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Abstract: In this paper, we propose a game in which each player decides with whom to establish
a costly connection and how much local public good is provided when benefits are shared among
neighbors. We show that, when agents are homogeneous, Nash equilibrium networks are nested
split graphs. Additionally, we show that the game is a potential game, even when we introduce het-
erogeneity along several dimensions. Using this result, we introduce stochastic best reply dynamics
and show that this admits a unique and stationary steady state distribution expressed in terms of the
potential function of the game. Hence, even if the set of Nash equilibria is potentially very large, the
long run predictions are sharp.

Keywords: network formation; network games; public goods; potential games

JEL Classification: C72; D00; D83; H41; O31

1. Introduction

Individuals or firms often interact with each other; for example, researchers share
their knowledge to produce joint research, and firms collaborate in R&D activities. In such
instances, the benefits of these interactions frequently depend not only on some individual
characteristics of the partners involved but also on investments such as the effort devoted
to a research project or to engage in R&D activities.

These investments display the characteristics of a local public good: they are local
because they present direct externalities only for agents who are collaborating; they are
public because one’s investment benefits all one’s partners; and, once a collaboration is
established, the more one invests, the less one’s partner’s incentives are to invest. Addi-
tionally, the pattern of collaborations is itself endogenous, as researchers and firms decide
with whom to collaborate.

These applications have motivated several authors to investigate the properties of
local public good games on endogenous networks [1–3]. The key insight of these models is
that, when agents are allowed to unilaterally establish links, equilibrium networks display
core-periphery structures in which few agents are the largest contributors who collaborate
with each other (the core), while others link to them to partly or completely free ride on
their contributions (the periphery).

However, the set of equilibria of these games is typically very large, as one’s public
good contribution (and hence the incentives to link to others and to attract links) depends
on one’s position in the network. While this multiplicity does not diminish the importance
of the characterization results of [1–3], it is a limitation when bringing these models to the
data and performing counterfactual analysis.

The aim of this paper is to propose a novel model of local public goods on endogenous
networks whose predictions are in line with those of the previous literature but that can
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also be empirically tested. In particular, we propose a game that admits a potential [4].
In this game, heterogeneous players decide how much local public good to provide and
with whom to link. Links are established unilaterally as in [5]; however, once two players
are linked, they access each other’s public good provision. Hence, as spillovers are never
negative, incoming links are always accepted. When a link is established, the two players
involved have a collaboration.

We assume that players derive private benefits from their own public good provision,
as well as from each pairwise collaboration with another player. While these benefits from
the public good can be heterogeneous across players, throughout the paper we maintain
the assumption that the concave benefits of a collaboration are the same for both players
involved. The motivation for this choice is twofold. On the one hand, this would naturally
result when the two players involved in a collaboration equally share its benefits. On
the other hand, this assumption constitutes the key property for the game to admit a
potential. In other words, the changes in utility due to a player’s deviation are captured
by the change in the value of the potential function in the two states. We assume the
(possibly heterogeneous) costs of direct provision of the public good are linear, although
this assumption can be relaxed, as we discuss below.

First, we characterize the set of Nash equilibria of the (static) game for homogeneous
players. In particular, we show that any Nash equilibrium network is a nested split graph.
This is a class of core-periphery graphs in which one’s neighborhood is a subset of the
neighborhoods of players with more links. Hence, the largest contributors form a core of
connected players, while the other players only sponsor links, but do not receive any. This
result hinges upon two properties. First, a player always links to the players providing the
largest amount of the public good. Otherwise, it would be profitable for them to redirect a
link to another player who produces more and to whom they are not already connected.
Second, the gains from a connection are higher for players who have more neighbors.
This is because a player’s public good provision has larger private returns as they become
involved in more collaborations.

We, then, introduce the stochastic best reply dynamics of the game with heterogeneous
players and study its steady state distribution over all possible networks and provisions in
the economy. In the dynamics, time is discrete, and each time period is randomly selected
to be either a link adjustment period or a public good provision adjustment period. If the
period is a link adjustment period, a link between two players is randomly selected to be
revised. This implies that, if the link is there at the beginning of the period, the player
establishing the link decides whether to delete it; if the link is not there at the beginning
of the period, the player decides whether to establish it. If the period is a public good
provision adjustment period, a player is randomly selected from the population, and this
player revises her public good provision.

