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Abstract: Social learning often occurs between groups with different levels of experience. Yet little
is known about the ideal behavioral rules in such contexts. Existing insights only apply when
individuals learn from each other in the same group. In this paper, we close this gap and consider two
groups, novices and experienced. Experienced should not learn from novices. For novices learning
from experienced, a particular form of probabilistic imitation is selected. Novices should imitate any
experienced who is more successful, and sometimes but not always imitate an experienced who is
less successful.
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1. Introduction

Cultural transmission is recognized as being important for the evolution of culture [1].
Cues help to identify groups who are likely to possess better than average information, in
particular when information about success is less available or noisier. Experience or age is
a popular cue [2]. To copy or imitate the behavior of those possessing such cues saves the
cost of learning and helps pass on the knowledge acquired by others. Imitation seems to
be the only natural behavior for anyone who has no information about the environment.
Yet, it does not automatically make sense to assume that those learning imitate blindly.
Typically not all those with the cue have superior performance. Moreover, newcomers also
have information of their own. They have limited experience in the new environment and
possibly have some information about the success of those possessing such a cue. We wish
to investigate how limited own information can be combined with knowledge (or belief)
that others are more experienced when subjects choose their actions. The importance of
when to “copy” is acknowledged in the field both among humans [3] and among animals [4].
Yet, our paper differs from other papers on cultural transmission that either assume that
those belonging to one group blindly copy those of the other [1] or assume that the older
generation can impose their behavior on the new generation [5].

Schlag [6] presents a simple formal model to help understand when to copy and when
not, in view of aggregating information within a population. It has been used to explain
behavior in a large variety of environments, ranging from foraging behavior of fish, to
learning decisions of human beings (e.g., see [7]). The downside of the original paper is
that it only applies to subjects learning within the same group, not to learning between
groups when all know that subjects in one group are on average better informed than in
the other. Yet many of the applications have precisely these features. The objective of this
paper is to close this gap.

There are two challenges. A priori it is an open question whether information can
be aggregated as in homogeneous populations. In homogeneous populations, it is as
if individuals observe each other. One can then design a rule such that the probability
to switch to the action of the observed is greater than the probability that the observed
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switches to your action if and only if the observed is choosing a better action. When all use
this rule average payoffs increase. However, in the setting of this paper, when computing
the change in payoffs among the novices, one is not interested in the behavior of the
individuals (experienced) that the novices observe. So the intuition from the homogeneous
population does not carry over. The second challenge is whether differences in experience
persist. If they do not necessarily persist then it is not clear how a common understanding
of the difference in experience can emerge in the first place.

For our analysis, we start with the model of [6] where subjects have to choose between
two actions that each give a random payoff. Subjects have very little a priori information
about how these payoffs are generated. They do not choose a behavioral rule that is best
according to some specific prior. Instead, they choose a rule under which they are able to
learn in the sense of increasing their payoffs from one round to the next, regardless of the
environment, provided all use this rule.

The new feature in the present paper is that subjects observe someone else who has a
different experience and that subjects know whether the subject they observe is more or
less experienced than they are. Specifically, we consider two different groups, experienced
and novices. Experience is captured as follows. It is known to all that the proportion
among the experienced choosing, the better action is higher than it is among the novices.
However, it is unknown how large this difference in experience between the groups is.
Given that there are two types of individuals we need to select a rule for a novice who
observes an experienced and for an experienced who observes a novice. How to behave
when observing someone from the same group follows from [6].

Behavior is easy to select when experienced observe novices. Fear that the novices are
all choosing the worse action leads the experienced to never switch. A single observation of
the payoff of each action is not enough to learn which action is better as payoffs are random.

What about the novices observing experienced? Given they observe a more experi-
enced subject, one may think that it is best for the novices to use the rule Always Imitate
(AI), to always imitate the experienced regardless of the payoffs. This is indeed one type of
behavior that will make the inexperienced always better off as they adapt the behavior of
the experienced from the previous round. Such behavior is consistent with the observance
of taboos. However, this behavior is not very effective if the difference in experience is
negligible. In that case, under this rule, their behavior hardly changes. An alternative
is for all to use the Proportional Imitation Rule (PIR) selected by [6] for learning within
groups. Under this rule, never imitate someone else who has a lower payoff and imitate
someone who was more successful with a probability that is proportional to how much
more successful they were. It turns out that this rule will lead to an increase in payoffs of
the novices.

