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Abstract: In this paper, we analyze the frequency distributions of weights and quotas in weighted
majority voting games (WMVG) up to eight players. We also show different procedures that allow us
to obtain some minimum or minimum sum representations of WMVG, for any desired number of
players, starting from a minimum or minimum sum representation. We also provide closed formulas
for the number of WMVG with n players having a minimum representation with quota up to three,
and some subclasses of this family of games. Finally, we complement these results with some upper
bounds related to weights and quotas.

Keywords: weighted majority voting games; experiments; minimum (sum) representation; canonical
representation; quotas and weights

1. Introduction

Simple games are the simplest model to study decision systems in which the yes/no
has to be decided cooperatively. A simple game is described by a monotone set of win-
ning coalitions, i.e., the subsets of participants that can force a yes decision on an issue.
One of the most natural human ways to reach a decision is through voting. Weighted
majority voting games (WMVG) conform to the most widely studied subclass of simple
games. In a weighted majority voting game each player has associated a weight and,
for a coalition to win, it is required that the cumulative weight of the coalition will be
equal to or larger than a determined quota. Weighted majority voting games were de-
fined in 1944 by von Neumann and Morgenstern [1], but similar ideas were used one
year before by McCulloch and Pitts [2] to define the Threshold Logic Unit, the first artificial
neuron. Some years later, they were deeply studied in the 50s in the context of simple
game theory [3]. Since then weighted majority voting games have also been studied in
many different contexts under different names (see for example [4–11]). Various political
and economic organizations use weighted voting games for structural or constitutional
purposes. For example, the United Nations Security Council, the Electoral College of
the United States, the International Monetary Fund, or the European Union [12–15]. Vot-
ing power is also relevant in joint stock companies where each shareholder gets votes in
proportion to the ownership of a stock [16] and in political and financial decision mak-
ing [17]. Several applications in decision theory of voting systems have been done over
stochastic modelling Szajowski and Yasuda [18], Noroizifari et al. [19], safety critical
systems Singamsetty and Panchumarthy [20] or intrusion detection Moukafih et al. [21],
among others.

Simple games can also be described by monotone Boolean formulas. Therefore, the
problem of enumerating the set of simple games is the same as the well known Dedekind
problem of determining the number of distinct monotone functions of n variables. Although
Dedekind first considered this question in 1897, no satisfactory answer is yet known.
Dedekind’s numbers are known only for values of n ≤ 8 and also an upper bound of 1042
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for n = 9 is known [22]. In consequence, many attempts have been made to enumerate
(or to count) subfamilies of simple games (see for example [22–25]). Weighted majority
voting games up to 6 players were enumerated in [26,27]. Enumerations/countings for 8
voters can be found for example in [28–31] and for 9 voters in [32]. These counting results
for weighted majority voting games (up to isomorphism) are given in Table 1. Note that, in
the values provided in Table 1, isomorphic games are counted only once. The two trivial
games, the one in which no coalition wins or the one in which all coalitions (including the
empty set) win, are not counted.

Table 1. Number of WMVG, WMVG without dummies (https://oeis.org/A000619 (accessed on
18 October 2021)) [33], Non Seft-dual WMVG without dummies, and Self-dual WMVG without
dummies (https://oeis.org/A003184 (accessed on 18 October 2021)) up to isomorphism.

# Players #WMVG
#WMVG # Non Self-Dual # Self-Dual

w/o Dummies WMVG WMVG
w/o Dummies w/o Dummies

1 1 1 0 1
2 3 2 2 0
3 8 5 4 1
4 25 17 16 1
5 117 92 88 4
6 1111 994 980 14
7 29,373 28,262 28,148 114
8 2,730,164 2,700,791 2,698,456 2335
9 993,061,482 990,331,318 990,158,360 172,958

In the enumeration of weighted majority voting games it is usual to count the number
of games without dummies or/and duality. Recall that due to monotonicity, we can
represent a simple game by the set of minimal winning coalitions. A dummy player is a
player that does not belong to any minimal winning coalition. Therefore, after eliminating
dummy players from a game, the set of minimal winning coalitions does not change.
As usual, we associate to a game a dual game. In the dual game, a coalition wins if its
complement loses in the original game. As we will see later on, given a representation of
a WMVG, a representation of its dual is easy to compute and therefore the enumeration
avoids this kind of replica. Observe that as there are games that are self-dual, the number
of WMVG without dummies is smaller than twice the number of WMVG without dummies
and duals. In Table 1, we provided the known values for such subfamilies of WMVG.

In the quest for better algorithms to enumerate WMVG a lot of work has been devoted
to find good representations. The first step is to restrict ourselves to integer representations,
in which the weights of the players and the quota are integers. Freixas and Molinero [29]
show that every WMVG admits an integer representation. Furthermore, they analyze
which conditions can be added to restrict the considered representations. In particular, they
introduce the integer minimum representation, in which the vector of weight is minimum in
component-wise order. Ideally one would like to have a unique representation. As there
are weighted majority voting games that do not admit a minimum representation [29],
another notion of minimality, minimum sum, has been considered. In a minimum sum
representation, the sum of the players’ weights is minimum. Although WMVG do have
minimum sum representations, there are games with more than one minimum sum repre-
sentation [29,32,34]. To represent a game in a unique way, we follow the methodological
approach used in the enumeration algorithm devised in [35] and consider what we call
canonical minimum representations. This canonical minimum representation selects the
lexicographically minimum sum representation of a WMVG.

Checking that a representation is minimum or minimum sum is a computationally
hard problem as it involves the solution of integer linear programs [29]. Furthermore, few
minimum or minimum sum representations of games with a large number of players are
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known. However, it might be possible to get good representations from the distribution
of weights and quotas in the target representations. Nevertheless, to the best of our
knowledge nothing is known about such a distribution. One of the fundamental questions
in the analysis of weighted voting games is to determine the relation among weight and
power. This question has been addressed for particular classes of random weighted voting
games obtained according to a fixed distribution of weights (see for example [36–40]).
Having access to a good approximation to the real distribution of the player’s weight might
allow us to use the techniques on these papers to analyze the relation among power and
weight on the complete set of weighted voting games.

Another natural approach to tackle the problem is to find procedures that allow the
introduction of more players, while guaranteeing the optimality of the representation. Of
course, due to the difficulty of the problem, it is also worth to analyze the optimality of
representations, with many players, when only small numbers are allowed to be part of
the representation.

With these three goals in mind, we started analyzing the list of canonical minimum
representations of WMVG for up to eight players generated in Freixas and Molinero [29].
Using these data, we carried on a study of the distribution of the players’ weights and the
quotas in such representations. Although the estimated d istributions differ from the actual
distributions, they become more similar as the number of players increase. Our results hint
towards some promising probability distributions for larger numbers of players. As we
will see, it can be inferred some tendency in the plots towards a Poisson or a χ2-Pearson
distribution. We also observed that the range of weight values or quotas is contiguous up
to 7 players but it becomes discontiguous for 8 players. In particular, weight 41 does not
appear in any canonical minimum representation of games with 8 players, while 40 and
42 do. The results of this study are presented in Sections 3 and 4. For the second proposed
line of research, we found several simple operations that allow us to construct minimum
and, in some cases, minimum sum representations, of WMVG with many players. The
corresponding construction and optimality proofs can be found in Section 5. Finally, we
analyze games with a canonical minimum representation with small quotas. In particular,
we show that for fixed q, the number of such games is upper bounded by a polynomial with
degree q. Furthermore, we can show that for q ≤ 3, all canonical minimum representations
are minimum, independently of the number of players. Using this property, we show that
the bound is tight for q ≤ 3. Section 6 presents these results.

2. Definitions and Preliminaries

We use standard set theory notation. We follow definitions and notation for simple
games from [41,42].

A simple game (SG) is a pair (N,W) in which N is a finite set of players andW is a
monotone collection of subsets of N. We assume that N = [n] = {1, 2, . . . , n}, that ∅ /∈ W
and N ∈ W . In terms of SG a subset S ∈ W is called a winning coalition and a subset
S /∈ W a losing coalition. We use L to denote the set of losing coalitions. Given a simple
game Γ = (N,W), a minimal winning coalition is a coalition in which the absence of any of
the players present in the coalition turns the coalition losing. The set of minimal winning
coalitions is denoted byWm. In the same way, a maximal losing coalition, denoted by LM, is
a coalition such that by adding any new player the coalition becomes winning.