While there is literature studying the stochastic dynamics of actions and play [6–8],
differently from those models, here play (public good provision) is a continuous variable.
Hence, this requires a different distribution of shocks from linking in the stochastic process.
To stress this point, we separate decisions about links and actions.

The decisions of revising a link or the public good provision are taken myopically,
in the sense that players decide given the current state of the economy without taking
into account other possible deviations in reaction to their adjustments. When there are no
other stochastic components, all pure strategy Nash equilibria of the game are absorbing
states, as they are local maximizers of the potential function of the game. Furthermore, the
dynamics converges to one of these Nash equilibria. Only the initial state of the economy
and the order of play determine which equilibrium is selected.

However, we derive sharper predictions when these choices are stochastic, in the
sense that the players’ payoffs are affected by an idiosyncratic random shock. This shock
might be interpreted as a miscalculation of the value associated to a collaboration, to the
returns of the public good provision, as idiosyncratic and unobserved characteristics that
determine the success of collaboration, or of one’s investment in the public good.
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Note that some papers assume shocks to player actions to determine which states are
stochastically stable [9,10]. Here, instead, we assume that the stochastic shocks is to player
payoffs, which has the advantage of giving us a probability distribution over all states.
This allows us to derive a unique stationary steady state distribution of the stochastic best
reply dynamics. This distribution is independent of the initial state of the economy and is
constructed using the potential function of the game. Hence, the combinations of networks
and provision, which entail a larger value for the potential, are more likely to emerge in
the long run.

Additionally, this steady state distribution could be used to bring the model to the
data, as in [11,12]. In this respect, it is important to note that we can derive this steady state
distribution in the formulation of the problem, which allows for player heterogeneity. This
is particularly relevant for future empirical applications of our model.

Our paper naturally relates to the literature studying games played on endogenous
networks. The first papers in this literature mostly modeled network formation as a
generic socialization effort [13–16] or based on not-fully-strategic decisions [17]. The
seminal contribution of [1] provided a framework to study these games. Their analysis has
been extended to allow for heterogeneous agents [2] and strategic complements [18,19].
Additionally, Ref. [3] introduced a budget constraint, and revisited the classical results
of the public good games literature [20] for when spillovers are local and the network
is endogenous.

The contribution of this paper, with respect to this literature, is to introduce a potential
game approach for local public goods. The properties of potential games have been used
before to theoretically study network games on fixed networks [21] and network formation
games without strategic interactions [22]. To the best of our knowledge, we are the first
to provide a characterization result for a local public good game with (one-sided) link
formation.

Other papers introduced co-evolutionary processes of networks and play either using
random graph models [23] or when players play a 2× 2 game [7,24]. The authors in [17]
studied the co-evolutionary process of networks and actions when players played a game
with payoffs exhibiting strategic complements as in [25]. More related to this paper,
Ref. [26] used a potential game approach to estimate peer effects on exogenous network,
while [11] was the first to show how network formation processes can be estimated using
the properties of potential games but without any other strategic interaction.

More recently, Ref. [12] developed a similar approach for a game of strategic comple-
ments in an endogenous network, and introduced a notion of equilibrium (k-Nash) that
spanned from two-sided to one-sided link formation. Additionally, Ref. [27] studied the
co-evolution of networks and behavior in a potential game and showed how the model
could be estimated. The contribution of this paper with respect to this literature is twofold.
First, contrarily to [12,27], we studied a game with non-linear best-replies. As a result, we
could not make use of the techniques developed by [25] to characterize the equilibrium set.
Second, despite this complication, we provide a characterization of Nash networks of the
corresponding static game.

The paper proceeds as follows. Section 2 introduces the environment. Section 3
presents the results; in particular, in Section 3.1, we introduce the static game and derive its
potential function; we also characterize its Nash networks when players are homogeneous;
Section 3.2 introduces stochastic best response dynamics that have a unique stationary
distribution that depends on the potential of the game. Section 4 concludes this paper. All
proofs are in Appendix A.

2. Methods

We now introduce the setup of the model. Let N = 1, 2, . . . , n with n ≥ 3 be the
set of players and let i and j be typical members of this group. Each individual chooses,
simultaneously, their local public good provision xi ∈ X = [0, ∞) and a set of links with
other players to access their provision. Player i’s linking strategy is denoted by a row
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vector gi = (gi1, . . . , gin) ∈ Gi = {0, 1}n, where gii = 0 and gij ∈ {0, 1} for all i, j ∈ N, i 6= j.
Player i links to player j if gij = 1 and gij = 0 otherwise. Then, g = (g1, . . . , gn)T .