In fact, any rule that increases payoffs under within-group learning will also do so for
the novices when they observe the experienced group. The intuition is no longer based on
net switching behavior as in homogeneous populations. It turns out that the difference in
experience leads to a stronger increase in payoffs as compared to the case where there is no
difference in experience. More choosing the worse action see the better action which leads
to more switching to the better action. At the same time, less choosing the better action will
see the worse action and be tempted to switch away from the better action.

However, PIR is not a desirable rule for novices learning from experienced. The reason
is that it switches too seldom. In this paper, we discover a new rule called the Reverse
Proportional Imitation Rule (RPIR) that dominates PIR. The RPIR is defined as follows.
Always imitate those that perform better, and sometimes imitate those that perform worse
where the probability of not switching to an experienced performing worse is proportional
to the difference in payoffs. It is as if the roles of the switching individual and the observed
individual are swapped and then the PIR is applied. The probability of a novice imitating
an experienced with a low payoff is only small if the payoff of the novice is high. In
particular, novices do not ignore their own performance when they are successful and
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the experienced individual observed is not. RPIR does as well as PIR when there is no
difference in experience but outperforms it for any degree of difference in experience.

Our above discussion reveals two candidate rules, RPIR and AI. How do they compare?
RPIR is best when experienced difference is small while AI is best when it is large. To
select rules among the rules that always lead to an increase in payoffs we evaluate the
performance of a rule in terms of loss of not having chosen the best one given the true
difference in experience. We find that RPIR performs much better in terms of loss than AI.
AI is too specialized for the case where experienced know what is best. On the other hand,
RPIR involves lots of switching and hence does not perform badly in that case. The most
preferred rule involves mixing between these two rules, putting the most weight on RPIR.

We also consider the case where not both payoffs are observable. Here we select the
rule that mixes equally likely between Always Switch and the rule that is selected in [6]
when there is no difference in experience.

Finally, we investigate whether differences in experience persist over time when both
payoffs are observable. We find that it will persist if individuals can choose which group
to learn from. This is intuitive as everyone wants to learn from the experienced and the
experienced have a head start given their experience. However, it will not necessarily persist
if individuals observe each other. To see this assume that the difference in experience is very
small. Then novices are learning as if they are observing other novices while experienced
are not learning when they see novices as they do not switch in that case. Consequently,
experienced learn slower than novices and can be overtaken.

We proceed as follows. In Section 2 we introduce the model with two actions. In
Section 3 we analyze the special case where payoffs are either 0 or 1. The more general case
where payoffs lie between 0 and 1 is investigated in Section 4. In Section 5 we consider the
case where payoffs of others cannot be observed. Section 6 contains the analysis of how the
difference in experience changes over time. In Section 7 we conclude.

2. The Model

Individuals belonging to a large (essentially infinite) population repeatedly and inde-
pendently face the following decision problem. There are two actions, denoted by A and
B, from which a subject can choose. We use C to denote an element of {A, B}. Choice of
action C in round t (t = 1, 2, . . .) yields a random payoff that belongs to a common bounded
interval which we assume for simplicity to be [0, 1].1 Payoffs are realized independently of
other events. Let a and b be the corresponding expected payoffs of actions A and B. All
subjects prefer the action that yields the higher expected payoff, which we then also call
the better action. Let PC define the distribution of payoffs realized when choosing action C.

Individuals belong to one of two large groups, called novice and experienced. Fix
t. Let xt,C and yt,C denote the fraction of novices and experienced respectively choosing
action C in round t, so xt,C, yt,C ≥ 0 and xt,A + xt,B = yt,A + yt,B = 1. The terminology
novice and experienced comes from the fact that we assume at time t that the fraction
of experienced choosing the better action is larger than the fraction of novices choosing
this action. So we assume yt,A ≥ xt,A if a > b and yt,B ≥ xt,B if a < b. This is equivalent
to assuming that (yt,B − xt,B)(b− a) ≥ 0. Note that this is also equivalent to assuming
that the average payoff among the experienced is higher than among the novices, i.e.,
yt,Aa + yt,Bb ≥ xt,Aa + xt,Bb. Individuals know which group they belong to but do not
know anything about the distribution of payoffs except that payoffs belong to [0, 1]. In
particular, they do not know which action is better. They do not know the fractions of the
actions chosen in the population. However, they do know that the fraction of experienced
choosing the better action is larger than the fraction of novices choosing this action.