A simple game Γ = (N,W) is a weighted majority voting game (WMVG) if there exists a
n + 1-vector [q; w] = [q; w1, w2, . . . , wn], such that S ∈ W if and only if ∑i∈S wi ≥ q. Due to
monotonicity, we can assume that wi ≥ 0, for i ∈ N, and q > 0 because ∅ /∈ W . The values
in w are called the players’ weights and the value q the quota. Moreover, given S ⊆ N,
w(S) denotes ∑i∈S wi. Thus, q ≤ w(N) because N ∈ W .

Observe that an assignment of players’ weights and a quota define in a unique way the
set of winning coalitions. When Γ is a WMVG, we usually define Γ by a representation [q; w].
It is well known that every WMVG admits an integer representation, i.e., a n + 1-vector
[q; w1, w2, . . . , wn] in which all the values are non negative integers [41]. In the remaining
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of the paper, we assume that all representations of WMVG are integer representations.
Observe a WMVG admits more that one representation.

Example 1. The representations [3; 1, 2, 1], [6; 2, 4, 2] and [10,000; 1, 9999, 1] define the same
simple game havingWm = {{1, 2}, {2, 3}}.

In fact, every WMVG admits infinitely many representations as [q; w] and [cq; cw], for
any c > 0, represent the same game. In order to generate WMVG, we trim the number of
possible representations of a game considering minimum representations.

Definition 1. A representation [q; w1, w2, . . . , wn] of a WMVG Γ is said to be minimum if, for
any representation [q

′
; w
′
1, w

′
2, . . . , w

′
n] of Γ, we have that wi ≤ w

′
i , for i ∈ N.

Freixas and Molinero [29] have shown that not all WMVG admit a minimum repre-
sentation. In particular, they listed the 154 WMVG with 8 players that have no minimum
representation. However, if it exists, it is indeed unique. Another way of limiting the
number of representations is by minimizing the sum of the players’ weights.

Definition 2. A representation [q; w1, w2, . . . , wn] of a WMVG Γ is a minimum sum representa-
tion if, for any representation [q

′
; w
′
1, w

′
2, . . . , w

′
n] of Γ, we have ∑n

i=1 wi ≤ ∑n
i=1 w

′
i .

Although every WMVG admits a minimum sum representation this is not always
unique. The 154 games with eight players mentioned before all have two minimum sum
representations [29]. Observe that a minimum representation, if it exists, is also a minimum
sum representation.

We say that player i is a dummy player in Γ = (N,W) if, for any S ∈ W , then
S \ {i} ∈ W . Freixas and Molinero [29] proved the following useful results.

Proposition 1. Let [q; w] be a minimum sum representation of a WMVG Γ with n players.

1. q = minS∈W w(S) and q = 1 + maxS∈Lw(S).
2. wi = 0 if and only if player i is a dummy player.
3. gcd(q, {wi | wi 6= 0}) = 1.

Furthermore, we have the following property.

Proposition 2. Let [q; w] be a minimum sum representation of a WMVG Γ. For any non-dummy
player i, there is at least one minimal winning coalition S having i ∈ S and w(S) = q.

Proof. Let [q; w1, . . . , wn] be a minimum sum representation of Γ. Assume that player i
has weight wi > 0 and that no winning coalition S with w(S) = q contains i. Consider
the game Γ′ = [q; w1, w2, . . . , wi−1, wi − 1, wi+1, . . . , wn]. Observe that Γ′ has the same set
of minimal winning coalitions as Γ, so Γ admits a representation with smaller total weight
and we get a contradiction.

Observe that, in minimum sum representations of games without dummy players,
a coalitions S with w(S) = q is a minimal winning coalition and, analogously, a coalition
S with w(S) = q− 1 is a maximal losing coalition. The converses are not true. In fact,
Γ = [8; 4, 3, 3, 2, 2] verifies that S = {1, 2, 3} is a minimal winning coalition such that
w(S) = 10 > q, and T = {2, 3} is a maximal losing coalition such that w(T) = 6 < q− 1.
Moreover, all games without a minimum representation given by Freixas and Molinero [29]
are also some counterexamples.

From the previous results, we can exclude representations of games with dummy
players by considering only minimum sum representation [q; w] in which all the players’
weights are positive, i.e., w > 0. Besides, a dummy player never is part of a minimal
winning coalition. So, after eliminating a dummy player from a WMVG the set of minimal
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winning coalitions does not change. In this way, games with dummy players can be
recovered from games without dummies with smaller number of players. In view of this
fact, in the remaining of the paper, we consider only simple games without dummies.

Finally, observe that, by rearranging the players, we get isomorphic games. We are
interested in defining a unique representation in the sense that two conceptually identical
games, i.e., two isomorphic games, have the same representation. For doing so, we avoid
rearrangements of the players by imposing an order on the players’ weights.

Definition 3. [q; w1, w2, . . . , wn] is a canonical representation of Γ if and only if wi ≥ wj
whenever i < j.

Canonical representations limit the number of possible representations but still do not
provide a unique representation. For example, [3; 2, 1, 1] and [10,000; 999, 1, 1], are canonical
representations of the SG withWm = {{1, 2}, {1, 3}}.

Note that all WMVG with 8 players and two minimum sum representations admit just
one canonical representation [29]. For instance, [25; 7, 6, 6, 4, 4, 4, 3, 2] and [25; 7, 6, 6, 4, 4, 4, 2, 3]
are minimum sum representations of the same game, but both representations lead to the
same canonical representation [25; 7, 6, 6, 4, 4, 4, 3, 2].

However, there are games with several minimum sum representations leading to
different canonical representation. For instance, all examples with 10 and 11 players given
by Freixas and Molinero [29]. As an example, consider the following representations
[68; 38, 31, 28, 23, 11, 8, 6, 5, 3, 1] and [68; 37, 31, 28, 23, 11, 8, 7, 5, 3, 1], they define the same
game, and both are minimum sum and canonical.

To perform our study, we keep just one minimum sum representation for each game
(up to isomorphism) as follows.

Definition 4. [q; w] is a canonical minimum representation of Γ if [q; w] is canonical, mini-
mum sum and, furthermore, w is lexicographically minimum among all players’ weight vectors in
canonical minimum sum representations of Γ.

By selecting the lexicographically minimum, we guarantee that the representation is
unique for each class of isomorphic games. For instance, the minimum sum and canonical
representations [68; 38, 31, 28, 23, 11, 8, 6, 5, 3, 1] and [68; 37, 31, 28, 23, 11, 8, 7, 5, 3, 1] have the
same canonical minimum representation, [68; 37, 31, 28, 23, 11, 8, 7, 5, 3, 1].

Besides considering isomorphic games as equivalent, we use duality to drop even
more the number of games to be considered. In this way, we also limit the number of
possible game representations. Recall, that for a simple game Γ = (N,W), its dual game is
defined as Γd = (N,Wd) whereWd = {S | N \ S /∈ W}. Furthermore, the dual of Γd is Γ.
We call a game self-dual if Γ = Γd. In the case of a WMVG, we can obtain a minimum sum
representation of the dual from a minimum sum representation.

Proposition 3. Let [q; w] be a minimum sum representation of Γ, then [w(N)− q + 1; w] is a
minimum sum representation of Γd .

Proof. Let us prove first that the weighted voting game Γ′ = [w(N)− q + 1; w] is indeed
Γd. Consider a set S ⊆ N, S wins in Γ′ if and only if w(S) ≥ w(N)− q + 1. However, then,
w(N \ S) = w(N)−w(S) < q. Therefore, S wins in Γ′ if and only if N \ S loses in Γ. As
the weights of the players are the same in both representations, and Γ is the dual of Γd, the
transformed representation is also a minimum sum representation.

The previous result establishes that the representations of dual games have the same
weights. Therefore, their canonical minimum representations differ only in the value of the
quota. In order to keep a unique representation, up to isomorphism and duality, we restrict
also the value of the quota.
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Definition 5. [q; w] is a strict canonical minimum representation of Γ if [q; w] is a canonical
minimum representation and q ≥ w(N)+1

2 .