The set of strategies of player i is denoted by Si = X× Gi. Define S = S1 × S2 × · · · ×
Sn as the set of strategies of all players. A strategy profile s = (x, g) ∈ S specifies both the
actions and the set of relations initiated by each player, while x−i denotes the vector of
provisions of all agents other than i. Similarly, let g−i denote the matrix of interactions of
all players but i. The network of links g is a directed graph; let G be the set of all possible
directed graphs of n nodes. Define Ni(g) = {j ∈ N : gij = 1} as the set of players with
whom i has formed a link. Let ηi(g) = |Ni(g)|.

We assume that a link of player i to j allows both players i and j to enjoy the benefits
of the relationship (i.e., the neighbor’s provision), although only player i pays the cost of
establishing the link. For this reason, it is convenient to define the closure of g, which is
an undirected network denoted by g = cl(g), where gij = max{gij, gji} for each i and j in
N. Define Ni(g) = {j ∈ N : gij = 1} as the set of players connected to i. In words, the set
Ni(g) defines the peer group of each player i.

The payoffs to player i under the strategy profile s = (x, g) are defined as Ui(x, g).
The payoff function is assumed to be as follows:

Ui(x, g) = fi(xi) + ∑
j∈N\{i}

ḡijhij
(
xi + xj

)
− cixi − kiηi(g), (1)

where ci > 0 reflects i’s cost of public good provision and ki > 0 is i’s cost to establish one
link. We could assume that this cost is increasing in the number of existing links. This
would affect the characterization of equilibrium networks but not the subsequent results
on the steady state distribution of the best reply dynamics introduced below.

For brevity, we will sometimes write Ui(s) instead of Ui(x, g). The game has local
externalities: a player shares the public good only with her immediate neighbors. We
assume that, for all i, j ∈ N, fi(x) and hij(x) are twice continuously differentiable, increasing
and strictly concave in x; fi(0) = 0; f ′i (0) > ci; and limx→∞ f ′i (x) + (n− 1)h′ij(x) = mi < ci.
In words, a player’s provision of the public good is positive in isolation and finite in the
complete network.

Furthermore, we assume that hij(·) = hji(·) for all i, j ∈ N. This symmetry condition
ensures that the benefits from a collaboration are the same for both agents involved, and it is
key for the game to admit a potential. There is a path in ḡ from i to j if either ḡij = 1, or there
are m different players j1, . . . , jm distinct from i and j, such that ḡij1 = ḡj1 j2 = · · · = ḡjm j = 1.
A component of the network ḡ is a set of players such that there is a path connecting every
two players in the set and no path to players outside the set.

In a core-periphery graph, there are two groups of players, the periphery P(ḡ) and the
core C(ḡ), such that, for every i, j ∈ P(ḡ), ḡij = 0, while, for every l, m ∈ C(ḡ), ḡlm = 1;
moreover, for any i ∈ P(ḡ), there is l ∈ C(ḡ) such that ḡil = 1. Nodes in C(ḡ) are referred to
as hubs. We write C and P instead of C(ḡ) and P(ḡ), respectively, when no confusion arises.

A core-periphery network with a single hub is referred to as a star. A core-periphery
network in which the sets of players’ neighbors are nested is a nested split graph: for any
pair of players i and j, if ηj(ḡ) < ηi(ḡ), then Nj(ḡ) ∪ {j} ⊂ Ni(ḡ) ∪ {i}. A strategy profile
s∗ = (x∗, g∗) is a Nash equilibrium if for all si ∈ Si and all i ∈ N, Ui(s∗) ≥ Ui(s′), where
s′ = (si, s∗−i).

3. Results
3.1. The Static Game

We now characterize the Nash equilibria of the static network formation game for the
case of homogeneous players. This will show that our model delivers similar predictions
to existing contributions regarding the shape of equilibrium networks [1–3]. We will then
study the more general formulation of the model that allows for heterogeneous agents, as
we believe this is more relevant for future empirical applications. In particular, we derive
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the potential of the game, which we will use to determine the long-run behavior of the
stochastic best reply dynamics.

