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Abstract: I experimentally investigate how vague language changes the nature of communication in a
biased strategic information transmission game. Counterintuitively, when both precise and imprecise
messages can be sent, in aggregate, senders are more accurate, and receivers trust them more than
when only precise messages can be sent. I also develop and structurally estimate a model showing
that vague messages increase communication between boundedly rational players, especially if some
senders are moderately honest. Moderately honest senders avoid stating an outright lie by using
vague messages to hedge them. Then, precise messages are more informative because there are fewer
precise lies.
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1. Introduction

Often, people like to shade the truth by being imprecise. A salesperson might say that
he or she receives “few complaints” about an appliance he or she is trying to sell, even if
three of the eight customers who bought that model in the past year had complained. A
friend might explain his or her absence from a Sunday afternoon gathering he or she did
not wish to attend by saying he or she had been “sick all weekend”, even if his or her
temperature never went above 99.5 degrees Farenheit.

One characteristic of these vague utterances is that they are explicitly imprecise. This
paper experimentally investigates how allowing players the option of sending explicitly
imprecise messages instead of precise messages affects strategic information transmission
in a standard cheap talk setting, similar to Crawford and Sobel [1].1 Counterintuitively,
allowing imprecise messages improves communication—senders on average choose more
informative messages, and receivers on average treat the messages as more informative.

An additional contribution of my paper is to explain why communication becomes
more effective. In an experimental setting with rational, self-interested players, the kinds
of messages available do not matter because in equilibrium, no messages convey any
information [1]. However, bounded rationality or honesty might cause players to com-
municate some information and to treat imprecise messages differently than equivalent
precise messages. I find that both characteristics explain subject behavior but that bounded
rationality is relatively more important.

In the experiment, the subjects communicate about a state s, which is an integer
between 1 and 5. The sender observes s and chooses freely from a menu of English-
language messages to send about it. In the base treatment, the menu consists of every
message that specifies the state precisely, such as “The state is 3”. The rich language
treatment adds three additional messages that specify an interval the state is within, either
from 1 to 3, 2 to 4, or 3 to 5 (e.g., “The state is 1, 2, or 3”). After learning the message, the
receiver then chooses an action a. The receiver would like to choose a = s, while the sender
would like him or her to choose a = s + 2, so they play a partial common interest game [4].

With either message space, with rational payoff-maximizing players, no Bayesian
Nash equilibrium equilibrium exists in which m conveys any information about s, and as a

Games 2022, 13, 49. https://doi.org/10.3390/g13040049 https://www.mdpi.com/journal/games

https://doi.org/10.3390/g13040049
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/games
https://www.mdpi.com
https://doi.org/10.3390/g13040049
https://www.mdpi.com/journal/games
https://www.mdpi.com/article/10.3390/g13040049?type=check_update&version=1


Games 2022, 13, 49 2 of 27

result, a choices are independent of m. However, subjects in both treatments send messages
that convey more information than optimal and are more trusting of messages than they
should be.

This “overcommunication” finding is typical (e.g., Cai and Wang [5] or Duffy et al. [6];
see Blume et al. [7] for a general overview). The prior experimental literature has alternately
explained excess communication through preferences for truth-telling [2,8–14] or bounded
rationality [5,15–17].2

Comparing their relative importance can be difficult, because from a money-maximizing
perspective, honest behavior will seem unsophisticated. To compare them, I develop a
model which teases out distinct implications of honesty and bounded rationality across
my treatments. My model adapts the one-parameter Poisson cognitive hierarchy model
in Camerer et al. [18] to cheap talk and combines it with some players receiving a non-
pecuniary benefit from truth-telling.

In structural non-equilibrium models such as cognitive hierarchy or level-k models,
players have a (typically incorrect) belief about how other players are acting and optimize
given their beliefs.3 Players vary in the sophistication of their beliefs. Level 0 (L0) players
act non-strategically—in this context, by either being truthful or by being completely
credulous—while Lk players are defined inductively and believe all players are of lower
levels. Due to the upward bias, for instance, L1 senders exaggerate s by choosing m = s + 2.
If the L2 receivers think a few senders are L0 but most are L1, they discount messages
m ≥ 3 by choosing a = m− 2, but they think m < 3 are truthful and do not discount them.
Following Camerer et al. [18], I assume that the players’ levels have the Poisson distribution.
Many qualitative aspects of my subjects’ behavior match this sort of reasoning.

Players vary in their honesty types in addition to their cognitive types. A player’s
honesty type indicates how strong a preference for truth-telling he or she has and can be
thought of as reduced-form behavior combining a variety of factors. Some subjects behave
as if they dislike sending literal false messages (i.e., “lies”, following Sobel [24]’s definition).
This form of honesty is the most straightforward explanation for why senders’ message
choices would be qualitatively different in the two treatments.

I am agnostic about the underlying reason my subjects behave in this way, though.
Recent experiments show that in non-strategic settings, subjects seem to be motivated by
honesty preferences that combine a direct cost of lying and a cost for being identified as a
liar [13,14]. The dislike of sending literal false messages embodied in my model’s honesty
types could stem from either of these explanations.

Players who care little about being honest, players who care moderately about being
honest, and players who care strongly about being honest all should exhibit distinct
behaviors in my experiment. The rich message treatment enables players to truthfully
exaggerate, such as by sending the message “The state is 1, 2, or 3” when the state is really 1.
All players believe that precise lies are more effective deceptions than truthful exaggerations,
especially when the state is high. Like weakly honest players, moderately honest players
in the base treatment should not send honest messages because the monetary loss from
forgoing precise lies is too high. However, moderately honest players should engage
extensively in truthful exaggeration in rich treatment. Finally, strongly honest players
should be honest even when truthful exaggerations are not available in the base treatment.

Subject behavior across the treatments was more consistent with moderate honesty
than strong honesty. Overall, 45% of the messages sent in the rich treatment were imprecise,
and 57% of the imprecise messages were truthful. On the other hand, in the base treatment
s < 5, only 15% of the messages were truthful.

I then estimate a simple structural model using maximum likelihood with two pa-
rameters of interest: λ, the average cognitive level of the subjects, and τ, the fraction (and
subjects’ beliefs about the fraction) of moderately honest players. Most of the subjects in
my experiment employed one or two levels of exaggeration or discounting (i.e., rounds of
best-response reasoning). About a quarter of the subjects showed moderate preferences
for honesty.
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Despite the presence of honest players, when these estimates are used to calibrate
my model, they imply that honesty plays a limited role in explaining why communica-
tion increases in rich language treatment. Just as important as honesty are two other
factors. First, the model implies that precise messages are more informative in rich message
treatment independent of honesty. In that treatment, senders of all honesty types often
choose imprecise messages instead of precise ones if they observe a low state. Removing
the most misleading lies from the pool of precise messages improves the accuracy of the
precise messages. Second, I estimate that players are somewhat less sophisticated in their
reasoning in the rich language treatment. The reduction in the average levels of reasoning
seems likely to be driven by the increased complexity of strategic calculations in the rich
language treatment. In the calibrated model, this reduction in sophistication manifests
largely through increased receiver trust in the messages.

Several groups of experimental papers are closely related to this paper. My experimental
setup in the base treatment mirrors Cai and Wang [5] and Wang, Spezio, and Camerer [15].
They explained the overcommunication in their experiments using level-k but did not allow
preferences for truth-telling in their models or investigate the impact of vagueness.4, those
choices caused the computer to randomize between states in an interval. The receivers always
received a point message and were not informed that it was randomly chosen.

A second pair of experimental papers investigated how senders use vague or evasive
language in simpler two-state strategic information transmission settings [25,26]. These
found that deception through evasive messages such as feigning ignorance is less psycho-
logically costly than deception through direct lies.

A third set of papers investigated information unraveling in voluntary disclosure
games, in which the subjects were only able to send truthful messages. Benndorf et al. [27]
elicited a distribution of level-k types in a disclosure game, finding substantial numbers
of k = 1, k = 2, and k = 3 players. Jin et al. [28] and Deversi et al. [29] both used state
spaces and payoff functions very similar to those in my experiment. Jin et al. [28] found
that senders disclose favorable information but withhold less favorable information, and
receivers are insufficiently skeptical when information is not disclosed. Deversi et al. [29]
examined what occurs when senders can choose imprecise disclosures. They found that
vagueness is profitably exploited by senders to take advantage of naive receivers, and
information transmission is higher in their precise-only treatment. Hence, interestingly, my
result that vagueness improves communication is reversed for disclosure games (see also Li
and Schipper [30] and Hagenbach and Perez-Richet [31]). Unusually, Li and Schipper [30]
found that the subjects exhibited relatively high levels of sophistication in a disclosure
game with imprecise messages.

Many other papers investigate the role of vague language in other forms of cheap talk
games, including asymmetric coordination games with private information [32], leader-
follower public goods games [33], delegation games [34], cheating games [35], three-player
common interest context-dependent communication games [36], and real-world communi-
cation about intentions on a TV game show [37]. Like this paper, these papers found that
subjects, given the choice, prefer imprecise messages to outright lies, and followers are
too trusting of these messages. In some, vagueness is beneficial either because it can mask
incentives that, if known, would make an attractive equilibrium strategically unsustain-
able [32,33], because it makes information more credible [34], or because it enables more
efficient communication of context-dependent information [36].