Observe that by using only strict canonical minimum representations, we count as one
any pair of mutually dual games. Thus, the number of canonical minimum representations
is smaller than twice the number of strict canonical minimum representations due to
the representations of self-dual games. In fact, the number of all WMVG is equal to
the number of self-dual WMVG plus twice the number of non self-dual strict canonical
minimum representations.

3. Weights in WMVG up to Eight Players

Our study is grounded on the data provided by Freixas and Molinero [35]. The data
set contains all the canonical minimum representations of a WMVG (without dummies) up
to eight players. Our first objective is to analyze the weights appearing in the canonical
minimum representations. We started from four data sets. Each data set is formed by the
canonical minimum representations of WMVG without dummies ([q; w] having w > 0),
for n = 5, . . . , 8. For smaller values of n, we just did the computations by hand. All the
data obtained in our study can be found in Appendix A.

Before presenting the results let us introduce some notation. We use wmax
n to denote

the maximum weight appearing in a canonical minimum representation of WMVG with
n players. As we are considering games without dummy players, and [1; 1, . . . , 1] is a
minimum representation, the corresponding minimum weight is 1, for any n. We denote by
wu-min

n , the minimum non-repeated (unique) weight, i.e., the smallest weight that appears
in some canonical minimum representation but that never appears more than once in a
canonical minimum representation. Finally, we say that a weight x ∈ [wmax

n ] is a skip if x
does not appear in any canonical minimum representation of games with n players.

In our first experiment, we perform an analysis of the weights appearing in the
canonical minimum representations. For doing so, we create new data sets, for n = 5, . . . , 8,
containing the concatenation of all the weight vectors appearing in the initial data sets, for
the corresponding number of players. We refer to those data sets as weights in canonical
minimum representations.

We start our study analyzing, for each weight and value of n, some basic features.
The results are summarized in Table 2. The first interesting property we observed is that,
for n < 8, there are no skips among the weights. However, this property does not hold
for 8 players. In particular, there is no canonical minimum representation with eight
players holding weight 41, although there are such representations with weight 42, and
with weights 1, . . . , 40. Furthermore, Freixas and Molinero [29] provided the minimum
sum representations of games with eight players and without minimum representation.
None of these minimum sum representations includes value 41. Therefore, the canonical
minimum sum representations, for eight players, have a skip. Note that, as we will see later
on, there are canonical minimum representations with more than eight players holding
weight 41.

Table 2. Features of the weights in canonical minimum representations.

# of Players wu-min
n wmax

n Mode Skips

1 1 1 1 None
2 None 1 1 None
3 2 2 1 None
4 3 3 1 None
5 4 5 1 None
6 6 9 2 None
7 10 18 2 None
8 19 42 3 41
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We can also observe that wmax
n seems to grow at least exponentially, while the mode of

the weights seems to grow sub-linearly. For n = 2, the canonical minimum representations
of the two WMVGs with two players are [1; 1, 1] and [2; 1, 1]. This is the unique case in which
wu-min

n is undefined. Another interesting property is that, for 3 ≤ n ≤ 8, wu-min
n = wmax

n−1 + 1.
These values for wmax

n coincide with those obtained by Kurz [32].
In Figure 1, we plot the attained frequency distributions for n ≥ 5 only, as the results,

for up to 4 players, do not provide any information because the number different weights
is small.

(a) 5 players (b) 6 players

(c) 7 players (d) 8 players

Figure 1. Frequency distribution of weights in canonical minimum representations.

There are some noteworthy things to remark. Visually checking the plots, it can be
seen that, as the number of players increases, so does the smoothness of the distribution
peaking at Figure 1d. Furthermore, although unexpected, close weights have a close
number of occurrences.

Due to the similarities in the plots and therefore in their distributions, we suspect that
a pattern might be present. In order to further study the mentioned similarities, we take
a standard probabilistic approach, Kernel density estimation [43]. The method provides
a tool to smooth the data representation based on a finite data sample. In Figure 2, we
present an estimation of the density function. We obtained this approximation using a
built-in function in the R language for Kernel density estimation. We run the procedure
with the default values and selecting a Gaussian Kernel. The method basically puts a
Gaussian over each data point and sums up the densities (with proper normalisation). The
values on the x-axis correspond to this normalized sum, observe that due to the tails of the
Gaussians the left and the right limits are increased.

The tendency here is clear, at the beginning a mixture of two Gaussians is present,
but as the number of players increases one dominates over the other slowly turning the
mixture to a normal distribution density. Furthermore, the weight that appeared the most
is slowly increasing as the number of players increases. It seems that weights will tend
towards a normal distribution.

Our second analysis focuses on the weights in strict canonical minimum representa-
tions. For doing so, we create new data sets, for n = 5, . . . , 8, containing the concatenation
of all the weight vectors in canonical representations [q; w] having q ≥ w(n)+1

2 . We refer
to those data sets as weights in strict canonical minimum representations. Here, the main
difference is that, if a game is not self-dual, their weights are counted once while they were
counted twice before. Our aim is to determine whether self-dual games intervene strongly
in the distribution or not.
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(a) 5 players (b) 6 players

(c) 7 players (d) 8 players

Figure 2. An estimation of the density function of weights in canonical minimum representations.

The plots of the frequency distribution of weights in strict canonical minimum repre-
sentations are given in Figure 3. We can see that the frequency distributions are practically
the same as in Figure 1. This seems to reflect the sparsity of self-dual games, especially as
the number of players increases.

(a) 5 players (b) 6 players

(c) 7 players (d) 8 players

Figure 3. Frequency distribution of weights in strict canonical minimum representations.

Comparing the plots in Figures 1 and 3, it can be observed that the frequency of
each weight seems to be around one half of the ones in the the canonical minimum
representations. This is according to the the sparsity of the self-dual WMVG. Hence, we get
about the same distributions, densities and features, but with a reduction in the frequencies
by a factor of around 1

2 . Our results indicate that, as the number of players increases, the
relevance of self-dual games decreases.

Our last step is to study the distribution of the frequencies of weights in canonical
minimum representations disregarding multiplicities. For doing so, we create data sets,
for n = 5, . . . , 8, including, from each canonical minimum representation [q; w], the set of
weights appearing in w. Now, if a canonical minimum representation repeats weights, then
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each weight is included only once in the data set. The corresponding plots are depicted in
Figure 4.

(a) 5 players (b) 6 players

(c) 7 players (d) 8 players

Figure 4. Frequency distribution of weights without multiplicity in canonical minimum representa-
tions.

Again, we can observe that the frequency distributions are like the previous ones
but approximately scaled by a constant. This seems to indicate the average frequency
is constant. Something to remark is that the mode remains the same for n < 8, and
increases to 4 when n = 8. This, in some sense, shows that a weight is not particularly
frequent because it appears multiple times. Furthermore, we can see that the right tails of
Figure 1a–d and those in Figure 4a–d look much the same. In other words, if the weight
was large enough, then the weight appears at most once.

4. Quotas in WMVG up to 8 Players

Our second study concerns the quotas for games up to eight players. In this case, we
first study the distribution of the frequencies of quotas in canonical minimum representa-
tions. For doing so, we create data sets, for n = 5, . . . , 8, including, from each canonical
minimum representation [q; w] of games with n players, the value q. Similar as for the
weights analysis, qmax

n denotes the maximum quota appearing in a canonical minimum
representation, and a skip is a quota value that does not appear in any representation.

The most relevant information on these data sets is summarized in Table 3.

Table 3. Features of the distribution of the quotas in canonical minimum representations.

# of Players qmax
n Mode Skips

1 1 1 None
2 2 1, 2 None
3 3 2, 3 None
4 5 3, 4 None
5 9 5 None
6 18 11 None
7 40 19 None
8 105 37 95, 97, 99, 100, 101, 103, 104

One can observe that the growth of the maximum quota value seems to be at least
exponential, and that it is much faster than the growth of the maximum weight (see Table 2).
As for the weights, no skips in the quota values appear for less than 8 players. However,
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seven quotas are not present, for n = 8. Furthermore the skipped quotas are not contiguous.
The mode of the quota’s data sets seem to grow at least exponentially, too. An interesting
trait here, is that the mode of the quotas, for 5 or more players, are all prime numbers. It
will be of interest to know whether this property carries over to higher number of players.

Similar to the study of the weights, we study the distribution and density functions
for the frequency of the quota values. The results, for WMVG with 5, 6, 7 and 8 players, are
depicted in Figures 5 and 6. We can see that the distribution plots depict what seems to be
a “smooth” function. The distributions are symmetrical, with equal tails, and, in general,
look like a normal distribution.