3.1.1. Homogeneous Agents: Characterization

We say that players are homogeneous if, for all i, j ∈ N, (i) ci = c, (ii) ki = k,
(iii) fi(·) = f (·), and (iv) hij(·) = hji(·) = h(·). An important ingredient in finding a
Nash equilibrium of the static game is defining a player’s gains from establishing a new
connection. Given a network g and public good provision vector x, we define player i’s
gain from a connection to player z who produces xz ≥ 0 and ḡiz = 0 as

GCi(x, g + giz) = fi(x′) + ∑
j∈N

ḡijhij
(
x′ + xj

)
+ hiz

(
x′ + xz

)
− cix′

−
(

fi(xi) + ∑
j∈N

ḡijhij
(
xi + xj

)
− cixi

)
,

where x′ = arg maxx≥0 Ui(x, g + giz) is the effort that i exerts after accessing z’s provision
of the public good.

Lemma 1. Given (x, g) such that i is best-replying to other players’ action for the given network
g, i.e., xi = arg maxx≥0 Ui((x, x−i), g), if players are homogeneous, the gains from a connection
GCi(x, g + giz) are higher for i as i has more neighbors. Furthermore, i’s provision increases.

Lemma 1 shows that the gains from a connection are higher for players who have
more neighbors, as a player’s public good provision has larger private returns when she is
involved in more collaborations.

Given this positive relationship between links and public good provision, we can
provide a sharp characterization equilibrium networks.

Proposition 1. In any Nash equilibrium (x∗, g∗) with homogeneous players, g∗ is a nested
split graph.

The characterization of Proposition 1 emerges from Lemma 1 once we recognize a
simple and yet powerful requirement of equilibrium behavior, i.e., that a player always
links to the players providing the largest amount of public good. Otherwise, it would be
profitable for her to redirect a link to another player who produces more and to whom she
is not already connected. As a result, the largest contributors are connected, and form a core
of interconnected players, while the others link to as many core players as it is profitable
for them to do so.

3.1.2. Heterogeneous Agents: Potential Structure and Equilibrium Existence

Note that we have not yet shown equilibrium existence. Additionally, the static game
we analyze admits, in general, a potentially large set of Nash equilibria. As a result, it is
difficult to use the model to make empirical predictions or to bring this model to the data.
To overcome this difficulty, in the next section, we analyze a best reply dynamics of the
game and study its convergence properties.

To prove existence and to study the best reply dynamics, we rely on a particular
feature of the game, that is, that it is a potential game, as defined by [4]. In fact, this
holds for the general payoff function introduced in (1). The main feature we exploit is that
hij(·) = hji(·) for all i, j ∈ N.
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Proposition 2. If hij(·) = hji(·) for all i, j ∈ N, the game is a potential game and a Nash
equilibrium (x∗, g∗) always exists and is a local maximizer of its potential function, which is
given by:

P(x, g) = ∑
i∈N

 fi(xi)− kiηi(g)− cixi + ∑
j∈N\{i}

1
2

ḡijhij
(
xi + xj

). (2)

This result immediately follows once we recognize that changes in a player’s utility
due to unilateral deviations are reflected in the corresponding change in the value of (2).
Hence, the game is a potential game and P(x, g) is the potential function associated to
the game.

Given that the game is a potential game, the existence of equilibrium follows imme-
diately from the fact that the potential is continuous in public good provision and the set
of possible networks is finite. This implies that the potential has as at least a maximum,
which is a Nash equilibrium of the game.

Note that the characterization of the Nash equilibria of the static game with homoge-
neous agents of Proposition 1 might fail to hold for this general class of preferences. This
is because now the gains from a connection might be very different for different players.
Hence, while it is still the case that one always links to the players contributing the most,
it is not obvious that these largest contributors have themselves the highest gain from a
connection. Hence, a core might fail to exist.

3.2. A Stochastic Model of the Evolution of the Network and Public Good Provision

We now introduce a best reply dynamics that allows us to characterize the steady state
distribution over possible realizations of networks and action profiles. This distribution can
then be used to structurally estimate the model and to make predictions on how changes
in the economic environment determine which equilibrium is more likely to emerge.

The co-evolution of networks and behavior is a stochastic best-response dynamic
similar to that of [11,12,26,27]. Time is discrete and denoted by t = 0, . . . , and each time
period is either a link-adjustment period (with probability 0 < p0 < 1), or an effort-
adjustment period (with probability 1− p0).

We denote the realization of the network at time t as gt, and denote a link between i
and j at time t as gij,t. Finally, given a network gt such that gij,t = 1, we denote by gt− ij the
network including all the current links but removing the link from i to j, while if gij,t = 0,
we denote by gt + ij the network including all the current links plus a link between i and j.