Relative to these sets of papers, my contribution is to show that vagueness can have
positive effects on communication in strategic information transmission contexts and offer
an explanation for why it has positive effects.5

Section 2 describes my experiment, and Section 3 provides descriptions and reduced-
form analyses of subject behavior, focused on motivating my model. Section 4 presents my
model and its predictions, after which Section 5 details my structural estimates. Finally,
Section 6 concludes the paper.
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2. Experimental Design

My experimental design builds on those of Cai and Wang [5] and Wang, Spezio, and
Camerer [15], which are discrete versions of the Crawford and Sobel [1] cheap talk game.
In each period, subjects were paired up, with one member of each pair being the sender
and one being the receiver. A state of the world s ∈ S ≡ {1, 2, . . . , 5} was then randomly
determined for each pair. Each state was equally likely. The sender then learned s and chose
m ∈ M to send to the receiver. The message space M—the set of possible messages—varied
across treatments. Finally, the receiver learned m and chose a ∈ A = S.

The sender and receiver payoffs (in experimental units) were

us(s, a) = 100− 25× (s + 2− a)1.2

ur(s, a) = 100− 25× (s− a)1.2

The subjects were presented with payoff tables similar in format to Table 1 below,
although with neutral labels instead of “sender”, “receiver”, “action”, and “state”.

Table 1. Payoff tables.

Sender Payoffs Receiver Payoffs

Action
Choice

State State

s = 1 s = 2 s = 3 s = 4 s = 5 s = 1 s = 2 s = 3 s = 4 s = 5

a = 1 43 7 −32 −72 −115 100 75 43 7 −32
a = 2 75 43 7 −32 −72 75 100 75 43 7
a = 3 100 75 43 7 −32 43 75 100 75 43
a = 4 75 100 75 43 7 7 43 75 100 75
a = 5 43 75 100 75 43 −32 7 43 75 100

There were three treatments. In the base treatment, the sender could send only precise
messages of the form “s is x” (i.e., the message space was MB = {1, 2, 3, 4, 5}). In the rich
language treatment, the sender could choose to send either precise messages or imprecise
messages. Imprecise messages specified an interval of three numbers that s could be within,
such as “s is 2, 3, or 4”, so the message space was
MR = {1, 2, 3, 4, 5, {1, 2, 3}, {2, 3, 4}, {3, 4, 5}}.

Finally in a third treatment (the noise treatment), the sender observed s imperfectly
and could send precise messages or imprecise messages (MN = MR). Instead of observing
s, the sender observed σ ∈ Σ = {{1}, {2}, {3}, {4}, {5}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5}}, where
σ was equally likely to be any element of Σ and s was equally likely to be any element of σ.
In practice, choices in the noise and rich treatments were indistinguishable, so I added the
noise data to the rich data, setting s = E[s | σ] for noise observations.6

Three principles guided the construction of MR. First, having only a few additional mes-
sages made the choices easier for the subjects and simpler to analyze subsequently. Second,
contiguous messages with intermediate precision of meaning suggest a natural interpretation
of low, medium, and high. Third, the precise messages were uniformly distributed over the
state space, and I chose to maintain that property for the imprecise messages.

Instructions for each treatment were handed out and read aloud at the start of that treat-
ment. (Appendix B contains the experimental instructions.) The experiment was conducted
using z-Tree software [42] at Clemson University in the fall of 2011. There were 42 subjects,
18 (42%) of whom were female. 24 (57%) subjects were first- or second-year college students,
while 18 (43%) were third-year, fourth-year, or graduate students. The subjects were mostly
College of Business and Behavioral Sciences undergraduates: 32 (76%) had majors in the busi-
ness school, 4 (10%) had humanities majors, and 6 (14%) had science or engineering majors.

The subjects alternated roles and were randomly rematched each period in order to
avoid repeated game effects. All subjects participated in all treatments, and the order of
the treatments was randomized for each session.7 In total, there were 268 rounds of the
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base treatment, 204 rounds of the vague treatment, and 220 rounds of the noise treatment
(there were 4–6 rounds for each treatment). Note that a round yields one message choice
observation and one action choice observation. Each experimental unit was worth USD
0.01. The average earnings were around USD 24, which included a USD 6 payment for
showing up.

3. Results

Table 2 shows the state from which each message was sent, on average, along with the
frequency of each message. Over half of messages in the base treatment were m = 5, which
led to that message not being especially informative, with E[s|m = 5] = 3.28. Generally,
the lower the message, the less likely it was to be chosen, and the stronger the signal it
provided that s was low. In the base treatment, m = 1 and m = 5 conveyed different
information than the other messages: the distribution of s, conditioned on m = 1, was
significantly differerent at the 10% level from that for m = 2 (two-tailed Mann–Whitney U
test p = 0.0643), and the distribution for m = 5 was significantly different from m = 4 at
the 1% level (MW p < 0.001).

Table 2. Informational content and distribution of messages across treatments.

Precise Messages
State from which Sent (E[s|m]) Frequency

Base Treat Rich Treat p % Base % Rich p

m = 1 1.81 2.50 0.278 a 0.06 0.02 ** 0.022 b

m = 2 2.33 2.50 0.618 a 0.11 0.03 *** <0.001 b

m = 3 2.43 2.29 0.771 a 0.14 0.08 ** 0.020 b

m = 4 2.53 3.36 ** 0.009 a 0.18 0.07 *** <0.001 b

m = 5 3.28 3.58 * 0.052 a 0.51 0.34 *** <0.001 b

Imprecise Messages
State from which Sent (E[s|m]) Frequency

Rich Treat p % Rich p

m = {1, 2, 3} 2.34 0.823 c 0.07 0.703 d

m = {2, 3, 4} 2.45 0.794 c 0.10 0.170 d

m = {3, 4, 5} 3.16 *** 0.002 c 0.29 *** <0.001 d

a and c: p values from two-sided Mann–Whitney U test comparing distribution of s from which m originated
between treatments for precise messages a, or for all messages of same expected value b. b and d: p values from
Fisher’s exact tests comparing frequency of precise m b or all messages of same expected value d. *: Significant at
0.1 level. **: Significant at 0.05 level. ***: Significant at 0.01 level.

The rich treatment produces three related effects. First, higher messages become more
accurate. For messages above m = 3, a precise message is a stronger signal that s is higher
in the rich treatment than in the base treatment, while m = 4 is 57% closer to its literal
meaning (rich language E[s|m = 4] = 3.36 versus base E[s|m = 4] = 2.53, MW p = 0.009),
and m = 5 is 17% closer (rich language E[s|m = 5] = 3.58 versus base E[s|m = 5] = 3.28,
MW p = 0.052). m = {3, 4, 5} is also 43% closer to an expected s = 4 than is the base
treament m = 4 (rich language E[s|m = {3, 4, 5}] = 3.16 versus base E[s|m = 4] = 2.53,
MW p = 0.003).

Second, almost half of the messages (45%) sent become imprecise, and imprecise
messages are twice as likely as precise m < 5. Imprecise messages are less likely to be
sent from s = 5 but otherwise are employed about half the time in every state.8 Such a
high fraction of imprecise messages is inconsistent with many explanations of my subjects’
behavior. For example, the analysis in Section 4 found that most variants of the level-
k models without honesty could predict that, at most, 20% of the messages would be
imprecise, and those would predominantly be sent from s = 1 and s = 2.

Third, the messages overall become less exaggerated. While 51% of the base treatment
messages were m = 5, only 34% of the rich treatment messages were the highest possi-
ble. The difference was statistically significant (Fisher’s exact test p < 0.001). The fraction
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of messages with an expected value of 4 (i.e., m = 4 or m = {3, 4, 5}) doubled from 18% to
36% in the rich treatment (Fisher’s p < 0.001). None of the other message frequencies were
significantly different between the treatments when comparing all messages of the same
expected value, except for m = 1, which went from 6% to 2% of the messages (Fisher’s
p = 0.015).

The receivers correctly treated the messages as informative, although many system-
atically misinterpreted them. Table 3 shows both the average and optimal action choice
for each message. The optimal action choice is the highest-payoff action choice given the
true distribution of messages. On average, the chosen a values were too high for both
treatments but showed the “correct” comparative static of lower actions when receiving a
lower message.

Table 3. Responses to messages.

Precise Messages
Action Choice (E[a|m]) Optimal a

Base Treat Rich Treat p Base Rich

m = 1 1.94 1.60 0.174 a 1 2
m = 2 2.30 2.57 0.353 a 2 2
m = 3 2.27 2.35 0.587 a 2 2
m = 4 2.91 3.03 0.655 a 2 3
m = 5 3.47 3.79 *** 0.004 a 3 4

Imprecise Messages
Action Choice (E[a|m]) Optimal a

Rich Treat p Rich

m = {1, 2, 3} 2.07 0.440 b 2
m = {2, 3, 4} 2.71 ** 0.043 b 2
m = {3, 4, 5} 3.10 0.159 b 3
a and b: p values from two-sided Mann–Whitney U test comparing distribution of a for precise messages across
treatments a or for base treatment messages to imprecise messages of the same expected value b. Optimal a values
are a(m) that would have maximized expected payoff in the treatment. **: Significant at 0.05 level. ***: Significant
at 0.01 level.

When comparing the responses in the rich treatment to the base treatment, the typical
actions did not change much. With the exception of the responses to m = 5, for which
E[a|m = 5] increased from 3.47 to 3.79 (MW p = 0.004), the hypothesis that the receivers’
responses to precise messages were the same across treatments could not be rejected. In
addition, the responses to m = {2, 3, 4}were systematically higher than the responses to the
precise treatment m = 3 (MW p = 0.043). These patterns were consistent with the level-k
behavior, as Section 4 explains. Figure 1 shows the full distribution of relative frequencies
Pr(s = x|m, treatment) for each message in the precise and rich treatments. For m = 1 and
m = 2, the most likely state from which the message was sent was the corresponding state
s = 1 or s = 2, while for m > 2, with the exception of precise m = 4 in the rich treatment,
the true state was never the most likely. Consistent with the initial level-k reasoning that
sends m = s + 2, messages m = 3 or m = {2, 3, 4} were most likely to have been sent from
s = 1 in both treatments. In the base treatment, exaggerating by two units is common
with m = 4 and m = 5 as well, but in the rich treatment, two-unit exaggerations were
less typical.