(a) 5 players (b) 6 players

(c) 7 players (d) 8 players

Figure 5. Distribution of quota occurrences in canonical minimum representations.

(a) 5 players (b) 6 players

(c) 7 players (d) 8 players

Figure 6. An estimation of the density function of quotas in canonical minimum representations.

The densities’ plots, like in the case of weights, look like a mixture of two Gaussians.
One of the Gaussians slowly disappears as the number of players increases, transforming
into what looks like a regular normal distribution.
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5. Generating Minimum and Minimum Sum Representations

In this section, we show how some canonical minimum and minimum representations
of games with any number of players can be obtained. For doing so we analyze several
ways to introduce players into a game in such a way that the extended representation can
be proved to be minimum or minimum sum.

Given a general WMVG, the generation of a minimum, minimum sum, or canonical
minimum representation is a computationally hard task. Recall, that deciding if a player is
a dummy in a WMVG is a NP-complete problem [42], while this problem can be solved
easily given a minimum sum representation.

To obtain new minimum/minimum sum representations of games with many players
we consider the following operation. Let w be a weight assignment for n players. For a
non-negative x, x⊕w is the weight assignment obtained from w by adding component
n + 1 holding weight x. When dealing with canonical representations, we will assume
that the components of x ⊕w are rearranged in such a way that it is canonical for the
n + 1 players.

The following result gives equivalent representations under some conditions.

Lemma 1. Let [q; w] and [q + t; t ⊕ w] be representations of Γ = ([n],W) and Γ′ = ([n +
1],W ′), respectively. If, for some k 6= t, [q′; k⊕w′] is another representation of Γ′, then [q′− k; w′]
is a representation of Γ.

Proof. The coalition S is winning in Γ is and only if coalition S ∪ {n + 1} is winning in
Γ′, and hence S ∈ W ⇐⇒ w′(S ∪ {n + 1}) ≥ q′ ⇐⇒

(
∑n

i=1 w′i
)
+ wn+1 ≥ q′ ⇐⇒

∑n
i=1 w′i ≥ q′ − wn+1.

We start presenting some procedures leading to minimum sum representations.

Proposition 4. Let [q; w] be a minimum sum representation of a WMVG with n players, then the
representations [q; 0⊕w],[q; 1⊕w] and [q + 1; 1⊕w] are minimum sum representations.

Proof. In the procedure to get a game with representation [q; 0⊕w], we add a dummy
player. By adding a dummy player, the minimal winning coalitions do not change. So,
if [q; 0⊕w] is not minimum sum, there is a way to represent with less weight sum the
created game. As a dummy player in a minimum sum representation gets weight 0 this
representation has the form [q′; 0⊕w′]. Then [q′; w′] will be a representation for the original
n players game with less sum. Therefore, [q; 0⊕w] is a minimum sum representation.

In [q; 1⊕w], we are adding player n + 1 with weight 1. As the quota is not changed,
the minimal winning coalitions in [q; w] are also minimal winning coalitions in [q; 1⊕w].
At the same time, all the losing coalitions with w(A) = q− 1 become minimal winning
coalitions in [q; 1⊕w] with the help of the new player. From Proposition 1, we know that
there is at least one such coalition, so the set of minimal winning coalitions changes.

Suppose that [q; 1⊕w] is not minimum sum, meaning that there exists another rep-
resentation [q

′
; w
′
1, . . . , w

′
n, w

′
n+1] with ∑n+1

i=1 w
′
i < ∑n+1

i=1 wi and w
′
n+1 ≥ 1 representing the

same game. Observe that w
′
n+1 cannot be 0 as this leads to a game with a different set

of minimal winning coalitions. As w
′
n+1 ≥ 1, the reduction in weight has to be done in

the first components, but this implies that we can represent [q; w] with less total weight,
contradicting the fact that it was a minimum sum representation.

Let us look at the winning coalitions in [q+ 1; 1⊕w]. Those are S ⊆ [n] with w(S) > q
or S∪ {n + 1} ⊆ [n + 1] with w(S) = q. Note that since there is a coalition with weight q in
[q; w], player n + 1 is not dummy. Hence its weight is necessarily positive in any minimum
sum representation.

Suppose that [q + 1; 1⊕w] is not minimum sum. In this case, there is a representation
[q′; w′1, w′2, . . . , w′n, w′n+1] of the game with ∑n+1

i=1 w′i < ∑n
i=1 wi + 1 and w′n+1 ≥ 1. Therefore,
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we have ∑n
i=1 w′i < ∑n

i=1 wi. Now, [q
′ − w′n+1; w

′
1, w

′
2, . . . , w

′
n, 0] has the same minimal

winning coalitions than [q; w] and less total sum, contradicting our initial assumption.

Our next result shows how the set of procedures can be extended when the objective
is to get minimum representations from a given minimum representation.

Proposition 5. Let [q; w] be a minimum representation of a WMVG with n players, then the
representations [q; 0⊕w],[q; 1⊕w], [q + 1; 1⊕w], [q; q⊕w] and, for i ∈ [n], [q; wi ⊕w] and
[q + wi; wi ⊕w] are minimum representations.

Proof. Recall that if a representation is minimum it is also the unique minimum sum
representation of the corresponding game.

From Proposition 4, we know that [q; 0⊕w], [q; 1⊕w] and [q+ 1; 1⊕w] are minimum
sum representations. Furthermore, any other minimum sum representation of these games
has to keep the weight of player n + 1 as 0 in the first case and positive in the other two
cases. Therefore, removing the player from the respective game will lead to a different
minimum sum representation of [q; w], contradicting our hypothesis.

Assume that [q; q⊕w] is not minimum. In such a case, there is another representation
[q′; w′n+1 ⊕w′] such that at least one weight in w′n+1 ⊕w′ is smaller than in q⊕w. Further-
more, we can assume that [q′; w′n+1 ⊕w′] is a minimum sum representation. In the game
Γ′ represented by [q; q⊕w], the coalition {n + 1} is winning. Therefore, in any minimum
sum representation of Γ′, the weight of player n + 1 must coincide with the quota. So,
w′n+1 = q′. Moreover, [q′; w′] and [q; w] represent the same game Γ. Now we consider two
cases.

Case q′ ≥ q: As [q′; q′ ⊕w′] is a minimum sum representation of Γ′, q′ + w′([n]) ≤ q +
w([n]). Then w′([n]) ≤ w([n]), so [q; w] is not minimum.

Case q′ < q: As [q; w] is a minimum representation, w is component wise smaller than w′.
So, for S ⊆ [n], w′(S) ≥ w(S). As [q; w] represents Γ, for all the winning coalitions
S ⊆ [n] of Γ, we have w(S) ≥ q > q′. Furthermore, as [q′; w′] represents Γ, for all
losing coalitions S ⊆ [n] of Γ, w′(S) < q′ and thus, w(S) ≤ w′(S) < q′. Therefore,
[q′; q′ ⊕w] and [q′; q′ ⊕w′] represent the same game. However, q′ + w′([n]) ≥ q′ +
w([n]), contradicting the fact that [q′; q′ ⊕w′] was a minimum sum representation.

For the procedures with weights, assume that wi ⊕w does not provide the minimum
representation weights. In such a case, there is another representation [q′; w′n+1 ⊕ w′]
with players’ weight w′ such that at least one weight in w′ is smaller than in the first one.
Observe that [q′; w′n+1 ⊕w′] is not required to be a minimum representation. If at least one
player with weight wi keeps or does not reduce its weight, we can assume w.l.o.g. that this
player is player n + 1. Observe that, in wi ⊕w there are at least two players with weight
wi. Therefore, our assumption guarantees that there exists j ∈ [n] such that w′j < wj.

Suppose that [q; wi ⊕w] is not minimum. Consider the representation [q′; w′n+1 ⊕
w′] for the w′ described before. Observe that, by construction, the minimal winning
coalitions of [q; w] and [q′; w′] coincide, therefore [q; w] and [q′; w′] represent the same
game. However, there is j ∈ [n] such that w′j < wj. Therefore, [q; w] cannot be minimum,
contradicting our hypothesis.