3.2.1. Link Adjustment

In a link adjustment period t, a pair ij is selected randomly from the set of players
with probability pij(x, g) > 0 for any i, j ∈ N that does not depend on the network at
time t− 1, gt−1. We assume pij does not depend on the existence of a link between i and
j, i.e., pij(x, g) = pij(x, g + ij) where gij = 0; when no confusion may arise, we denote
this probability by pij. These assumptions are such that any player can be chosen and any
pair of agents can meet, guaranteeing that any equilibrium network can be reached with
positive probability.

When a pair ij is selected, then i can revise the linking strategy with respect to j.
Agents adopt a simple best response behavior, in the sense that they decide whether

to sever, add, or maintain a link ij, thus, maximizing their payoffs of the period taking as
given their efforts and the strategies of the other players. Hence, agents are myopic, as they
do not take into account that others will adjust their best reply in the subsequent steps of
the best reply dynamics. The decision is, however, stochastic, as players’ preferences are
subject to a shock, that captures, for example, a player’s mistake in calculating the benefits
of adding or removing a link.

In particular, there are two cases that need to be analyzed.
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Case 1: gt,ij ∈ gt. In this case, player i decides whether to delete the link with player j. This
decision depends on the payoff obtained by i in the two cases, assuming that i’s payoffs
are influenced by an idiosyncratic random shock. Hence, player i’s utility is given by:{

Ui,t(xt, gt) + εij if gij is not severed
Ui(xt, gt − ij) + εij if gij is severed.

Note that (εij, εij) denote idiosyncratic random shocks associated with keeping or
deleting the link. We assume εij and εij are i.i.d. across links and time periods and
independent among each other; they follow a Type-I extreme value (or Gumbel) distribution
with the distribution function F(ε) = exp[− exp(−ε/σ2)]. Since these components are not
explained in the model, we will treat these collaboration specific factors as a random shock
hitting the payoffs associated to each link of the network, where σ > 0 represents the level
of noise in the adjustment process.

The shocks might be interpreted in many ways. One possibility is that the players
might miscalculate the values associated with the collaboration. Alternatively, they can
capture idiosyncratic match specific unobserved characteristics that determine the success
of the joint project between i and j.

Let εij = εij − εij. The link is not severed whenever

Ui,t(xt, gt) + εij ≥ Ui,t(xt, gt − ij) + εij,

that is, when:
Ui,t(xt, gt)−Ui,t(xt, gt − ij) ≥ εij. (3)

Case 2: gt,ij /∈ g. In this case, player i decides whether to establish a link with player j.
Recall that links are established one-sidedly, so j’s consent is not required for the link to
exist. In particular, it could be that gt,ji ∈ g, in which case i, net of the idiosyncratic shock to
the gains from linking, would have no incentive to reciprocate the link. Following the same
arguments as before, it must be the case that player i wants to establish the link whenever
it is profitable to do so. Hence, if player i wants to establish the link, the condition is
the following:

Ui,t(xt, gt)−Ui,t(xt, gt + ij) ≥ εij. (4)

Let us now define

g+t =

{
gt−1 if ij /∈ g+t

gt−1 − ij if ij ∈ g+t .

Hence, g+t is equal to gt−1 once we have deleted the link ij if gt,ij = 1. Using (3) and (4),
we can now summarize the dynamic behavior of the networks as follows:

g̃t+1 =

{
g+t + ij if Ui,t(xt, g+t )−Ui,t(xt, g+t + ij) ≥ εij

g+t otherwise.

The decision rule is stochastic and depends on the realization of εij. Given that the
choice specific random shocks εij and εij follow Gumbel distributions, their difference
εij − εij is logistically distributed.

3.2.2. Public Good Provision Adjustment

If period t is not a link adjustment period, which happens with probability 1− p0, a
player i is randomly selected from the population with probability pi > 0 for all i ∈ N,
which we assume independent from the current network and provision. In that case, player
i has the opportunity to revise her public good provision given the current network of
collaborations (including her own) and other players’ provision and subject to random
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shocks. In particular, the probability that a player chooses public good provision xi,t ∈
Y ⊂ X is given by

Pr(xi,t ∈ Y|gt−1, x−i,t−1) =

∫
Y exp[Ui((y, x−i,t−1), gt−1)/σ2]dy∫
X exp[Ui((x, x−i,t−1), gt−1)/σ2]dx

. (5)

While this formulation allows for Y to be a set consisting of more than one element,
we remember that, absent any stochastic shock, given a network and a profile of public
good provision of all other players, the best reply for a player delivers a unique maximizer.
This formulation can be interpreted as a random utility model over a non-finite choice set,
where, again, σ > 0 represents the level of noise in the adjustment process.

