the unique open-loop Nash equilibrium of the introduced bioeconomic
game is characterized.

Theorem 3. The unique open-loop Nash equilibrium for the introduced differential game is given by

u1 = q1y(π1 − λ1) (30)

u2 = q2y(π2 − λ2). (31)

Proof of Theorem 3. For given controls vi ≥ 0, i = 1, 2, the following optimal control problems
are considered:

max
u1≥0

J1(u1(.), v2(.)) =
T∫

0
(π1q1xu1 −

1
2 u1

2)dt

s.t.
·
x = F(x) − q1xu1 − q2xv2 , x(0) = x0

and

max
u2≥0

J2(v1(.), u2(.)) =
T∫

0
(π2q2xu2 −

1
2 u2

2)dt

s.t.
·
x = F(x) − q1xv1 − q2xu2 , x(0) = x0.
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The dynamical system of these problems is linear with respect to the control variables ui, i = 1, 2
and the integrand of performance index Ji, i = 1, 2, is concave with respect to ui, i = 1, 2, because

∂2 Ji

∂ui2
= −1 < 0, i = 1, 2.

Therefore, these optimal control problems satisfy the existence and uniqueness conditions of the
Filippov–Cesari existence theorem [30]. From this analysis, it is clear that the only candidates which
satisfy these conditions are determined by Equations (30) and (31), and hence, the unique open-loop
Nash equilibrium for the mentioned differential game is determined. �

The system of TPBVPs shown in Equations (25)–(29) is a system of nonlinear differential equations
with split boundary values, and has no analytical solution in general. To solve it numerically by the
method presented in the previous section, the numerical values of the parameters in the standard case
are chosen as the following:

x0 = 0.1 , q1 = q2 = 1 , π1 = 2 , π2 = 1.5 , r = 0.1 , k = 100 , T = 1

Thus, the system of TPBVPs that should be solved numerically is as follows:

·
x = 0.1x− 3.501x2 + x2λ1 + x2λ2
·

λ1 = −4x− 0.1λ1 + 5.502xλ1 − xλ1
2
− xλ1λ2

·

λ2 = −2.25x− 0.1λ2 + 5.002xλ2 − xλ2
2
− xλ1λ2

x(0) = 0.1
λ1(1) = 0 , λ2(1) = 0.

In order to solve the above system of TPBVPs, the following approximations for x, λ1 and λ2

are considered:

x ≈ xN =
N∑

i=0
aiPi

∗ = ATP∗

λ1 ≈ λ1N =
N∑

i=0
biPi

∗ = BTP∗

λ2 ≈ λ2N =
N∑

i=0
ciPi
∗ = CTP∗,

where AT = [a0, . . . , aN ], BT = [b0, . . . , bN ] and CT = [c0, . . . , cN ] are unknown vectors and
P∗ = [p0

∗, . . . , pN
∗]T is the vector of the shifted Legendre Polynomials.

These approximations are substituted into the equations of this system of TPBVPs to form the
residuals as follows:

R1 = 2
T

N∑
i=0

aiPi
∗′
− 0.1

N∑
i=0

aiPi
∗ + 3.501

(
N∑

i=0
aiPi

∗

)2

−

(
N∑

i=0
aiPi

∗

)2 N∑
i=0

biPi
∗
−

(
N∑

i=0
aiPi

∗

)2 N∑
i=0

ciPi
∗

R2 = 2
T

N∑
i=0

biPi
∗′ + 4

N∑
i=0

aiPi
∗ + 0.1

N∑
i=0

biPi
∗
− 5.502

N∑
i=0

aiPi
∗

N∑
i=0

biPi
∗ +

N∑
i=0

aiPi
∗

(
N∑

i=0
biPi

∗

)2

+
N∑

i=0
aiPi

∗
N∑

i=0
biPi

∗
N∑

i=0
ciPi
∗

R3 = 2
T

N∑
i=0

ciPi
∗′ + 2.25

N∑
i=0

aiPi
∗ + 0.1

N∑
i=0

ciPi
∗
− 5.002

N∑
i=0

aiPi
∗

N∑
i=0

ciPi
∗ +

N∑
i=0

aiPi
∗

(
N∑

i=0
ciPi
∗

)2

+
N∑

i=0
aiPi

∗
N∑

i=0
biPi

∗
N∑

i=0
ciPi
∗.

The numerical results for optimal payoff functionals J1 and J2 with different values of N are
shown in Table 1 and compared with RK4. The graphs of approximate solutions for open-loop Nash
equilibrium for N = 14 are given in Figure 1.
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Table 1. Optimal payoff functionals J1 and J2 for illustrative example with LTM as compared with RK4.

N J1LTM J2LTM

8 0.016380209069964074615873141557194 0.0092479570969023022143164502992464
10 0.016380209069964074615873178289759 0.0092479570969023022143164746205906
12 0.016380209069964074615873178289820 0.0092479570969023022143164746206322
14 0.016380209069964074615873178289819 0.0092479570969023022143164746206318

∆t J1RK4 J2RK4

10−4 0.016380209069970129334132078913143 0.0092479570969076035409551440677725
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Figure 1. Plots of approximate open-loop Nash equilibrium for illustrative example when N = 14.

5. Conclusions

This paper has dealt with the numerical solution for obtaining the open-loop Nash equilibrium of
nonlinear nonzero-sum differential games in a finite horizon based on the Legendre Tau method (LTM).
Regarding this method, the solution functions of the system of TPBVPs derived from Pontryagin’s
maximum principle were expanded in terms of Legendre polynomials and then a system of algebraic
equations was obtained. A differential game arising from a bioeconomic model was considered to
demonstrate the accuracy and efficiency of the proposed method. A comparative study between the
presented method and the fourth order Runge–Kutta method (RK4) was presented graphically.
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