Suppose that [q+wi; wi⊕w] is not minimum. Consider the representation [q′; w′n+1⊕
w′] described before. By Lemma 1, [q; w] and [q′ − w′n+1; w′] represent the same game.
However, as there is j ∈ [n] such that w′j < wj, we reach a contradiction.

We want to point out that the converses of the former implications are in general
false. Consider for example the representation [7; 5, 2, 2, 1, 1]. This is the unique minimum
representation of the game with minimal winning coalitions {{1, 2}, {1, 3}, {1, 4, 5}}. Delet-
ing any of the repeated weights (1 or 2) yields a game with 4 players but with maximum
weight 5. From Table 2, we know that the maximum weight present in canonical minimum
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representations for games up to 4 players is 3. Therefore, independently of the value of q,
the representation of the game with 4 players (and the same weights) is not minimum.

The results in Proposition 4 allow us to generate minimum representations with any
number of players applying iteratively the procedures. For example, from the minimum
representation [41; 12, 11, 10, 8, 4, 4, 2, 1] with 8 players, applying each of the procedures i >
0 times, we generate the following minimum representations of games with 8 + i players,

[41; 12, 11, 10, 8, 4, 4, 2, 1, 0:i],

[41; 12, 11, 10, 8, 4, 4, 2, 1, 1:i],

[41 + i; 12, 11, 10, 8, 4, 4, 2, 1, 1:i],

[41; 41:i, 12, 11, 10, 8, 4, 4, 2, 1],

[41; 12, 11, 10, 8, 8:i, 4, 4, 2, 1],

[41 + 8i; 12, 11, 10, 8, 8:i, 4, 4, 2, 1].

In the above representations we use w:i to indicate that there are i players with
assigned weight w. Of course, we can also mix different procedures getting, for example,
the minimum representation with 9 + i + j + k players

[41 + 41i + 8j + k; 41, 41:i, 12, 11, 10, 8, 8:j, 4, 4, 2, 1, 1:k].

A basic question is whether a skip value (weight or quota) can appear in games with
higher numbers of players. From our data, 41 is a weight skip but it is not a quota skip.
Using the above procedures, we can prove that any natural number appears as weight or
as quota in a minimum representation for a big enough number of players.

Corollary 1. For q ≥ 1, there exists nq > 0 and a minimum representation of a WMVG with
nq players having quota q. For w ≥ 0, there exists nw > 0 and a minimum representation of a
WMVG with nw players including weight w.

Proof. Note that all canonical minimum representations with less than 8 players are
minimum representations. Furthermore, weights and quotas of the games of 7 players are
contiguous. In particular, there are minimum representations of games with 7 players and
quota q, for 1 ≤ q ≤ 40. If q > 40, we consider a minimum representation [40; w] of a game
with 7 players. According to Proposition 4, [40 + i; w⊕ 1 : i] is a minimum representation.
Taking i = q− 40, we get a minimum representation with quota q.

Therefore, using the fact that if [q; w] is a minimum representation then [q; q⊕w] is
also a minimum representation, we can extend the result to weights.

The previous result shows that the weight and quotas skipped by games with 8 players
appear in minimum representations of games with more than 8 players. In particular, the
weight 41 appears in minimum representations of games with 9 players. However, for the
skipped quotas, the number of players is at least 55. We can improve those bounds on the
number of players needed for the quota skips in games with 8 players.

Corollary 2. There is a minimum representation of a WMVG with 9 players in which one player
has weight 41. There are minimum representations of WMVG with 12 players and quotas 95, 97,
100, 101, 103 and 104, and with 13 players and quotas 99.

Proof. As we have shown before [41; 41, 12, 11, 10, 8, 4:2, 2, 1] is a minimum representation
of a game with 9 players and one player has weight 41.

From this representation, by adding players with repeated weights and increasing in
the same amount the quota, we can generate the following minimum representations, with
12 players
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[95; 41:2, 12:2, 11, 10, 8, 4:2, 2, 1:2],

[97; 41:2, 12, 11:2, 10, 8, 4:3, 2, 1],

[100; 41:2, 12, 11, 10:2, 8:2, 4:2, 2, 1],

[101; 41:2, 12, 11:2, 10, 8:2, 4:2, 2, 1],

[103; 41:2, 12, 11:2, 10:2, 8, 4:2, 2, 1],

[104; 41:2, 12, 11:3, 10, 8, 4:2, 2, 1],

and with 13 players:

[99; 41:2, 12, 11, 10, 8:3, 4:2, 2, 1:2].

There are more results that can be derived from Proposition 4. Recall that wmax
n , qmax

n
and wu-min

n are, respectively, the maximum weight, maximum quota, and minimum non-
repeated weight in the canonical minimum representations of WMVGs with n players.
Consider now the corresponding values taken only over the minimum representations.
We use wmax

n , qmax
n and, respectively, wu-min

n to represent these values. In Proposition 5 we
have shown that, when [q; w] is a minimum representation, [q; q⊕w] is also a minimum
representation. Therefore, we have the following result.

Corollary 3. For any n > 1, qmax
n−1 ≤ wmax

n .

As we have mentioned before, all canonical minimum representations for n ≤ 7 are
minimum. For n = 8, we have games without minimum representations. For n = 8, after
checking for minimality, we found that wmax

8 = wmax
8 , qmax

8 = qmax
8 and wu-min

8 = wu-min
8 .

Looking at the values reported in Tables 2 and 3, the above inequality is tight for 1 to
7 players, and quite accurate for 8 and 9 players, taking into account that, according to [32],
wmax

9 = 110.
In Proposition 5, we have shown that, if [q; w] is a minimum representation, then

[q; wi ⊕w] is also minimum. Therefore, the maximum weight appearing in a minimum
representation with n players, appears more than once in minimum representations with
n + 1 players. Then, the following result holds.

Corollary 4. For any n > 2, if wu-min
n exists, then wu-min

n > wmax
n−1.

From these results in Table 2, the inequality wu-min
n > wmax

n−1 is tight from 3 to 8 players
as the corresponding values differ in one unit.

6. Small Quotas in Canonical Minimum Representations of WMVG

In this section, we analyze canonical minimum representations in which q ≤ 3. Our
first results are closed formulas for the number of WMVG without dummies having a
canonical minimum representation with quota at most 3. In order to get the results we
need to analyze some properties of such representations.

As a consequence of Proposition 1, we know that in a minimum sum representation
[q; w], the weight of any player is at most q. Therefore, from the range of possible values, we
have that the number of minimum sum representations of WMVG without dummies, with n
players, and quota q is at most qn. When dummies are allowed, the upper bound is (q+ 1)n.
These bounds are far from optimal, the naive counting includes many combinations that
are not canonical or minimum sum. For example, [q; q, q . . . , q] is not minimum sum as
the game can be represented by [1; 1, 1, . . . , 1]. Furthermore, we are counting as different
isomorphic representations. To improve the upper bound we take a different approach.
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Recall that a weak composition of a non-negative integer n into k parts is a k-tuple of
non-negative integers that sum to n. For example, (1, 0, 0, 3) is a weak composition of
four into four parts. Observe that, as the definition is in terms of tuples, by reordering the
components we get a different composition. Now, take into account that the number of
weak compositions is

(n+k−1
k−1 ) = (n+k−1)!

n!(k−1)! = (n+k−1)(n+k−2)···(n+1)
(k−1)!

= 1
(k−1)! nk−1

(
1 +

k− 1
n

)
︸ ︷︷ ︸

<2

(
1 +

k− 2
n

)
︸ ︷︷ ︸

<2

· · ·
(

1 +
1
n

)
︸ ︷︷ ︸

<2
≤ 1

(k−1)! (2n)k−1.

We use standard O-notation for asymptotic upper bounds following Cormen et al. [44].

Thus, for a non-constant k, we have (n+k−1
k−1 ) = O

(
(2n)k−1

(k−1)!

)
.

Proposition 6. The number of canonical minimum representations of WMVG without dum-

mies, with n players and quota q, is O( (2n)q−1

(q−1)! ). When dummies are allowed this number be-

comes O( (2n)q

q! ).

Proof. For games without dummies, we know that the possible values for the players’
weights are between 1 and q. Consider the set of q-tuples (A1, A2, . . . , Aq) with Ai ∈
{0, . . . , n} and whose sum adds up to n. Such a tuple defines in a unique way a canonical
representation with quota q and having Ai players with weight i. Hence, the number of such
compositions of n is an upper bound on the number of canonical minimum representations,
and we get the upper bound.