3.2.3. Long-Run Predictions without Shocks

Before deriving predictions for the stochastic best reply dynamics, we derive a result
pertaining to the best reply dynamics in the absence of idiosyncratic shocks to player payoffs.

Proposition 3. When hij(·) = hji(·) for all i, j ∈ N, p0 ∈ (0, 1), and there are no shocks, any
pure-strategy Nash equilibrium is an absorbing state of the co-evolution process of the network and
behavior. Furthermore, as t→ ∞, the economy converges to a Nash equilibrium with Probability 1.

Proposition 3 shows that the absorbing states of best reply dynamics without shocks
coincide with the set of Nash equilibria of the game. The intuition is straightforward: as,
in a Nash equilibrium, no player has an incentive to deviate, in the absence of random
shocks to player preferences, once a Nash equilibrium is reached, the economy will rest
there forever. Furthermore, the fact that, in each period, either a link or a player’s public
good provision is revised, from any state there is a weakly improving path leading to a
Nash equilibrium.

However, the initial state of the economy and the order of revisions of play determine
which Nash equilibrium will be reached. Next, we show how the introduction of shocks
allows the derivation of a unique steady state distribution that resolves this indeterminacy.

3.2.4. The Steady State Distribution

We can now state the main result regarding the best reply dynamics that we intro-
duced.

Proposition 4. If p0 ∈ (0, 1), pij(x, g) ∈ (0, 1) is independent on gij, pi ∈ (0, 1), hij(·) = hji(·)
for all i, j ∈ N, the co-evolution process of the network and behavior described so far converges to a
unique stationary distribution characterized by the Gibbs measure

π(x, g|θ) =
exp

[
P(x, g)/σ2]

∑
g′∈G

∫
x′∈X

exp[P(x′, g′)/σ2]dx
. (6)

We prove this proposition by applying a combination of the arguments of [11,27]; in
particular, players revise both links and actions, as in the second paper, but differently from
there, link formation is one-sided as in the first paper.

Some remarks are in order. Proposition 4 stresses the role of the potential function in
deriving the long run predictions of the stochastic best reply dynamics. Indeed, as a Nash
equilibrium is a maximizer of the potential function (Proposition 2), a Nash equilibrium
is more likely to arise than any other state. Additionally, due to the stochastic shocks, the
economy is not stuck in a Nash equilibrium once that state is reached. This results in a
unique steady state distribution over the networks and public good provision.

While an empirical application of the model goes beyond the scope of this paper,
the fact that the distribution is unique allows for an estimation of its key parameters (for
example, of the different functions hij(·) describing the importance of collaborations among
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players). This, in turn, enables both comparative and counterfactual analyses that are not
possible in the static version of the game.

Finally, in the model, we have not included any other benefits from adding links other
than those coming from accessing the public good provision of others. However, links
might have some value per se, and reciprocated links might be more valuable. As shown
in [11], it would be easy to account for these concerns in players’ payoffs function without
losing the potential property.

4. Conclusions

In this paper, we studied an environment in which players provide a local public good,
that is, which benefits only those players who are directly connected to a provider. Addi-
tionally, players decide with whom to connect. Consistently with the previous results in the
literature, we showed that, in all Nash equilibria of the static game in which homogeneous
players simultaneously choose provision and links, the resulting network of spillovers is a
nested split graph. Furthermore, we showed that this game admits a potential function.

As equilibrium multiplicity hinders the applicability of the model, we then introduced
a stochastic best reply dynamics in which players were randomly allowed to myopically
revise their public good provision and links. These choices were subject to idiosyncratic
shocks. Under standard assumptions that allow for heterogeneous agents and using the
properties of potential games, we derived the unique steady state distribution across all
possible states of the economy.

In our paper, we assumed that only two agents collaborated on a project. Some recent
work relaxed this assumption by studying the formation of teams of co-authors using
different approaches. For example, Ref. [28] modeled the situation as a team formation
problem, while [29] modeled it as a bipartite graph between researchers and projects. While
it would be interesting to study multilateral collaboration in our framework, this is left for
future research.