Next, Figure 2 shows the frequency of each action for every message sent (Pr(a | m)) in
the base and rich treatments. Consistent with the level-k predictions, there was widespread
discounting of messages m ≥ 3 by two units, such as choosing a = 1 in response to
m = 3. The discounting was less pronounced for m < 3, imprecise messages, and m = 5 in
the rich language treatment.

Figures 1 and 2 also show that the m and a choices were quite noisy in both treatments,
with the exception of m = 1 in the base treatment, Pr(s | m) < 1/2 for any s, and generally
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Pr(s | m) > 1/10 for all s. This noisiness means that usually, the receivers would maximize
utility by adjusting their action choices inward toward a = 3 (as in Table 3).
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Figure 1. Posterior probabilities Pr(s | m). Blue squares are posteriors in base treatment, red squares
are posteriors for precise messages in rich treatment, and red x marks are posteriors for imprecise
messages in rich treatment.

While the number of subjects was too low to perform a detailed analysis of how
different demographic characteristics affected communication choices, I did find a few
differences in how the subjects behaved based on gender or college class year. The female
subjects were less trusting of messages in the precise treatment than the male subjects,
with a mean distance between the message they received and the action chosen of 1.39
versus 1.18 for the male subjects (MW p = 0.048). Gender differences were not statistically
significant at the 10% level in the vague treatment or for the messages sent. I also found
that the first- and second-year college students sent much more accurate messages in
the rich language treatment than the third-year, fourth-year, and graduate students. The
average distance between the state and the message sent was 1.08 compared with 1.39
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(MW p = 0.007). Again, however, there were no other statistically significant differences in
behavior either in the precise treatment or with the action choices.
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Figure 2. Conditional action choice frequencies for each message Pr(a|m). Red squares are responses
to precise messages in rich treatment, red x marks are responses to imprecise messages, and blue
squares are responses in base treatment.

Finally, there was no evidence that the players’ strategies changed during the sessions
on aggregate. In particular, the fraction of imprecise messages was roughly constant in the
early and late rounds, as was the share of truthful messages and the degree of discounting
by receivers, ruling out sizeable learning effects.

4. Model

This section derives predictions about the subjects’ behavior using a cognitive hi-
erarchy model, to which I add preferences for honesty. Cognitive hierarchy and level-k
models are structural nonequilibrium models of how players reason strategically. There
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is a hierarchy of discrete cognitive types, each with gradually more sophisticated beliefs
about other players’ behavior. Because higher types use more iterations of best-response
reasoning, senders of higher types exaggerate more and more due to their upward bias,
while receivers of higher types discount the messages more and more. My model extends
the applications of level-k from Crawford [21] and Cai and Wang [5] to cheap talk by
allowing heterogenous preferences for truth-telling on the part of the senders. A secondary
difference is that I assume that Lk players best respond to a combination of behaviors of
types lower than k.9

The model has two purposes. First, it illustrates the broad differences in behavior one
should expect between my treatments if the subjects are boundedly rational and some are
honest. Second, the next section estimates the model structurally, taking into account that it
is not likely that any subject perfectly complies with the predicted behavior of any type.

4.1. Definitions and Assumptions

Formally, players differ in their cognitive type, honesty level, and sender or receiver
role. A player’s cognitive type determines his or her beliefs about how players in the other
role behave. A level-k sender (LkS) has beliefs BS

k (a, m) about the conditional probabilities
Pr(a | m) induced by receiver behavior, and a level-k receiver (Lkr) has beliefs Br

k(m, s)
about the conditional probabilities Pr(m | s) that he or she faces.

A player’s honesty type affects his or her relative utilities from sending dishonest or
honest messages. All messages that are non-false according to their literal meaning are
honest (i.e., m is honest if either m = s or s ∈ m) and are dishonest otherwise. I discuss
this assumption further in Section 4.3. An honesty type h acts as if sending a literally true
message is worth giving up h cents:

us(s, a, h) =

{
100− 25 ∗ (s + 2− a)1.2 + h if s = m or s ∈ m
100− 25 ∗ (s + 2− a)1.2 otherwise

.

A receiver’s utility function is not affected by his or her honesty type. I assume that
there is a finite set of honesty types, with every h ∈ H. The vector τ denotes the distribution
of honest types, and I write τh to indicate the fraction of players with honesty type h. H
and τ are common knowledge.

Level 0 cognitive types are non-strategic and primarily serve as conjectures about
behavior by L1 players. L0S messages are truthful, and L0R messages are credulous.10

Strategic Lk behavior is then defined inductively as responding optimally to beliefs about
the other role’s behavior based on L0, . . . , L(k− 1) behavior.11 A level-k ≥ 1 sender chooses
for each state a (possibly) mixed strategy over messages σs,k(m | s) as a best response to
that type’s beliefs BS

k (a, m) about receiver behavior. Likewise, a level-k ≥ 1 receiver chooses
σa,k(a | m), which is a best response to his or her beliefs Br

k about the sender’s behavior.

Definition 1. A type L0S player sends every available honest message with equal probability. A
type L0R player chooses action a = m if m is precise and a = x if m = {x− 1, x, x + 1}).

In the Poisson cognitive hierarchy model of Camerer, Ho, and Chong [18], the frequency
of level-k behavior f (k) follows the Poisson distribution, and the level-k beliefs about the
frequencies of type l < k players f̂k(l) are formed by normalizing f (0), . . . , f (k− 1) to sum
up to one:

f (k) = e−λλk/k!, and f̂k(l) =
f (l)

k−1
∑

i=0
f (i)

.

By definition, λ is the mean cognitive level in the population as well as the variance of
the cognitive levels in the population.
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Definition 2. For k ≥ 1, a type LkS player with honesty h has beliefs BS
k and chooses σs,k that follow

BS
k (a, m) =

k−1

∑
i=0

f̂k(i)σr,i(a | m) (1)

σs,k(m | s, h) > 0⇔ m ∈ arg max
m

E[us(s, a, h) | BS
k , m] (2)

and a type LkR player has beliefs BR
k and chooses σr,k that follow

BR
k (m, s) =

k−1

∑
i=0

f̂k(i)
(

∑
h∈H

τhσs,k−1(m | s, h)
)

(3)

σr,k(a | m) > 0⇔ a ∈ arg max
a

E[ur(s, a) | m, BR
k ] (4)

where E[ur(s, a) | BR
k ] is calculated via Bayes’ rule.

To operationalize Equation (2), I assume that for cases in which the senders are
indifferent between multiple m, they randomize uniformly over their best messages.

It is helpful to think of honesty as falling into three levels: “weak” (h ∈ [0, 25)),
“moderate” (h ∈ (25, 57)), and “strong” (h > 57). These categories are based on the
opportunity cost of being honest in different situations (i.e, the loss in pecuniary payoff
for sending an s = m or s ∈ m message versus the best non-honest message). In the base
treatment, L1S and L2S believe that they can achieve a = s + 2 with m = s + 2 or remain
honest and achieve a = s at a loss of 25(s + 2− s)1.2 = 25 ∗ 21.2 ≈ 57.12 On the other hand,
in the rich treatment, low-level senders perceive the opportunity cost of honesty to be either
25 or 32 for sending an imprecise message which is a truthful exaggeration. For instance,
for L1S, when s = 1, m = {1, 2, 3} has an opportunity cost of 25(s + 2− (s + 1))1.2 = 25.

In presenting the model’s predictions but not estimating the model, I restrict attention
to a set of parameters that encompasses most reasonable distributions of the types and for
which the strategies of each type of player are largely constant. The restriction also limits
the number of special cases that need to be described. Let the constant c ≡ 21.2 − 1 ≈ 1.3. c
is proportional to the difference in payoff cost to the sender or receiver having an action
choice 2 away from the player’s bliss point instead of 1 (i.e., a loss of 25 ∗ 21.2 instead of a
loss of 25). Let τ32+ = ∑

h∈H,h≥32
τh be the share of players with honesty h ≥ 25c ≈ 32.13

Definition 3. A standard type distribution of players has frequencies of cognitive and honesty
types that are distributed with

λ ∈ [1.55, 5] and τ32+ ∈
[

100 + 16λ

1000
,

λ− c
λc

]
.

This λ range is consistent with the estimates from other papers and with my preferred
estimates. The restriction on τ asserts that roughly between 15% and 50% of my subjects
are at least moderately honest which, again, is consistent with my estimates.

4.2. Predictions

Particular patterns of behavior for a role are usually common to pairs of cognitive
types. L1R best responds to L0S, implying σr,1 = σr,0. That in turn implies L1S and L2S

both effectively use one round of best responses, since both types believe all receivers
are credulous. If λ is high enough that the L2 players believe the L0 players are un-
common, the L2 and L3 receivers act similarly as well. L2R’s best respond to a fraction
f (0)/( f (0) + f (1)) = 1/(λ + 1) of truthful messages and a fraction λ/(λ + 1) of single-
level exaggerated messages, which are quite close to L3R’s beliefs for reasonable λ choices.
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Likewise, the L3 and L4 senders typically engage in two rounds of non-trival best-response
reasoning, and so on.

Propositions 1–4, summarized in Tables 4–6, characterize the behavior of senders and
receivers drawn from a standard type distribution in my experiment. See Appendix A
for proofs.