For games without dummy players, the analysis is the same, taking into account that
the value 0 can be present. This leads to compositions of n into q + 1 parts.

The previous result provides an upper bound on the number of canonical minimum
representations with a given quota. However, we have no assurance that this bound is
indeed tight. We will show that the bound is tight for q ≤ 3. Before doing so we need an
auxiliary result.

Lemma 2. Let [q; w] be a canonical minimum sum representation of Γ. For q ≤ 3, [q; w] is a
minimum representation and hence we have uniqueness in the representation.

Proof. We divide the proof into cases depending on the value of q.

Case q = 1: According to Proposition 1, any canonical minimum sum representation with
quota 1 has the form [1; 1, . . . , 1, 0, . . . , 0]. As w(N) is the number of 1 s in w, any
other minimum sum representation of Γ must have the same number of 1 s. Therefore,
the representation is unique.

Case q = 2: In this case w must have the form (2, . . . , 2, 1, . . . , 1, 0, . . . 0). If another min-
imum sum representation exists it must have the same number of 0s. As the sum
must be preserved, the only possibility is to increase some 1 weights to 2 and to
balance these changes by decreasing the same number of 2 s and 1 s. However this
transformation leads to the same canonical representation.

Case q = 3: Now [q; w] has the form [3; 3, . . . , 3, 2, . . . , 2, 1, . . . , 1, 0, . . . , 0]. Exactly as before,
an other representation must have the same number of 0s. A symmetric argument
shows that the total number of 3 s must be preserved. This is because wi = 3 if
and only if {i} is a minimal winning coalition. Therefore the only possibility is that
another representation is obtained by increasing by 1 some 1 s and decreasing by 1
some 2 s. As the sum must be preserved, as in the previous case, the corresponding
canonical representations are identical.
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Now we know that if a game has a minimum sum representation with quota 1, 2 or
3 then this representation is minimum. Using this characterization, we are able to count
exactly, for any n, the number of games with n players having a canonical minimum
representation with quotas up to 3.

Let M(n, q) be number of WMVG without dummies with n players having a canonical
minimum representation with quota q and let D(n, q) be number of WMVG with n players
having a canonical minimum representation with quota q.

Proposition 7. For any n > 1, M(n, 1) = 1, M(n, 2) = n− 1, M(n, 3) = (n−2)(n+1)
2 .

Proof. Let us analyze first the case in which dummies are not allowed. In this case, we
know that the players must have positive weight, and that no player can have greater
weight than the quota. When q = 1, the unique possible representation is [1; 1, 1, . . . , 1]
which indeed is minimum.

When q = 2 each player either has weight 1 or 2. We can list all the possible repre-
sentations, starting from the one in which all the players have weight 1, and increase the
number of twos, until reaching the representation in which all the players have weight
2. In this sequence, all but the two representations [2; 2, 2, . . . , 2] and [2; 2, 2, . . . , 2, 1] are
canonical minimum. Observe that the first excluded one does not comply the property
gcd(q, w1, w2, . . . , wn) = 1 of Proposition 1. In the second one, player n does not belong
to any minimal winning coalition, and hence it is a dummy. Therefore the condition that
all dummy players have weight 0 is violated. In total, we have n + 1 representations,
two of them not being minimum sum, and therefore we have n − 1 distinct minimum
sum representations.

When q = 3, in a minimum representation w can only hold weights 1, 2 and 3. The
representation with all weights equal to 3 is not minimum, therefore at least one player
must have weight 1 or 2. According to Proposition 2, a player with assigned weight 1
must be in a minimal winning coalition of weight 3. Therefore, there are two possibilities,
either there are 3 distinct players with weight 1 or there is a player with weight 2. Note
that if there is only one player with weight 1 and some players with weight 2 and 3, i.e.,
[3; 3, . . . , 3, 2, . . . , 2, 1], the representation is not minimum sum, since [2; 2, . . . , 2, 1, . . . , 1] has
less sum and represents the same game. Note, however that if an extra player with weight 1
is added then the representation is minimum sum. It is easy to check that any combinations
avoiding the mentioned restrictions are minimum sum. Therefore, we have only two types
of weights assignments to consider. Assignments with at least three ones and assignments
with at least a two and at least two ones. Counting the first type is equivalent to counting
the number of integer solutions of the equation x1 + x2 + x3 = n with x2, x3 ≥ 0 and
x1 ≥ 3. Furthermore, the second one is equivalent to the number of integer solutions to the
equation x1 + x2 + x3 = n with x1 ≥ 2, x2 ≥ 1 and x3 ≥ 0. In both cases the total number is
(n−1

2 ). However, we are double counting some solutions. We need to discount the number
of integer solutions to the equation x1 + x2 + x3 = n with x1 ≥ 3, x2 ≥ 1 and x3 ≥ 0 which
is (n−2

2 ). Therefore, M(n, 3) = 2(n−1
2 )− (n−2

2 ) = (n−2)(n+1)
2 as we wanted to see.

We can also get the following expressions for general games with quota up to 3.

Proposition 8. For any n > 1, D(n, 1) = n, D(n, 2) = (n
2), D(n, 3) = (n−1)(n−2)(n+3)

6 .

Proof. Recall that according to Proposition 1 dummy players in minimum sum represen-
tation have weight 0. When q = 1, we just need to select the number of players that are
dummies. As the minimum number of dummies is 0, and the maximum is n− 1, we get a
total of n canonical minimum representations with quota 1.

When q = 2, now we have three possible weights: 0, 1 or 2. In order to get that the
gcd of all values is 1, we need that at least one player has weight 1. However, if we only
have one player with weight 1 this player would be a dummy. Therefore, we have, in
any minimum sum representation, at least two players with weight 1. Furthermore, any
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representation with at least 2 players with weight 1 is minimum sum. It can be trivially
checked that none of its weights can be decreased. Therefore, D(n, 2) is the number of
non-negative integer solutions to the equation: x0 + x1 + x2 = n, with x0, x2, x3 ≥ 0 and
x1 ≥ 2. Which is indeed (n

2).
Let us analyze the case q = 3. Deleting a dummy in a minimum sum representation

of the game leads to the minimum sum representation of the game with the same minimal
winning coalitions but with one player less. Therefore, conditions established for the
minimum number of occurrences of the weights required in the proof of Proposition 7
must be preserved here. Therefore, to compute D(n, 3) it suffices to compute the number
of integral solutions to the equation x0 + x1 + x2 + x3 = n, first with x0, x2, x3 ≥ 0 and
x1 ≥ 3; second with x0, x3 ≥ 0, x1 ≥ 2 and x2 ≥ 1; third with x0, x3 ≥ 0, x1 ≥ 3 and x2 ≥ 1.
As before, the last number takes care of the representations that are counted in the other
two. This gives, D(n, 3) = (n

3) + (n
3)− (n−1

3 ) = (n−1)(n−2)(n+3)
6 .

Up to quota 3, we observe a polynomial number of representations, which agree with
Proposition 6.

In the previous results, we focused in the number of WMVG allowing or not dummies.
Those results can be used to count other subclasses of WMVG for small quotas. We call
player i is winner in a game Γ when the coalition {i} is winning. Furthermore, the weight
of a winner in a minimum sum representation determines the quota. In the proof of
Proposition 4, we have shown that if [q; w] is a minimum representation of Γ and we
consider the game Γ′ removing a winner in Γ, the remaining weights with quota q are a
minimum representation for Γ′. Using this property we get the following result.

Lemma 3. For n > 1, the number of minimum representations of WMVGs without dummies, with
n players and quota q having a winner player is equal to the number of minimum representations of
WMVGs without dummies with n− 1 players and quota q.

7. Discussion and Conclusions

We have analyzed the weights and the quotas appearing in canonical minimum
sum representations of WMVGs up to 8 players. Our analysis draws a clear picture of
the frequency and distributions of such values. We have observed that the distributions
become more similar as the number of players increases. The predicted distributions could
help to find a method to obtain randomly canonical minimum representations of games
with a large number of players. Furthermore, such a distribution might provide the tool
to analyze other relevant question on the set of weighted voting games, in particular the
relationship among weight and power.