After choosing an action and realizing a payoff each subject observes the group identity,
the action chosen, and the payoff realized of some randomly chosen subject. Based on their
own experience in the last round and on this information the subject then chooses an action
for the next round. It is assumed that all subjects belonging to the same group use the same
rule for revising their action.
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We refer to learning within group when the observed subject belongs to the same
group as the observant, otherwise, we talk about learning between groups. In the following,
we investigate learning between groups which extends the methodology of learning within
groups by Schlag [6].

Consider the first behavior of the novices. Their learning rule will be denoted by F
and is given by a mapping from {A, B} × [0, 1] × {A, B} × [0, 1] into [0, 1]. F(C, u, D, v)
denotes the probability of not choosing action C in round t + 1 after choosing action C and
receiving payoff u in round t and observing an experienced subject who chose action D and
received payoff v in round t. Never Switch is the rule F that satisfies F(C, u, D, v) = 0 for
u, v ∈ [0, 1]. A rule F is called imitating if F(C, u, C, v) = 0 for all u, v ∈ [0, 1]. Always Imitate
(AI) is the imitating rule F that satisfies FAI(C, u, D, v) = 1 for C 6= D. The Proportional
Imitation Rule (PIR), selected in [6] for learning within groups, is the imitating rule F that
satisfies F(C, u, D, v) = max{0, v− u} when C 6= D.

Let fCD denote the expected probability of switching under rule F after choosing C
and observing a subject choosing D, calculated ex-ante to receiving a payoff from action
C. So

fCD =
∫ 1

0

∫ 1

0
F(C, u, D, v)dPC(u)dPD(v).

Using this we compute the change in the play of action B and find

xt+1,B − xt,B = −(xt+1,A − xt,A) (1)

= xt,Ayt,A fAA + xt,Ayt,B fAB − xt,Byt,A fBA − xt,Byt,B fBB.

In the following, we will search for rules F that are “improving”. A rule is called
improving [6] if the average payoff within the same group increases between rounds when
all use this rule. As there are only two actions, this means that the probability of switching
to the better action is larger than the probability of switching to the worse action. Formally,
F is called improving if

xt+1,B − xt,B ≥ 0 if b > a (so yt,B ≥ xt,B),

xt+1,B − xt,B ≤ 0 if b < a (so yt,A ≥ xt,A).

In particular, the above has to hold when xt,A = yt,A. Notice that when xt,A = yt,A
then it is as if a subject is observing someone who belongs to the same group. So, if a rule is
improving for learning between groups, then it is also improving for learning within the
group. The findings in Schlag, 1998 [6] for learning within the group are as follows. F is
improving for learning within the group if and only if (i) F is imitating and (ii) there exists
σ ≥ 0 such that

F(A, u, B, v)− F(B, v, A, u) = σ(v− u) (2)

holds for all u, v ∈ [0, 1].
Assume that F is improving (between groups). As F is improving within groups,

it follows from (i) and (ii) above that fAA = fBB = 0 and there exists σ ≥ 0 such that
fAB − fBA = σ(b− a). Let δt = yt,B − xt,B. Then (1) becomes

xt+1,B − xt,B = xt,Axt,Bσ(b− a) + δt(xt,A fAB + xt,B fBA) (3)

= xt,Axt,Bσ(b− a) + δtxt,Aσ(b− a) + δt fBA

= xt,Ayt,Bσ(b− a) + δt fBA.

Note that δt measures the difference in experience when B is the better action (so if
b > a).

If there is no difference in experience, so if δt = 0, then (3) is the same formula as
obtained in Schlag, 1998 [6]. The additional term with δt results from the higher likelihood
of seeing better action among the experienced than among the novices. More novices that
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have chosen A get the possibility to observe B and fewer novices who have already been
choosing the better action B are distracted by observing the performance of action A.

Following (3), as σ, fAB, fBA ≥ 0, any improving rule for the case of a single group, so
for δt = 0, is also improving for novices learning from the experienced (so when δt ≥ 0).

Before summarizing this result, we consider the behavior of the experienced when
observing a novice. The improving condition requires that experienced are on average better
off in the next round even when currently all experienced are choosing the better action
and all novices are choosing the worse action. So under these specific circumstances, no
experienced should switch. However, as one sample of payoffs of each action provides no
information on which action is better, an experienced should never switch when observing
a novice. The same intuition is used in Schlag, 1998 [6] to show that improving rules for
learning within the group are imitating.