Proposition 1. If the players have a standard type distribution, and no players are strongly honest,
then the following is true for weakly honest senders and all receivers in the base treatment:

(i) L1S and L2S exaggerate one level if possible (m = min{s + 2, 5});
(ii) L2R and L3R discount m = 3 and m = 4 by two units (a = m− 2), m = 5 by one unit

(a(5) = 4), and m = 1 or m = 2 by zero units (a = m);
(iii) L3S and higher-level senders send the highest message m = 5 except possibly when s = 1 or

s = 2 (in which case m(1) = 2 and m(2) = 4); and
(iv) L4R and higher-level receivers discount m = 5 one unit (a(5) = 4), m = 2 by zero or one

unit (a(2) = 1 or a(2) = 2), and all other m < 5 by two units (m = max{m− 2, 1}.
Moderately honest senders make identical choices to weakly honest senders, except that L1S

and L2S choose m(4) = 4.

Table 4 summarizes the types’ predicted behaviors in the base treatment. Proposition 1
predicts that m < 3 messages should be relatively rare, relatively truthful, and the receivers
should trust them more. The truthfulness of the low messages does not stem from honesty.
For m ≥ 3, many messages are exaggerations by two units, and the receivers discount them,
often by two units. Finally, most of the messages are m = 5.

In the base treatment, for players with h ≥ 57, L1S and L2S would send m = s. Then,
if τ57+ was low, L2R and higher would discount it by the same amount as in Proposition 1
or by a smaller amount if τ57+ was higher. That discounting makes honesty more costly to
L3S and higher, so unless there is a significant share of players with h significantly higher
than 57, the behavior for the higher types becomes similar to that in Proposition 1. Thus,
strong honesty would cause a sizeable share of honest messages and trusting action choices
for m ≥ 3 as well as for for m < 3.

In the rich treatment, L0S randomize between truthful precise and truthful impre-
cise messages. This leads to L1S and L2S with h > 32 choosing imprecise messages
m(s) = {s, s + 1, s + 2}, which exaggerate the state in a truthful way. In addition, weakly
honest L1S and L2S send imprecise m deceptively (m(s) = {s + 1, s + 2, s + 3}) half the
time in states s = 1 and s = 2.

Table 4. Base treatment message and action predictions (Proposition 1).

State
h < 32 Sender′s Message

Message
Receiver′s Action

L0S L1S/L2S L3S+ L0R/L1R L2R/L3R L4R+

s = 1 1 3 2 † m = 1 1 1 1
s = 2 2 4 5 †† m = 2 2 2 1 ?

s = 3 3 5 5 m = 3 3 1 1
s = 4 4 5 5 m = 4 4 2 2
s = 5 5 5 5 m = 5 5 4 4

†: For L5S and higher senders, there is a λ̄ cutoff such that for λ > λ̄, m(1) = 5. ††: If λ < 1.46, then for L3S,
m(2) = 4. ?: If λ < 3√6, then for L4R, a(2) = 2.
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Table 5. Rich treatment message predictions (Propositions 2 and 3).

State
h < 25 Sender′s Action h > 32 Sender′s Action

L0S L1S/L2S L3S+ L0S L1S/L2S L3S+

s = 1
1,

{1, 2, 3}
3,

{2, 3, 4} {3, 4, 5} † 1,
{1, 2, 3} {1, 2, 3} {1, 2, 3} ††

s = 2
2, {1, 2, 3},
{2, 3, 4}

4,
{3, 4, 5} 5 † 2, {1, 2, 3},

{2, 3, 4} {2, 3, 4} {2, 3, 4} ††

s = 3
3, {1, 2, 3},

{2, 3, 4}, {3, 4, 5} 5 5
3, {1, 2, 3},

{2, 3, 4}, {3, 4, 5} {3, 4, 5} {3, 4, 5}

s = 4
4, {2, 3, 4},
{3, 4, 5} 5 5

4, {2, 3, 4},
{3, 4, 5}

4
{3, 4, 5} {3, 4, 5} ?

s = 5
5,

{3, 4, 5} 5 5
5,

{3, 4, 5} 5 5

†: If λ < 2.73 (respective of λ < 1.88), then L3S (L3S + L4S) sends m(1) = {2, 3, 4} and m(2) = {3, 4, 5}. ††: If h
is beneath an λ-dependent cutoff, L4S and higher send m(1) = {3, 4, 5} and m(2) = 5. ?: If h < 36, then if h is
beneath a λ-dependent cutoff, L4S and higher send m(4) = 5.

Table 6. Rich treatment action predictions (Proposition 4).

Precise
Message

Receiver′s Action Imprecise
Message

Receiver′s Action

L0R/L1R L2R/L3R L4R+ L0R/L1R L2R/L3R L4R+

m = 1 1 1 1 m = {1, 2, 3} 2 1 1
m = 2 2 2 2 m = {2, 3, 4} 3 2 ◦ 2 ◦

m = 3 3 1 1 m = {3, 4, 5} 4 3 3 N

m = 4 4 2 2
m = 5 5 4 4
◦: If τ32+ < 1/3, then if λ is greater than a τ32+-dependent cutoff, for L3R and higher, a({2, 3, 4}) = 1. N: If λ is
greater than a τ32+-dependent cutoff, for L5R and higher, a({3, 4, 5}) = 2.

Both honest and non-honest level-k ≥ 3 senders employ imprecise messages, but
exactly how they do so on depends whether they believe imprecise messages will be treated
skeptically or credulously. Weakly honest level-k ≥ 3 senders often choose to masquerade
as honest or naive types by sending imprecise messages but only when the state is low
(s < 3). For example, for these senders, the message {3, 4, 5} is an attractive deception in
s = 1 because they believe there is a good chance that a({3, 4, 5}) = 3, regardless of exactly
how low-level senders use imprecise m.

Whether there is truthful exaggeration by moderately honest level-k ≥ 3 senders
depends on what they believe receivers believe. If relatively few of the low-level im-
precise messages are deceptive—which occurs either if λ is low enough or τ32+ is high
enough—then the L2 and L3 receivers are fairly trusting of imprecise messages and choose
a({x, x + 1, x + 2}) = x when they usually choose a(x + 1) = x − 1. Because of these a
choices, moderately honest level-k ≥ 3 senders also send imprecise messages in states
s < 5. In contrast, if a critical mass of non-deceptive messages is not available, low-level
receivers are less trusting of imprecise messages, and these senders make use of imprecise
messages in the same way as weakly honest senders because honesty is too costly.

Therefore, if imprecise messages are sent frequently from s = 3 and s = 4, and
m = {2, 3, 4} and m = {3, 4, 5} are trusted more than the corresponding precise messages,
it cannot be the case that λ is high and τ32+ is low. In order to generate the pattern of
imprecise messages observed in the data, there must be higher-honesty senders sending
imprecise messages from s = 3 and s = 4 as well.

Tables 5 and 6 organize the predictions of the following propositions describing
behavior in the rich treatment.

Proposition 2. If players have a standard type distribution, then weakly honest players in the rich
treatment choose identical strategies to those in Proposition 1 above, except for the following:
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(i) L1S and L2S in states s = 1 and s = 2 send m(s) = {s + 1, s + 2, s + 3} with probability
1/2;

(ii) L3S or higher-level senders in state s = 1 send m(1) = {3, 4, 5} or m(1) = {2, 3, 4};
(iiii) L3S and L4S senders in state s = 2 may send m(2) = {3, 4, 5}.

Weakly honest senders do send imprecise messages but only in low states (s < 3). In
contrast, senders who care more about honesty tend to send imprecise messages in every
state except s = 5.

Proposition 3. If players have a standard type distribution, then moderately or strongly honest
senders (h > 32) in the rich treatment behave as in Proposition 2 above, except for the following:

(i) L1S and L2S truthfully exaggerate in s < 4 and send m(4) = 4 and m(4) = {3, 4, 5} with
equal probability;

(ii) L3S truthfully exaggerate in s < 5, except possibly in s = 2;
(iii) L4S and L5S truthfully exaggerate in s = 3 and may also truthfully exaggerate in s = 1,

s = 2, and s = 4.

While the senders change their behavior in the rich message treatment, the receivers’
predicted responses to precise messages do not change. However, receivers generally
trust imprecise messages more than precise ones (e.g., sophisticated receivers choose
a({3, 4, 5}) = 3, while they would choose a(4) = 2).

Proposition 4. If players have a standard type distribution, then in the rich treatment, receivers
behave as in Proposition 1 above, except for the following:

(i) L0R and L1R do not discount imprecise messages ((a({x− 1, x, x + 1}) = x);
(ii) L2R and higher discount imprecise messages by one unit ((a({x − 1, x, x + 1}) = x − 1),

except possibly discounting m = {2, 3, 4} by two units ((a({2, 3, 4}) = 1);
(iii) L4R and higher do not discount precise m = 2 (a(2) = 2).

4.3. Model Discussion

Propositions 1–4 provide an explanation for why there is more communication in
the rich treatment. Under a standard type distribution and, indeed, under most other
type distributions, many player types who would send m = 5 from s < 5 in the base
treatment instead send a different message in the rich treatment but continue to send m = 5
from s = 5 at the same rate. These messages therefore become more accurate in the rich
treatment. Furthermore, the imprecise messages sent with MR are more accurate than the
corresponding messages that would have been sent with MB. For instance, L1S and higher
send some m = {3, 4, 5} from s = 3 and s = 4, whereas m = 3 and m = 4 are usually sent
from s = 1 and s = 2 with MP. The receivers do not change their responses much, but
because they discount the common m = 5 and m = {3, 4, 5} the least, on average, they are
more trusting of the messages they receive.

The model’s predictions match several patterns in the data. First, the model predicts
that the sender’s behavior will be relatively more responsive than the receiver’s behavior
to the rich message treatment. Precise messages m = 4 and m = 5 are predicted to become
more accurate, since they are less likely to be sent from s 6= m (Propositions 2 and 3). For
many parameter values, the messages sent from s < 5 are also predicted to often be
imprecise. The receivers, on the other hand, are predicted to not change how they treat
precise messages across the treatments (Proposition 4 (iii)) and to be somewhat more
trusting of imprecise messages {2, 3, 4} and {3, 4, 5} than corresponding precise messages
(Proposition 4 (i) and (ii)). Note that all of the comparative statics implicitly hold λ
constant. However, MR is more complex, so λ might fall as well.