We have devised some simple procedures that allow us to obtain extended minimum
or minimum sum representations by the addition of one player to a minimum or minimum
sum representation. A future line of work is to understand the size and properties of
family of WMVGs that can be obtained through the proposed procedures. One of the
procedures for minimum representations involve the repetition of one of the weights, i.e.,
[q; wi ⊕w]. For the case of minimum sum representations, in [29] it is shown that there are
games having more than one minimum sum representation in which equivalent players
get different weights. Assume that such equivalent players are i and j in a minimum
sum representation [q; w]. Then [q + wi; wi ⊕w] and [q + wj; wj ⊕w] represent the same
game, and both cannot be minimum sum. Thus, this procedure does not allow to create
an extended minimum sum representation. It remains open to show if the procedures
[q + wi; wi ⊕w] or [q; q⊕w] are valid for minimum sum representations.

One consequence of these procedures is that, for any quota or weight, it is possible
to generate a WMVG with minimum or minimum sum representation containing this
weight or quota for a large enough number of players. In this line, we have some open
problems related to the considered values in Corollary 1. Firstly, given a quota q ≥ 1, to find
the minimum number of players nq such that there exits a WMVG with minimum (sum)
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representation [q; w]. In the same vein, given a weight w ≥ 0, to find the minimum number
of players nw such that there exits a WMVG with minimum (sum) representation [q; w⊕w].

As a consequence of the previous procedures, we have obtained bounds among the
maximum weights and quotas in minimum representations. However the maximum
values coincide up to eight players. An interesting problem is to determine whether the
relationships carry over to the maximum values in canonical minimum representations.

We have proved that, for a quota q ≤ 3, all minimum sum representations are mini-
mum. However, the representation [12; 7, 6, 6, 4, 4, 4, 3, 2] given in [29] is a minimum sum
representation, but it is not a minimum representation. It is interesting to find the smallest
quota 3 < q < 12 such that there exists a WMVG without minimum representation.

It remains open to find closed formulas for M(n, q) and D(n, q), when we restrict
ourselves to subclasses of WMVGs as, for example, self-dual or non seft-dual.

Our last results provide information on games with multiple players having canonical
minimum representations with small quotas. Those games allow for a simpler repre-
sentation in which we need only to state the number of times that each weight appears.
This representation might lead to fast algorithms for listing or enumerating the canonical
minimum representations of games with many players and a reasonable small quota.
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Appendix A

In this section, we incorporate all the data gathered about the frequencies of weights
and quotas for games up to 8 players.

Appendix A.1

Table A1. Frequencies of weights for canonical minimum game representations.

Weight
# of Players

Total
1 2 3 4 5 6 7 8

1 1 4 13 45 196 1349 20,288 933,039 954,935
2 0 0 2 17 134 1416 28,148 1,513,774 1,543,491
3 0 0 0 6 82 1144 26,702 1,602,456 1,630,390
4 0 0 0 0 30 744 23,376 1,599,991 1,624,141
5 0 0 0 0 18 607 21,487 1,543,328 1,565,440
6 0 0 0 0 0 298 16,826 1,465,011 1,482,135
7 0 0 0 0 0 238 15,211 1,397,070 1,412,519
8 0 0 0 0 0 110 11,592 1,295,818 1,307,520
9 0 0 0 0 0 58 9768 1,212,111 1,221,937

10 0 0 0 0 0 0 6872 1,103,819 1,110,691
11 0 0 0 0 0 0 5972 1,032,565 1,038,537
12 0 0 0 0 0 0 4036 920,263 924,299
13 0 0 0 0 0 0 3262 847,566 850,828
14 0 0 0 0 0 0 1932 746,821 748,753
15 0 0 0 0 0 0 1158 667,047 668,205
16 0 0 0 0 0 0 724 595,577 596,301
17 0 0 0 0 0 0 298 522,479 522,777
18 0 0 0 0 0 0 182 459,325 459,507
19 0 0 0 0 0 0 0 395,566 395,566
20 0 0 0 0 0 0 0 343,714 343,714
21 0 0 0 0 0 0 0 285,876 285,876
22 0 0 0 0 0 0 0 244,044 244,044
23 0 0 0 0 0 0 0 195,572 195,572
24 0 0 0 0 0 0 0 170,640 170,640
25 0 0 0 0 0 0 0 121,872 121,872
26 0 0 0 0 0 0 0 105,500 105,500
27 0 0 0 0 0 0 0 73,660 73,660
28 0 0 0 0 0 0 0 66,696 66,696
29 0 0 0 0 0 0 0 37,858 37,858
30 0 0 0 0 0 0 0 38,588 38,588
31 0 0 0 0 0 0 0 19,946 19,946
32 0 0 0 0 0 0 0 16,158 16,158
33 0 0 0 0 0 0 0 9894 9894
34 0 0 0 0 0 0 0 11,020 11,020
35 0 0 0 0 0 0 0 3632 3632
36 0 0 0 0 0 0 0 3312 3312
37 0 0 0 0 0 0 0 672 672
38 0 0 0 0 0 0 0 2656 2656
39 0 0 0 0 0 0 0 208 208
40 0 0 0 0 0 0 0 992 992
41 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 192 192

Total 1 4 15 68 460 5964 197,834 21,606,328 21,810,674
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Appendix A.2

Table A2. Frequencies of weights in strict canonical minimum representations.

Weight
# of Players

Total
1 2 3 4 5 6 7 8

1 1 2 5 15 59 375 5315 237,538 243,310
2 0 0 1 6 41 389 7277 386,471 394,185
3 0 0 0 3 29 341 7068 412,834 420,275
4 0 0 0 0 12 226 6260 411,586 418,084
5 0 0 0 0 9 214 6126 404,808 411,157
6 0 0 0 0 0 102 4709 382,773 387,584
7 0 0 0 0 0 101 4709 378,859 383,669
8 0 0 0 0 0 47 3602 350,039 353,688
9 0 0 0 0 0 29 3245 337,054 340,328

10 0 0 0 0 0 0 2303 310,445 312,748
11 0 0 0 0 0 0 2224 302,672 304,896
12 0 0 0 0 0 0 1495 267,925 269,420
13 0 0 0 0 0 0 1400 259,825 261,225
14 0 0 0 0 0 0 825 229,211 230,036
15 0 0 0 0 0 0 543 212,100 212,643
16 0 0 0 0 0 0 318 191,634 191,952
17 0 0 0 0 0 0 149 176,428 176,577
18 0 0 0 0 0 0 91 156,578 156,669
19 0 0 0 0 0 0 0 143,393 143,393
20 0 0 0 0 0 0 0 124,447 124,447
21 0 0 0 0 0 0 0 110,904 110,904
22 0 0 0 0 0 0 0 94,874 94,874
23 0 0 0 0 0 0 0 82,068 82,068
24 0 0 0 0 0 0 0 69,547 69,547
25 0 0 0 0 0 0 0 54,208 54,208
26 0 0 0 0 0 0 0 46,049 46,049
27 0 0 0 0 0 0 0 34,135 34,135
28 0 0 0 0 0 0 0 30,404 30,404
29 0 0 0 0 0 0 0 18,216 18,216
30 0 0 0 0 0 0 0 18,355 18,355
31 0 0 0 0 0 0 0 9762 9762
32 0 0 0 0 0 0 0 7818 7818
33 0 0 0 0 0 0 0 4894 4894
34 0 0 0 0 0 0 0 5442 5442
35 0 0 0 0 0 0 0 1816 1816
36 0 0 0 0 0 0 0 1656 1656
37 0 0 0 0 0 0 0 336 336
38 0 0 0 0 0 0 0 1328 1328
39 0 0 0 0 0 0 0 104 104
40 0 0 0 0 0 0 0 496 496
41 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 96 96

Total 1 2 6 24 150 1824 57,659 6,269,128 6,328,794
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Appendix A.3

Table A3. Frequencies of weights in canonical minimum representations disregarding multiplicities.