To conclude, we propose that this paper provides a tractable and flexible model
with two main advantages. On the one hand, it delivers testable predictions via the
sharp theoretical analysis. On the other hand, it allows for a structural estimation of the
underlying parameters. We then hope that this model will be used to perform empirical
analysis of local public good games on endogenous networks, which are, at the moment,
very scarce in the literature.
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Appendix A. Proofs

Proof of Lemma 1. In order to show that the gains from a connection are higher if i has
more neighbors, consider wlog that all players but i provide the same amount of public
good, i.e., xj = x̂ for all j ∈ N \ {i}. Then, if i has η neighbors in g,

GCi(x, g + giz) = f (x′) + (η + 1)h(x′ + x̂)− ( f (xi) + ηh(xi + x̂))− c(x′ − xi),
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By the envelope theorem, we have that

∂GCi(x, g + giz)

∂η
= h(x′ + x̂)− h(xi + x̂).

Since by player i’s FOC it follows immediately that x′ > xi, ∂GCi(x, g + giz)/∂η > 0,
proving the claim of Lemma 1.

Proof of Proposition 1. Suppose that (x∗, g∗) is an equilibrium. Consider players i 6= j
who do not receive in-links. Hence, i, j ∈ P . Then, by Lemma 1 and the fact that players
are homogeneous, x∗i = x∗j and Ni(g) = Nj(g). Suppose not, and wlog that Ui(·) > Uj(·).
Then, given that both players receive no in-links, j can deviate profitably and choose (xi, gi)
as well receive Uj(·) = Ui(·). Suppose next that Ui(·) = Uj(·), but g∗il = 1 and g∗jl = 0.
Then, clearly, there is m 6= l with x∗l = x∗m such that g∗im = 0 and g∗jm = 1, and as follows
from Lemma 1, i can profitably connect with m, and j with l. Since (x∗, g∗) is an equilibrium,
by hypothesis, there is no other player z such that either i or j (or both) can profitably link
to z. So x∗i = x∗j and Ni(g) = Nj(g).

Consider now players l 6= m such that g∗il = g∗im = 1 for all i ∈ P . (If there is only one,
i.e., l ≡ m, then the network is a star.) Next we show that ḡ∗lm = 1. In this case, GCl ≥ GCi,
since l receives at least an in-link from i, and GCl > GCi if there is more than one periphery
player. Since it is profitable for i to link to l, it is also profitable for m to link to l since
GCm ≥ GCi, and by Lemma 1, x∗l > x∗i = x∗j . Hence, ḡ∗lm = 1 for all l, m that receive
in-links. By analogous arguments, as for all i ∈ P , it holds for all l, m as well that x∗l = x∗m
and Nl(ḡ) ∪ {l} = Nm(ḡ) ∪ {m}.

Finally, consider some player q /∈ P such that ḡ∗lq = ḡ∗mq = 1. Therefore, q is connected
to all players receiving in-links and, since q /∈ P , there is some l such that g∗lq = 1.
(Otherwise, by the same argument as above, x∗q = x∗i = x∗j , Nq(g) = Ni(g) = Nj(g) and
q ∈ P .) However, since g∗iq = 0 for all i ∈ P , it holds that GCq < GCl = GCm, and, by
Lemma 1 and the fact that players are homogeneous, it holds that x∗l = x∗m > x∗q > x∗i = x∗j .
Finally, this implies that Ni(ḡ) = Nj(ḡ) ⊂ Nq(ḡ) ∪ {q} ⊂ Nl(ḡ) ∪ {l} = Nm(ḡ) ∪ {m},
where the first ⊂ follows from the fact that x∗q > x∗i = x∗j and the second from the fact that
i, j link to m, l but not to q.

The existence of a core in which players have more in-links the more they produce
implies that the unique component of the network is a nested split graph. This concludes
the proof of Proposition 1.

Proof of Proposition 2. The fact that P(x, g) is the potential function of the game immedi-
ately follows once we recognize that

P(xi, gi, xi, g−i)− P(x′i , g′i , xi, g−i) = Ui(xi, gi, xi, g−i)−Ui(x′i , g′i , xi, g−i).

The set of Nash equilibria is the set (x∗, g∗) such that Ui(x∗, g∗) ≥ Ui(x′i , g′i , xi, g−i) for
any (x′i , g′i) ∈ Si.