The form of honesty preferences in the model generates (1) receivers treating
m = {x, x + 1, x + 2} systematically differently than m = x + 1 and (2) half of messages
sent in the rich treatment being imprecise messages. Many alternative forms of honesty



Games 2022, 13, 49 14 of 27

preference do not predict either. For instance, theories in which the senders care about
the payoff disappointment experienced by the receiver, because L0R and L1R interpret
m = {x, x + 1, x + 2} and m = x + 1 in the same way, would predict no systematic differ-
ence in how the senders used those messages. Likewise, there would be no systematic
differences if the senders cared only about the de facto level of deception (i.e., E[s]− s,
where E is the receivers’ expectation) instead of caring about deviating from the literal
meaning of a message.

A major difference between the predicted and observed behavior is that the model
predicts more skepticism about precise m < 4 than is observed. L2R senders and higher are
predicted to play a(1) = a(3) = 1. In part for this reason, I introduce noisy choice when
estimating the model parameters.14

5. Structural Estimates

In this section, I estimate the parameters of my model. Many papers have structurally
estimated level-k models before (e.g., Crawford and Iriberri [43]), but to my knowledge,
none have jointly estimated varying cognition levels and varying preferences. One goal for
these estimates is to conduct a “horse race” between honesty and bounded rationality, but
by using these estimates, I can also answer additional questions, such as how the different
message spaces affect communication per se.

I assume that the subjects choose a or m, influenced by logistic errors of precision β
and independent across rounds and treatments. These errors capture that level-k reasoning
is subject to error and unobserved utility shocks may occur, as well as any other sources of
error. Hence, a level-k sender or receiver chooses each m or a with a probability

Pr(m | s, k, h, β, T) =
exp(β E[us(a, s, h) | m, BS

k , T])

∑
m′∈MT

exp(β E[us(a, s, h) | m′, BS
k , T])

(5)

Pr(a | m, k, β, T) =
exp(β E[ur(a, s) | BR

k , T])

∑
a′∈A

exp(β E[ur(a′, s) | BR
k , T])

(6)

where BR
k is a level-k sender’s beliefs, BR

k is a level-k receiver’s beliefs, T is the treatment,
and h is a sender’s honesty type. β measures the noisiness of player choices. As β→ 0, each
choice becomes equally likely, while as β→ ∞, players best respond exactly according to
their beliefs. For all β, the L0 players exactly follow the strategies specified in Definition 1.

For my preferred estimates, I restrict the honest types to either have h = 0 (the “not
honest” type) or h = 42 (the “moderately honest” type), because it is hard to precisely
identify the frequencies of more than two honesty types. I motivate this choice and discuss
exactly what conclusions can be drawn about the distribution of honesty after presenting
my base estimates.

Given a treatment T, in which subject i made AT
i action choices ai,1, . . . , ai,Ai and MT

i
message mi,1, . . . , mi,Mi , the probability of i’s observed choices for a given parameterization is

Li(λ, h, β, T) = ∑
k∈K

f (k) ∑
h∈H

hh

MT
i

∏
j=1

Pr(mi,j | s, k, h, β, T)

 AT
i

∏
j=1

Pr(ai,j | m, k, β, T)

. (7)

For a set of subjects N, the log likehihood of their observed behavior in a set of
treatments T is

LL(λ, h, β) = ∑
T∈T

∑
i∈N

log Li(λ, h, β, T) (8)

I estimate the parameters by maximizing LL and then derive confidence intervals
through non-parametric bootstrapping.15

Column 1 of Table 7 reports the parameter estimates for my entire dataset. The
estimated mean steps of reasoning λ = 3.294 was higher than that typical in the literature.
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However, given the definitions of Lk behavior for each role, the effective amounts of
sophistication were similar. These estimates imply that 32% of the senders engaged in one
iteration of strategic reasoning and 40% of the senders engaged in two iterations, while
16% of the receivers did not reason strategically (they were credulous). Additionally, 42%
of the receivers engaged in one iteration of strategic reasoning, and 42% engaged in two or
more iterations.16 Cai and Wang [5] and Wang et al. [15] found comparable results. About
27% of the subjects had h = 42 or were believed to have h = 42. Finally, the choices were
noisy. For example, the estimated precision β = 0.027 implies that moderately honest types
sent 10–20 percentage points fewer imprecise messages than they would without noise and
that the weakly honest types sent 20 percentage points more imprecise messages than they
would without noise.

Table 7. Parameter estimates.

(1) (2) (3) (4) (5)
Combined Rich Base Senders Receivers
Treatments Treatment Treatment Only Only

λ 3.294 2.722 3.63 3.381 2.712
[2.722, 3.79] [2.419, 3.659] [3.047, 4.5] [2.341, 3.998] [2.244, 3.387]

τ42 0.267 0.209 0.077 0.274 0.175
[0.132, 0.316] [0.015, 0.298] [0.0, 0.399] [0.0, 0.321] [0.0, 0.967]

β 0.027 0.029 0.025 0.026 0.03
[0.023, 0.034] [0.024, 0.036] [0.02, 0.033] [0.022, 0.032] [0.02, 0.04]

n 1384 848 536 692 692
LL −2045.688 −1379.507 −660.605 −1066.303 −977.101
BIC 4113.075 2779.243 1340.062 2152.226 1973.821

Maximum likelihood estimates of mean steps of thinking (λ) and share of players with utility from honesty h = 42
(τ42), where 95% BCa confidence intervals are reported beneath estimates.

The next columns report my model, estimated separately using the data from the
rich treatment only (column 2) and the base treatment only (column 3). Reasoning was
almost one level less sophisticated in the rich treatment than the base treatment, probably
reflecting the greater difficulty of mental calculations involving MR. The choices were ap-
proximately as noisy. Not surprisingly, the confidence interval for τ42 in the base treatment
was wide—τ42 could not easily be identified using choices over MP—but the τ42 estimates
in model 3 were similar to those in the combined model (model 1).

The final two columns in Table 7 report the model estimates using only the sender
choice data (column 4) or receiver choice data (column 5). That the λ estimates were
even lower in model 5 than model 4 support the somewhat strange implication of my
cognitive hierarchy model that receivers are less strategically sophisticated than senders
(i.e., only L0S senders are naive, but L0R and L1R both act naively). If this assumption were
inaccurate, one would expect the λ estimate in model 5 to be higher than the estimate in
model 4. It seems likely that the strategic reasoning that receivers must perform is more
difficult than the strategic reasoning that senders must perform.17

The model pair of 2 and 3 and the pair of models 4 and 5 can be thought of as alternate
models that relax one of the assumptions of my level-k model. The combination of models
2 and 3 allows λ and β to vary by treatment instead of forcing strategic sophistication
to be constant. This treatment-varying specification (models 2 and 3) nests model 1 as
a special case, and a likelihood ratio test comparing the null hypothesis (model 1) to
the alternate (models 2 and 3) rejects the null at the 0.05 significance level (D = 11.152,
χ2(3) = 0.011). This is evidence of the systematic differences in the level and noisiness
of reasoning between the two treatments.18 A similar likelihood ratio test comparing the
null hypothesis (model 1) to the alternate model with role-varying behavior (models 4
and 5) failed to reject the null hypothesis (D = 4.568, χ2(3) = 0.206). Comparisons using
the Bayesian Information Criterion, which assigns more importance to model parsimony,
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support the role- and treatment-invariant model (model 1) (BIC = 4113.1) over either the
treatment-varying or role-varying model (BIC = 4123.62 and BIC = 4130.2, respectively,
for the combined models).

5.1. Honesty

The distribution of honesty was identified in two ways. First, the strength of the
players’ preferences for honesty was identified through the qualitatively different behavior
of weakly, moderately, and strongly honest senders. For instance, senders with moderate
honesty should reliably and truthfully exaggerate in the rich treatment but not reliably send
truthful messages in the precise treatment. Second, the fraction of players of a given honesty
type (i.e., τh for a given h) was identified through the magnitudes of honest behavior and
through their indirect effect on how receivers and non-honest senders behave. Section 4
described some of the identifying differences in greater detail. For instance, if τ42 is low
and λ is high, the receivers should be relatively skeptical of imprecise m, and the senders
should send relatively few imprecise m from states s = 3 and s = 4. Figure 3 shows the
distribution of τ̂42 from the bootstrap for my preferred model. Most estimates are between
0.15 and 0.35, although there is an almost invisible left tail for the lower estimates.

0 0.1 0.2 0.3 0.4 0.5
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Figure 3. Distribution of τ42 estimates for both roles (combined model: column 1).

Unfortunately, the log-likelihood function was relatively flat with respect to the
strength of honesty preferences within each of the h intervals of not honest, moderately
honest, and strongly honest. Figure 4 shows the maximum log-likelihoods from two-
honesty-type models, where one type does not care about honesty and the other type is h.
Intuitively, for low honesty, τ was estimated entirely from how it interacted with utility
shocks in the message and action choice (Equations (5) and (6)), while within each of the
other h intervals, the variation in behavior was small, so pinning down h precisely was
difficult. The LL may have also been flat with respect to h, because honesty has limited im-
portance in my context. These problems also made it infeasible to estimate the frequencies
of the honesty types in a richer model that contained two honest types 25 < hm < 57 < hs.
Because the behavior is similar for any moderately or strongly honest type, the parameters
τhm and τhs are colinear and cannot be estimated precisely.