Weight
# of Players

Total
1 2 3 4 5 6 7 8

1 1 2 5 17 86 760 14,751 807,905 823,527
2 0 0 2 11 72 794 18,901 1,225,441 1,245,221
3 0 0 0 6 58 721 18,334 1,286,604 1,305,723
4 0 0 0 0 30 570 17,156 1,295,455 1,313,211
5 0 0 0 0 18 497 16,383 1,262,061 1,278,959
6 0 0 0 0 0 298 14,006 1,225,101 1,239,405
7 0 0 0 0 0 238 13,047 1,183,799 1,197,084
8 0 0 0 0 0 110 10,530 1,123,504 1,134,144
9 0 0 0 0 0 58 9212 1,069,176 1,078,446

10 0 0 0 0 0 0 6872 996,529 1,003,401
11 0 0 0 0 0 0 5972 943,919 949,891
12 0 0 0 0 0 0 4036 857,467 861,503
13 0 0 0 0 0 0 3262 799,922 803,184
14 0 0 0 0 0 0 1932 717,731 719,663
15 0 0 0 0 0 0 1158 649,807 650,965
16 0 0 0 0 0 0 724 584,161 584,885
17 0 0 0 0 0 0 298 518,361 518,659
18 0 0 0 0 0 0 182 456,343 456,525
19 0 0 0 0 0 0 0 395,566 395,566
20 0 0 0 0 0 0 0 343,714 343,714
21 0 0 0 0 0 0 0 285,876 285,876
22 0 0 0 0 0 0 0 244,044 244,044
23 0 0 0 0 0 0 0 195,572 195,572
24 0 0 0 0 0 0 0 170,640 170,640
25 0 0 0 0 0 0 0 121,872 121,872
26 0 0 0 0 0 0 0 105,500 105,500
27 0 0 0 0 0 0 0 73,660 73,660
28 0 0 0 0 0 0 0 66,696 66,696
29 0 0 0 0 0 0 0 37,858 37,858
30 0 0 0 0 0 0 0 38,588 38,588
31 0 0 0 0 0 0 0 19,946 19,946
32 0 0 0 0 0 0 0 16,158 16,158
33 0 0 0 0 0 0 0 9894 9894
34 0 0 0 0 0 0 0 11,020 11,020
35 0 0 0 0 0 0 0 3632 3632
36 0 0 0 0 0 0 0 3312 3312
37 0 0 0 0 0 0 0 672 672
38 0 0 0 0 0 0 0 2656 2656
39 0 0 0 0 0 0 0 208 208
40 0 0 0 0 0 0 0 992 992
41 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 192 192

Total 1 2 7 34 264 4046 156,756 19,151,554 19,312,664
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Appendix A.4

Table A4. Frequencies of quotas in canonical minimum representations.

Quota
# of Players

Total
1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1 8
2 0 1 2 3 4 5 6 7 28
3 0 0 2 5 9 14 20 27 77
4 0 0 0 5 15 31 54 85 190
5 0 0 0 3 17 47 100 184 351
6 0 0 0 0 16 72 195 421 704
7 0 0 0 0 16 88 288 720 1112
8 0 0 0 0 9 101 429 1267 1806
9 0 0 0 0 5 109 577 1963 2654

10 0 0 0 0 0 108 769 3066 3943
11 0 0 0 0 0 114 947 4258 5319
12 0 0 0 0 0 81 1087 5999 7167
13 0 0 0 0 0 89 1310 7971 9370
14 0 0 0 0 0 55 1432 10,452 11,939
15 0 0 0 0 0 40 1557 13,119 14,716
16 0 0 0 0 0 15 1604 16,381 18,000
17 0 0 0 0 0 17 1794 20,070 21,881
18 0 0 0 0 0 7 1700 23,746 25,453
19 0 0 0 0 0 0 1828 28,328 30,156
20 0 0 0 0 0 0 1682 32,403 34,085
21 0 0 0 0 0 0 1661 37,203 38,864
22 0 0 0 0 0 0 1413 41,463 42,876
23 0 0 0 0 0 0 1504 47,652 49,156
24 0 0 0 0 0 0 1168 50,625 51,793
25 0 0 0 0 0 0 1134 57,212 58,346
26 0 0 0 0 0 0 823 60,451 61,274
27 0 0 0 0 0 0 774 66,225 66,999
28 0 0 0 0 0 0 594 68,945 69,539
29 0 0 0 0 0 0 485 75,531 76,016
30 0 0 0 0 0 0 412 76,086 76,498
31 0 0 0 0 0 0 281 82,142 82,423
32 0 0 0 0 0 0 148 82,507 82,655
33 0 0 0 0 0 0 165 87,052 87,217
34 0 0 0 0 0 0 148 85,949 86,097
35 0 0 0 0 0 0 67 90,623 90,690
36 0 0 0 0 0 0 48 86,982 87,030
37 0 0 0 0 0 0 16 90,458 90,474
38 0 0 0 0 0 0 25 86,963 86,988
39 0 0 0 0 0 0 8 88,791 88,799
40 0 0 0 0 0 0 8 82,946 82,954
41 0 0 0 0 0 0 0 84,557 84,557
42 0 0 0 0 0 0 0 78,669 78,669
43 0 0 0 0 0 0 0 78,632 78,632
44 0 0 0 0 0 0 0 72,350 72,350
45 0 0 0 0 0 0 0 71,709 71,709
46 0 0 0 0 0 0 0 64,460 64,460
47 0 0 0 0 0 0 0 62,589 62,589
48 0 0 0 0 0 0 0 57,110 57,110
49 0 0 0 0 0 0 0 54,556 54,556
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Table A4. Cont.

Quota
# of Players

Total
1 2 3 4 5 6 7 8

50 0 0 0 0 0 0 0 49,433 49,433
51 0 0 0 0 0 0 0 47,505 47,505
52 0 0 0 0 0 0 0 41,084 41,084
53 0 0 0 0 0 0 0 36,881 36,881
54 0 0 0 0 0 0 0 35,016 35,016
55 0 0 0 0 0 0 0 32,361 32,361
56 0 0 0 0 0 0 0 26,769 26,769
57 0 0 0 0 0 0 0 24,945 24,945
58 0 0 0 0 0 0 0 23,499 23,499
59 0 0 0 0 0 0 0 19,829 19,829
60 0 0 0 0 0 0 0 16,793 16,793
61 0 0 0 0 0 0 0 15,265 15,265
62 0 0 0 0 0 0 0 13,142 13,142
63 0 0 0 0 0 0 0 11,201 11,201
64 0 0 0 0 0 0 0 10,612 10,612
65 0 0 0 0 0 0 0 8872 8872
66 0 0 0 0 0 0 0 8018 8018
67 0 0 0 0 0 0 0 6544 6544
68 0 0 0 0 0 0 0 4874 4874
69 0 0 0 0 0 0 0 4446 4446
70 0 0 0 0 0 0 0 4020 4020
71 0 0 0 0 0 0 0 3031 3031
72 0 0 0 0 0 0 0 2957 2957
73 0 0 0 0 0 0 0 2563 2563
74 0 0 0 0 0 0 0 1776 1776
75 0 0 0 0 0 0 0 1820 1820
76 0 0 0 0 0 0 0 1283 1283
77 0 0 0 0 0 0 0 820 820
78 0 0 0 0 0 0 0 770 770
79 0 0 0 0 0 0 0 900 900
80 0 0 0 0 0 0 0 533 533
81 0 0 0 0 0 0 0 418 418
82 0 0 0 0 0 0 0 481 481
83 0 0 0 0 0 0 0 332 332
84 0 0 0 0 0 0 0 215 215
85 0 0 0 0 0 0 0 225 225
86 0 0 0 0 0 0 0 143 143
87 0 0 0 0 0 0 0 43 43
88 0 0 0 0 0 0 0 79 79
89 0 0 0 0 0 0 0 58 58
90 0 0 0 0 0 0 0 33 33
91 0 0 0 0 0 0 0 110 110
92 0 0 0 0 0 0 0 56 56
93 0 0 0 0 0 0 0 20 20
94 0 0 0 0 0 0 0 37 37
95 0 0 0 0 0 0 0 0 0
96 0 0 0 0 0 0 0 45 45
97 0 0 0 0 0 0 0 0 0
98 0 0 0 0 0 0 0 1 1
99 0 0 0 0 0 0 0 0 0
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Table A4. Cont.

Quota
# of Players

Total
1 2 3 4 5 6 7 8

100 0 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0 0
102 0 0 0 0 0 0 0 9 9
103 0 0 0 0 0 0 0 0 0
104 0 0 0 0 0 0 0 0 0
105 0 0 0 0 0 0 0 18 18

Total 1 2 5 17 92 994 28,262 270,0791 273,0164
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