As P(x, g) is the potential function, we have that Pi(x∗, g∗) ≥ Pi(x′i , g′i , xi, g−i) for
any (x′i , g′i) ∈ Si. Hence, (x∗, g∗) is a maximizer of P. Following the same argument, the
converse is easily checked.

To prove existence, first note that the potential function is continuous in a player’s
public good provision. Hence, for each network, there exists at least a maximizer of the
potential for a fixed network. As the number of possible network configurations is finite
and discrete, at least a local maximizer of the full potential exists. As a result, a Nash
equilibrium of the game always exists. This concludes the proof of Proposition 2.

Proof of Proposition 3. Suppose (xt, gt) = (x∗, g∗). Since this is a Nash equilibrium,
players have no incentive to change their links nor their public good provision. Therefore,



Games 2021, 12, 55 11 of 12

once the chain reaches a Nash equilibrium, it cannot escape from that state. This implies
that a Nash network is an absorbing state of the chain.

Given a state (xt, gt), the probability that the potential will (at least weakly) increase
from t to t + 1, Pr[P(xt+1, gt+1) ≥ P(xt, gt)] is equal to 1 as, by definition, players are best
responding to (xt+1, gt+1) and with probability 1 either a link or a player’s public good
provision is updated.

As a Nash equilibrium is an absorbing state of the chain, any probability distribution
that puts probability 1 on a Nash network is a stationary distribution. For any initial
network, the chain will converge to one of the stationary distributions. It follows that, in
the long run, the model will be in a Nash equilibrium, i.e., for any (x0, g0) ∈ S and denoting
the set of Nash equilibria of the game as NE, limt→∞ Pr[(x, g) ∈ NE|(x0, g0)] = 1. This
concludes the proof of Proposition 3.

Proof of Proposition 4. By Proposition 2, P(x, g) is the potential function of the game. By
this result, it follows that player i’s adjustment in a link or effort in the best reply dynamics
is also captured by the corresponding changes in P(x, g). It remains to prove that the Gibbs
measure given in (6) is the unique stationary distribution of the best reply dynamics.

First note that the sequence (xt, gt) generated by the link and public good provision
adjustment dynamics is a Markov chain. Inspection of the transition probability proves
that the chain is irreducible and aperiodic, therefore it is ergodic. The existence of a unique
stationary distribution then follows from the ergodic theorem (see, e.g., [30] for details).

A sufficient condition for stationarity is the detailed balance condition. In this game,
this requires π(ω0)p(ω0, ω1) = π(ω1)p(ω1, ω0), where p(ω0, ω1) is the transition density
from state ω0 to state ω1. In particular, ω0 and ω1 differ either in one link in the directed
network g, if the period was a link adjustment period, or in one element of X, if the period
was a public good provision adjustment period. We now consider the two cases separately:

(i): Link adjustment. Assume wlog that ω0 = (x, g) with gij = 0 and ω1 = (x, g + ij).
Then,

π(ω0)p(ω0, ω1) =

= π(ω0)p0 pij(x, g)
exp

[
P(x, g + ij)/σ2]

exp[P(x, g)/σ2] + exp[P(x, g + ij)/σ2]
=

= π(ω1)p0 pij(x, g + ij)
exp

[
P(x, g)/σ2]

exp[P(x, g)/σ2] + exp[P(x, g + ij)/σ2]
=

= π(ω1)p(ω0, ω1).

(ii): Public provision adjustment. Assume wlog that ω0 = (x, g) with gij = 0 and
ω1 = ((xi, x−i), g). Then,

π(ω0)p(ω0, ω1) =

= π(ω0)(1− p0)pi(x, g)
exp[Ui((xi, x−i), g)/σ2]∫
X exp[Ui(y, g)/σ2]dy

= π(ω0)(1− p0)pi(x, g)
exp[P((xi, x−i), g)/σ2]∫
X exp[P(y, g)/σ2]dy

= π(ω1)(1− p0)pi(x, g)
exp[P(x, g)/σ2]∫
X exp[P(y, g)/σ2]dy

= π(ω1)(1− p0)pi(x, g)
exp[Ui(x, g)/σ2]∫
X exp[Ui(y, g)/σ2]dy

= π(ω1)p(ω1, ω0).

Hence, (6) is a stationary distribution for the dynamic link and public good provision
adjustment game. As we have shown, the process is ergodic and it has a unique stationary
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distribution. Therefore, π(x, g|θ) is also the unique stationary distribution. This concludes
the proof of Proposition 4.
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