Due to these difficulties, my approach is to assume that people are either fully self-
interested or have a single degree of honesty h. For each h value, Figure 5 shows the fraction
of players estimated to be honest at this level and the 95% BCa confidence intervals. For
any moderate honesty level, at least around 15% of players can be classified as honest with
95% confidence. I focus on h = 42 because the log-likelihood achieves its maximum at that
value (see Figure 4).

Despite the underlying identification problems, there is evidence that a substantial
minority of subjects had at least moderate preferences for truth-telling and believed that
other subjects did as well. While I am could not estimate the exact distribution of honesty
in my subjects, I am able to show both that it was not extremely weak (all subjects having
h < 25) and that only a minority of the subjects had moderate or strong honesty preferences.
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Figure 4. Maximum log-likelihood attained for varying degrees of honesty.

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Moderate
Honesty

Strong
Honesty

Weak
Honesty

h

Es
ti

m
at

ed
τ h

τh

Figure 5. Estimated fraction of players of honesty type h (τh) for varying levels of honesty with 95%
confidence intervals.

5.2. Why Vague Language Matters

Counterfactual comparisons using the structural model can also answer the question
of why vague language improves communication. Communication might increase in the
rich treatment either because it affects subjects’ decision processes in terms of reducing
their sophistication or increasing choice noisiness, because the change in the message space
opens up additional ways to communicate, which improves communication overall, or
because honesty increases sender accuracy or receiver trust more under the more complex
message space. To gauge these explanations’ relative importance, I hold some factors as
fixed and evaluate how the predicted communication change as a single factor changed.
For example, if strategic sophistication is fixed at the base treatment levels, and all players
are assumed to be weakly honest, the predicted improvement in communication from
adding imprecise messages to the message space is a measure of how important the change
in the message space is according to my model.

To measure communication, I calculate the predicted mean distance between messages
and states E[|m− s|] to measure how informative the messages are and the predicted mean
distance between actions and messages E[|a − m|] to measure how trusting the action
choices are.19 Given a set of a parameters λ, τ, and β and a message space M, the mean
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distance between the messages and actions is the distance between each (m, a) combination
weighted by the predicted probability of observing that combination:

E[|m− a|] = ∑
m∈M

∑
a∈A

P̂r(m)P̂r(a | m) · |a−m|, (9)

where P̂r(m) is the predicted probability that message m is sent (obtained from Equation (5))
and P̂r(a | m) is the predicted conditional probability (obtained from Equation (6)).
E[|m− s|] is defined similarly but with weights Pr(s) = 1/5 instead of P̂r(m).

Table 8 reports these measures for every combination of behavioral parameters and
each message space. The rich language parameters are model 2’s: the MLE parameter
estimated using only rich language treatment data. Rich honesty sets τ42 = 0.209, while
rich rationality sets λ = 2.722 and β = 0.029. The base treatment parameters are those of
model 3. Base honesty sets τ42 = 0.077, while base rationality sets λ = 3.63 and β = 0.025.

The first two rows compare the average distances in the base treatment data to the
predicted average distances from calibrating the model with the parameter estimates from
MLE using the base treatment data. The mean distance E[|m− s|] in the data was 1.52 in
comparison with the predicted E[|m− s|] of 1.46, while for the receiver mean E[|m− a|]
in the data, it was 1.30 in comparison with the predicted distance of 1.28. The calibrated
model closely matches senders’ average exaggeration and receivers’ average skepticism.

The last two rows provide the same comparison for the rich language treatment. For
the senders, the mean distance in the data was 1.22, while the model predicts a mean
distance of 1.16. For the receivers, the mean distance was 0.98, while the model predicts a
mean distance of 1.05.

The intermediate rows use alternative model calibrations to show which factors are
important in the model for explaining the observed increases in communication. The three
rows after the base treatment model each switch one factor from its value in the base
treatment model to its value in the rich language treatment model. The next three rows
then switch two factors from their values in the base treatment model to their values in
the rich language treatment model. Factors that cause larger reductions in sender bias
or receiver skepticism are more important in the model for explaining the increase in
communication. To the extent that the model accurately captures aggregate behavior, these
factors are likewise more important for explaining what caused the changes in subject
behavior across the treatments.

For senders, the most important factor appeared to be the message space. Switching
to a rich message space in the model but holding the behavioral parameters fixed at the
base model values causes the mean |m− s| to fall to 1.30 from 1.46, a larger effect than for
switching any other single factor. Similarly, when two factors were switched, the cases that
come closest to matching the predicted mean |m− s| of 1.16 in the rich language treatment
are the cases in which the message space and one behavioral parameter are switched to
their values in the rich language model.

In my model and in my reduced form results, a rich message space improves sender
accuracy because many senders shift from m = 4 and m = 5 to imprecise messages, making
the high-m precise messages more accurate. This shift to imprecise messages, while most
pronounced in the model for honest senders, occurred with all senders in low states.

For receivers, the most important factor appears to be the bounded rationality param-
eters of the mean steps of thinking λ and choice precision β. Switching to the rich language
model λ and β parameter values but holding the message space and share of moderately
honest players fixed at the base model values causes the predicted E[|a−m|] to fall to 1.08
from 1.28, a larger effect than for switching any other single factor. When two factors are
switched, the cases that comes closest to matching the predicted E[|a−m|] of 1.05 in the
rich language treatment are the cases in which the rationality parameters and one other
parameter are switched to their values in the rich language model.

The increased cognitive complexity of strategic thinking in the rich message treatment
made subjects worse at strategic reasoning, which manifests in the model estimates as a
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reduction in λ. Reducing λ makes the receivers more trusting, because the lower-level
receivers engage in fewer rounds of iterated reasoning, which tends to mechanically
increase receiver skepticism.

Interestingly, for the receivers, the model predicts that switching to the rich message
space would cause a slight increase in the average receiver skepticism if honesty were
not present. Switching to a rich message space in the model but holding the behavioral
parameters fixed at the base model values causes the predicted E[|a−m|] to rise from 1.28
to 1.33, and likewise, switching to a rich message space in the model with the rich language
model’s λ and β and base model’s τ42 causes the predicted E[|a − m|] to rise from 1.08
to 1.14.

Table 8. Predicted mean distances of messages from state (|m− s|) and actions from message (|a−m|)
from calibrating model with alternate message spaces and parameter estimates from base or rich
language treament behavior.

Counterfactual E[|m− s|] E[|a−m|]
Base treatment actual data 1.52 1.30
Base message space, base honesty, base rationality 1.46 1.28
Rich message space, base honesty, base rationality 1.30 1.33
Base message space, rich honesty, base rationality 1.42 1.27
Base message space, base honesty, rich rationality 1.37 1.08
Rich message space, rich honesty, base rationality 1.25 1.25
Base message space, rich honesty, rich rationality 1.31 1.06
Rich message space, base honesty, rich rationality 1.23 1.14
Rich message space, rich honesty, rich rationality 1.16 1.05
Rich treatment actual data 1.22 0.98

In summary, three factors explain the increase in communication produced by the rich
treatment. The richer message space made the senders more accurate, while the increased
difficulty of reasoning for MR made the receivers more trusting. The presence of honesty
also reduced receiver skepticism when they were interpreting the MR messages.

6. Conclusions

It is natural to think that when people make use of less precise language, communica-
tion will become less effective if they do so. Surprisingly, in a standard biased information
transmission setting with high sender bias, when the subjects could choose between more
or less precise messages, the distribution of messages conveyed more information, and the
receivers were more trusting than when the subjects could only send precise messages.

Communication was improved because the senders changed the least accurate mes-
sages they sent to imprecise ones if they were available, making both the precise messages
and imprecise messages more informative as a result. It is also improved because the
receivers were somewhat more trusting due to both the increased cognitive difficulty of
strategic thinking and the greater prevalence of honest message choices. A larger share
of honest messages was sent due to the lower opportunity costs of honesty when honest
imprecise messages could be chosen.

Strategic information transmission games are a natural setting in which to expect
strategic miscalculations to be important, as the incentives for exaggeration are especially
salient. At the same time, what norms of honesty should operate are unclear. Honesty did
play a small role in explaining why communication increases when the message space
was enriched by adding explicitly imprecise messages. In a population with honesty, the
receivers’ trust in the messages increased slightly more with a rich message space than
it would otherwise. Nonetheless, most of the improvement in communication seemed
to be due to the change in the message space or bounded rationality combined with the
increased complexity of the message space. In other strategically simpler settings or those
in which honesty is more salient, honesty might be relatively more important.
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Appendix A. Proofs

Appendix A.1. Proof of Proposition 1

Weakly honest L1S and L2S play m = max{s + 2, 5} because they expect a = m, and
indeed, L1R senders play a = m. L2R senders believe m = 1 or m = 2 comes from L0S and
as such choose a = m. The message m = 3 could come from L0S in s = 3 or L1S in s = 1,
and thus

E[ur(s, 1)|m = 3, BR
2 ] =

(
1

1 + λ

)
(100− 25 ∗ 21.2) +

(
λ

1 + λ

)
100

E[ur(s, 2)|m = 3, BR
2 ] = 75

Therefore, if

75 < 100− 25× 21.2

1 + λ

25(1 + λ) > 25× 21.2

λ > 21.2 − 1 = c,

which holds for a standard distribution of types (SDOT), then L2R senders choose a(3) = 1.
For m = 4, moderately honest (h > 32) L1S and L2S report truthfully. Hence, for

m = 4, L2R compare

E[ur(s, 2)|m = 4, BR
2 ] = 100−

(
1 + λτ32+

1 + λ + λτ32+

)
25× 21.2

E[ur(s, 3)|m = 4, BR
2 ] = 75

Therefore, if

25(1 + λ + λτ32+) > 25× 21.2(1 + τλ)

τ32+ <
λ + 1− 21.2

λ(21.2 − 1)

which holds for an SDOT, then L2R senders choose a(4) = 2.
L2R senders choose a(5) = 4 because they believe m = 5 is equally likely to come from

any state s ≥ 3. L3R senders always make the same decision as L2R senders with an SDOT.

https://sites.google.com/site/dhwood/
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Next, consider L3S and higher. That L2S senders send m = 5 in s ≥ 3 implies that
the next level does as well, because they believe the receivers are even more pessimistic in
interpreting m. For s = 2, E[us|m = 5, BS

3 ] = 100− 25(1 + λ)/(1 + λ + λ2/2), so the utility
loss is proportional to (1 + λ), while for m = 4, the utility loss is instead proportional to
21.2λ2/2. Hence, if

λ >
1 +
√

21.2 + 1
21.2 ≈ 1.23,

then m(2) = 5. For higher-level senders, the equivalent condition is always satisfied under
the SDOT. Finally, for s = 1, m = 2 dominates m = 1 but may be worse than m = 5. The
loss from m = 2 is proportional to 1 + λ + λ2/2, while the loss from m = 5 is proportional
to 21.2(1+ λ) + λ2/2, so m = 5 is dominated for the L3S senders as long as λ < 5. However,
numerical calculations show that for L5S and higher, there are λ values such that m = 5 is
superior to m = 2.

Finally, consider L4R and higher. BR
4 is the same for m = 3 and m = 4 as BR

3 , so
a(3) = 1 and a(4) = 2. For λ < 5, numerical calculations confirm that the optimal response
to m = 5 is always a(5) = 4. For m = 2, L4R senders believe L0S senders send m(2) = 2,
while L3S senders send m(2) = 1. Hence, if λ3/6 > 1, the loss from a(2) = 1 is lower than
the loss from a(2) = 2.

Appendix A.2. Proof of Proposition 2

L1S and L2S believe a({x − 1, x, x + 1} = x and as such are indifferent between
m(1) = 3 and m(1) = {2, 3, 4}. By assumption, they randomize uniformly.

For higher-level senders, for s ≥ 3, m = 5 dominates other messages, as these senders
believe that some receivers play a(5) = 5 and that others play a(5) = 4. For s = 2, the loss
from m = 5 is proportional to (1 + λ), while the loss from m = {3, 4, 5} is proportional
to λ2/2, so if λ > 1 +

√
3, m = 5 is optimal. For L4s, the loss from m = {3, 4, 5} is

(λ2/2 + λ3/6), so m = 5 is optimal for λ ' 1.87. For s = 1, the loss from m = {2, 3, 4} is
equal to the loss from m = {3, 4, 5} in s = 2, while the loss for m = {3, 4, 5} is equal to the
loss from m = 5 in s = 2.

Appendix A.3. Proof of Proposition 3

L1S and L2S believe a({x − 1, x, x + 1} = x and as such are indifferent between
m(4) = 4 and m(4) = {3, 4, 5}. By assumption, they randomize uniformly. For all s > 4,
they believe their utility from m = {s, s + 1, s + 2} is 75 + h > 100, so they truthfully
exaggerate.

For L3S in s = 1, the following applies:

E[us(1, s, h)|m = {1, 2, 3}, BS
3 ] = 100− [ f (0) + f (1)]us(1, 2, h) + f (2)us(1, 1, h)

f (0) + f (1) + f (2)
+ h

E[us(1, s, h)|m = {3, 4, 5}, BS
3 ] = 100− [ f (0) + f (1)]us(1, 4, h) + f (2)us(1, 3, h)

f (0) + f (1) + f (2)

Therefore, the loss from m = {1, 2, 3} is proportional to (1+ λ) + 21.2λ2/2− h(1+ λ +
λ2/2), while the loss from m = {3, 4, 5} is proportional to (1 + λ). Hence, if

h ≥ 21.2λ2/2
1 + λ + λ2/2

then m(1) = {1, 2, 3}. This is always satisfied for h > 32 and λ ≤ 5, but the analogous
condition for L4S and higher types may fail to be satisfied if λ is high enough. The tradeoff
in s = 2 between m = {2, 3, 4} and m = 5 is numerically the same.

All higher-level senders believe that in s = 3, the loss from m = {3, 4, 5} is proportional
to (1 + λ) + 21.2(λ2/2 + . . . )− h(1 + λ + λ2/2 + . . . ), while the loss from m = 5 is propor-
tional to (λ2/2 + . . . ). For h > 25c, the first loss is always lower. For s = 4, the loss from
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m = {3, 4, 5} is proportional to 21.2(1+λ)+ 31.2(λ2/2+ . . . )− h(1+λ+λ2/2+ . . . ), while
the loss from m = 5 is proportional to (1+ λ) + 21.2(λ2/2+ . . . ). If h > 25(31.2− 21.2) ≈ 36,
the first loss is always lower; otherwise, for high enough λ values, it is higher, and m(4) = 5.

Appendix A.4. Proof of Proposition 4

For L4R and higher precise message responses, no senders of L3 or higher send precise
m < 5, so these receivers follow the same strategies as L3R for these messages.

For imprecise messages, for m = {1, 2, 3}, L2R senders believe these messages come
from 1/2 of s = 1 L0S, 1/3 of s = 2 L0S, 1/4 of s = 3 L0S, and a τ fraction of s = 1
L1S.20 This implies that the expected loss from a = 1 is proportional to 1/3 + 21.2/4, while
the expected loss from a = 2 is proportional to 1/2 + 1/4 + λτ32+, so a = 1 is optimal if
τ32+ ' 0.15/λ, which is always satisfied by an SDOT.21 Higher-level receivers are even
more pessimistic.

For m = {2, 3, 4}, L2R senders believe these messages come come from 1/3 of s = 2
L0S, 1/4 of s = 3 L0S, 1/3 of s = 4 L0S, a τ32+ fraction of s = 2 L1S, and a (1− τ32+)/2
fraction of s = 1 L1S. The expected loss from a = 1 is proportional to 1/3+ 21.2/4+ 31.2/3+
λτ32+, while the expected loss from a = 2 is proportional to 1/4 + 21.2/3 + λ(1− τ32+)/2.
Hence, if τ32+ ≥ 1/3− (4 ∗ 31.2 + 1− 21.2)/(18λ), which is satisfied under an SDOT, then
a = 2 is optimal. For L3R and higher, the loss for a = 2 is higher if λ is high enough.

Finally, for m = {3, 4, 5}, for L2R senders, the expected loss for a = 3 is 1/3 + 21.2/4 +
λ(1− τ32+) + λτ/2, and for a = 2, it is 1/4 + 21.2/3 + 31.2/2 + λτ32+ + 21.2λτ32+/2. The
first loss is always lower for an SDOT. The loss from a = 2 is also perceived to be higher
by L3R and L4R, given λ ≤ 5, but for L5R senders, a = 2 may be preferable for a high
enough λ.

Appendix B. Experiment Instructions

This appendix contains the experimental instructions when the treatment order was
the precise treatment first, then the rich language treatment, and finally the noise treatment.
No matter the order, initially the general instructions were handed out along with the
first treatment’s instructions and the comprehension quiz. When the first treatment was
complete, the next treatment’s instructions were handed out, and so on.

Appendix B.1. Communication Experiment Instructions

Thank you for participating in the experiment today! As a courtesy to me and the
other participants, I ask you to observe a few ground rules:

• Focus your attention on the experiment rather than reading, texting, or other activities.
• Do not talk while the experiment is ongoing.
• Do not use other programs on the computers.
• Do not look at other people’s computer screens.

Questions are welcome at any time. If you have a question, raise your hand and an
experimenter will come to help.

Timing: Here is what will happen in this session:

1. You read the consent form, ask any questions you have, and return a signed copy to
me.

2. You read the instructions, ask questions, and answer comprehension questions on
next page. I check the comprehension questions when you have finished them.

3. We run the first experiment (described below).
4. We run the second experiment (similar to first, will be described when we get to this

stage).
5. We run the third experiment (similar to first, will be described when we get to this

stage).
6. You fill out payment/demographic information on your computer.
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7. Your computer displays your earnings, you fill out a receipt, and I pay you as
you leave.

Appendix B.2. Experiment 1 Instructions

There are 16 rounds in this experiment.22 Every round you will be matched with a
random participant, who will be a different person every round. One person in each pair
will be an “A” and the other person will be a “B”. You will alternate between being an A
and a B.

Each round there will a number s generated for each pair. s is equally likely to be 1, 2,
3, 4, 5. Each A learns what the pair’s s is, but B is not shown s.

The A member then chooses a message to send to B. The following messages can be
chosen:

• “s is 1.”
• “s is 2.”
• “s is 3.”
• “s is 4.”
• “s is 5.”

After A has finished choosing the message, B gets to read it. B then chooses a number w. w
can be 1, 2, 3, 4, or 5.

A and B both earn payoffs each round based on s and w. For B, the highest payoff is
when she chooses the same w as s. B’s are best off choosing the average number they think
s is. For example, if as a B you think s is equally likely to 1, 2, or 3, you are best off choosing
w equal to 2. For A, the highest payoff is when B chooses x equal to s + 2. The tables below
show A and B’s exact payoffs.

A Payoffs B Payoffs

s is 1 s is 2 s is 3 s is 4 s is 5 s is 1 s is 2 s is 3 s is 4 s is 5

w is 1 43 7 −32 −72 −115 100 75 43 7 −32
w is 2 75 43 7 −32 −72 75 100 75 43 7
w is 3 100 75 43 7 −32 43 75 100 75 43
w is 4 75 100 75 43 7 7 43 75 100 75
w is 5 43 75 100 75 43 −32 7 43 75 100

These payoffs are in experimental units. In addition, you receive 200 units at the
beginning of each experiment. At the end of the session, units will be converted to dollars:
each unit is worth 1 cent.

Examples:

• s = 2 and w = 4. Then B receives 43 and A receives 100.
• s = 5 and w = 3. Then B receives 43 and A loses 32.

Appendix B.3. Comprehension Questions

Please complete these questions once you have finished reading the earlier pages.
When you have finished them, raise your hand. These questions are to make sure that
everyone understands how the first experiment works. They do not affect your earnings.

• If s is 4, then

– B earns the most if she chooses w equal to
– A earns the most if B chooses w equal to

• If s is 2 and B chooses w to be 5, then

– B receives
– A receives

(More difficult questions)
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• If the highest-paying w for A is 2, what is the highest-paying w for B?
• If the highest-paying w for B is 4, what is the highest-paying w for A?

Appendix B.4. Experiment 2 Instructions

There are 12 rounds instead of 16 in this experiment.
This experiment has the same basic structure as the previous one. A learns s and sends

a message to B, who then decides on w. Earnings each round are calculated in exactly the
same way and you will receive 200 units at the beginning. The only difference is that now
A’s will choose from a different fixed set of messages. Now the message possibilities are:

• “s is 1.”
• “s is 1, 2, or 3.”
• “s is 2.”
• “s is 2, 3, or 4.”
• “s is 3.”
• “s is 3, 4, or 5.”
• “s is 4.”
• “s is 5.”

Appendix B.5. Experiment 3 Instructions

There are 12 rounds in this experiment.
This experiment has the same basic structure as the previous one. A learns s and sends

a message to B, who then decides on w. Earnings each round are calculated in exactly the
same way and you will receive 200 units at the beginning.

The only difference is that now A’s will sometimes not be told s exactly. Half of the
time, A’s will be told s precisely, but the other half of the time A’s will only be told one of
the following

• s is 1, 2, or 3.
• s is 2, 3, or 4.
• s is 3, 4, or 5.

These reports are accurate and when A is told that s is in one of these sets of numbers, each
number is equally likely. If A learns that s is 2, 3, or 4, for example, that means there is a
1-in-3 chance that s is 1, a 1-in-3 chance that s is 3, and a 1-in-3 chance that s is 4.

The messages A can choose from are the exactly the same as in experiment two:

• “s is 1.”
• “s is 1, 2, or 3.”
• “s is 2.”
• “s is 2, 3, or 4.”
• “s is 3.”
• “s is 3, 4, or 5.”
• “s is 4.”
• “s is 5.”

Notes
1 Similar to Gneezy et al. [2], the experiment focuses only on the imprecision property of vague messages. “Vague” also indicates

words that describe not-well-defined classes of objects (“tall women”), a property explored by Lipman [3].
2 Notably, Lafky et al. [17] experimentally addressed the question of whether overcommunication is due to bounded rationality or

due to truth-telling or altruistic preferences. Lafky et al. [17] used varying communication tasks and team tasks to credibly learn
both subject preferences and subject beliefs and found that limited strategic thinking is responsible for overcommunication.

3 Stahl and Wilson [19] and Nagel [20] demonstrated early tests of these models. Starting with Crawford [21], level-k reasoning has
proven to be fruitful for understanding cheap talk behavior. Crawford et al. [22] and Crawford [23] showed general overviews.

4 Although Cai and Wang did allow senders to choose intervals for their messages
5 There is also the sizeable theoretical literature related to my subject, including Kartik, Ottaviani, and Squintani [38], Kartik [39],

Chen [40], and Blume and Board [41]. My experimental results are consistent with many of the qualitative predictions of these
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models, such as the results of Blume and Board [41] stating that vague messages are not sent in the highest state but are sent in
lower states.

6 A two-tailed Mann–Whitney U (MW) test fails to reject that messages in the noise and vague treatments come from the same
distribution (p = 0.656). Likewise, there is no evidence that the action choices are significantly different (MW p = 0.810). Tests of
message distributions conditioned on s or of action distributions conditioned on m also failed to reject at the 10% level, except for
the distribution of messages sent in s = 2 (MW p = 0.0980).

7 Specifically, while the rich language treatment always preceded the noise treatment in a session, in the first session (n = 16),
the precise treatment occurred first, while in two other sessions (n = 12 and n = 14), the rich language and noise treatments
occurred first. Two-tailed Mann–Whitney U (MW) tests failed to reject that the distributions of messages in the precise treatments
of the first session and the later sessions were the same (p = 0.825). There was also no evidence that action choices were
significantly different in precise treatments occurring first or last (MW p = 0.766). Likewise, messages and action choices were
not significantly different in the pooled vague and noise treatments across treatments occuring first or last (MW p = 0.889 and
p = 0.243, respectively). Tests of message distributions conditioned on s or of action distributions conditioned on m also failed to
reject at the 10% level, except for the distribution of actions taken in precise treatments if m = 5 was received (MW p = 0.0550).

8 Of the messages sent from s = 1, 2, 3, or 4, 49%, 56%, 48%, and 44% were imprecise, respectively. None of the differences were
statistically significant at the 10% level using a two-sided Fisher’s exact test, and 30% of the messages from s = 5 were imprecise,
which was significantly different from all s < 5 (Fisher’s exact test p = 0.002).

9 Cognitive hierarchy models of beliefs allow players to believe other players have different levels of sophistication instead of
believing everyone is only slightly less sophisticated than themselves, as under level-k. One advantage of allowing this is that
it pins down receivers’ beliefs after receiving every message. In a level-k model, receiving some m is a probability-zero event
for some receiver types. More importantly, the Poisson cognitive hierarchy model of Camerer et al. [18] that I adapted is a
one-parameter model, reducing the risk of over-fitting with my structural estimates. In practice, both cognitive hierarchy and
level-k models generated very similar predictions. In an early version of the working paper, available on request, I used a level-k
model instead.

10 These assumptions set the naive interpretation of messages to their literal meaning, rather than being about the honesty of the L0
players.

11 Cai and Wang [5] defined the types slightly differently. The Lk senders best respond to Lk− 1 receivers, but Lk receivers best
respond to Lk senders. As Crawford et al. [22] noted, these definitions are partly semantic, but they do place restrictions on the
joint distribution of sender and receiver behavior (e.g., that behavior is common to pairs of cognitive types (page 10)).

12 Higher-level senders perceive larger costs because a true message will be discounted by some receivers. Honesty in s = 4 is a
minor exception to this rule, as its opportunity cost is 32.

13 Results with a high enough share of players with honesty h ∈ (25, 32) are behaviorally identical, except for s = 4. I focus on
h > 32 for convenience.

14 The subjects are also less skeptical than predicted by Cai and Wang [5] (see Table 6) and in Wang et al. [15] (see their discussion of
b = 2 on page 993). Noisy choice tends to shift receiver action choices toward a = 3.

15 I maximized LL by brute force search over the parameter space, which was feasible because of the simplicity of the model. I
formulated the Lk problems in Equations (2) and (4) using the matrix algebra techniques of Green and Stokey [44]. For the
confidence intervals, I first created 1500 resampled datasets of 42 subjects by sampling 42 subjects with replacement from my
dataset, and then for each resampled dataset, I re-estimated the model parameters. This procedure is loosely equivalent to
clustering at the subject level. Some of the distributions of parameter estimates were not symmetric, so I calculated and reported
bias-corrected accelerated confidence intervals [45]. The acceleration parameter, which took into account skewness, generally
reduced the lower bound of my confidence intervals.

16 The estimated fraction of L0 was f (0) = 0.04, while f (1) = 0.12, f (2) = 0.20, f (3) = 0.22, f (4) = 0.18, f (5) = 0.12, etc. However,
L0R and L1R best responded to true messages, and hence 16% of the receivers effectively did not reason strategically. As another
example, L3S and L4S responded to receivers who engaged in one non-trivial round of best responses, so f (3) + f (4) = 40% of
senders engaging in two iterations of best responses.

17 Model 5’s λ estimates imply f (0) = 0.07, f (1) = 0.18, f (2) = 0.24, f (3) = 0.21, f (4) = 0.15, and f (5) = 0.08, so there is even less
sophistication by receivers: 24% behave unstrategically, 44% engage in one round of strategic calculation ( f (2) + f (3) = 0.444),
and 32% engage in two or more rounds.

18 This was not the case for honesty. If model 3 is estimated as fixing τ42 equal to rich treatment τ̂42 = 0.209, the resulting model has
LL = −661.33, close to model 3’s LL = −660.61. Therefore, β̂ and λ̂ are the major differences between models 2 and 3.

19 If all senders were truthful, E[|m − s|] would be 0, while if all senders sent m = 5, E[|m − s|] would be 2. If the receivers
credulously chose a = m, E[|a−m|] would be 0, while if the receivers always chose a = 3, E[|a−m|] would be 1.2. I did not use
correlations as my measure of communication because distances are easier to interpret and consistent with the messages having a
literal meaning.
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20 Definition 1’s requirement that L0S randomize uniformly over every honest message implies, for example, that
Pr(m = {2, 3, 4}|s = 2, L0s) = 1/3, because with MR in the state s = 2, there are three possible honest messages: m = 2,
m = {1, 2, 3}, and m = {2, 3, 4}.

21 The lower bound for τ32+ of (100 + 16λ)/1000 in all SDOTs is chosen such that for L2R, a({1, 2, 3}) = 1, a({2, 3, 4}) = 2 and
a({3, 4, 5}) = 3. The lower bound for λ is chosen to ensure that the lower bound for τ is below the upper bound, which is set by
a(4) = 2 for the L2R senderss in the base treatment.

22 While the written instructions stated that there would be 12 to 16 rounds in every experiment, that proved impossible given time
constraints. Subjects were informed verbally that there would be 4 to 8 rounds in each experiment.
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