We have thus proven the following result.

Proposition 1.

(i) A learning rule for novices observing experienced is improving if and only if it is improving
for the case where novices observe novices.

(ii) Never Switch is the only improving rule for experienced observing novices.

So, an improving rule for learning between groups has to be also improving for
learning within the group as the difference in experience might be negligible. On the other
hand, the reason that an improving rule for learning within the group is also improving
for learning between groups is as follows. The fact that the experienced choose the better
action more likely increases learning due to those choosing the worse action and switching.
Similarly, it fosters learning as fewer choose the worse action, and hence fewer of those
choosing the better action switch to the worse action.

On the side, we obtain from (3) that payoffs increase more when novices observe
experienced than when they observe other novices. Moreover, we find that switching is
good, provided the rule is improving for learning within the group. This latter fact will
influence our selection of which rules are best.

3. A Simple Environment

We wish to select among the improving rules for novices. To build some intuition
we investigate environments where the payoff can be either 0 or 1. Note that a and b are
now the probabilities of realizing payoff 1 with actions A and B respectively. Initially we
restrict attention to rules where switching probability does not depend on the labelling of
the actions, so where F(C, u, D, v) = F(D, u, C, v) for all u, v ∈ [0, 1] and C, D ∈ {A, B}. At
the end of this section we argue why this restriction can be made without loss of generality.

Let sij = F(A, i, B, j) = F(B, i, A, j) for i, j ∈ {0, 1}. Then

σ = s01 − s10

and
fBA = (1− b)as01 + b(1− a)s10 + (1− a)(1− b)s00 + abs11

so

xt+1,B − xt,B = xt,Axt,B(s01 − s10)(b− a) + δtxt,A(s01 − s10)(b− a) (4)

+δt((1− b)as01 + b(1− a)s10 + (1− a)(1− b)s00 + abs11).

As rules do not depend on labels we can assume that B is better than A, so b ≥ a. It
follows from (4) that the increase in fraction of novices choosing the best action is largest if
s00 = s01 = s11 = 1. Note that there is no best choice of s10 that does not depend on a, b, δt
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and xt,A as increase in s10 raises fBA which is good but decreases σ which is bad. We now
wish to investigate the effects of s10. Assuming s00 = s01 = s11 = 1 we obtain

xt+1,B − xt,B = xt,Axt,B(1− s10)(b− a) + δtxt,A(1− s10)(b− a)
+δt((1− b)a + b(1− a)s10 + (1− a)(1− b) + ab) (5)

= xt,Axt,B(1− s10)(b− a) + δtxt,A(1− s10)(b− a)
+δt(1− b(1− a)(1− s10)).

So, we are left with the question of how to choose a value for s10. What should a novice
who has obtained the highest possible payoff and observes an expert who has obtained the
lowest possible payoff do?

Consider best choices for extreme cases of δt. If there is no difference in experience, so
when δt = 0, then it is best to choose s10 = 0, following (5), which also follows from [6].
If experience is maximal, so when all experienced are choosing the best action (yt,B = 1
and hence δt = xt,A), then xt+1,B − xt,B is increasing in s10 and hence it is best for novices
to choose s10 = 1, which results in the rule AI. This result is intuitive. If the difference
in experience is small, then one should treat own and observed equally and maximize
net switching by choosing s10 = 0 and hence s01 − s10 = 1. If instead, the difference in
experience is large then one should ignore own payoff and focus as much on the observed
by always imitating the observed, so choosing s10 = 1.

Now consider the performance of the rule for a given value of s10 across all values of
δt. After all, we assume that xt and yt are not known, hence that δt is not known. The perfor-
mance of a rule is measured in terms of change in payoffs as given by (xt+1,Aa + xt+1,Bb)−
(xt,Aa + xt,Bb) = (xt+1,B − xt,B)(b− a). We consider loss in this performance that is gen-
erated from not knowing xt and yt (formally called regret [8], axiomatized by Milnor [9].
For a given value of s10, this is the difference between the best performance overall s10 for
given xt and yt and performance for the given value of s10. As (5) is linear in s10, the best
performance under the benchmark where xt and yt are known is given by either s10 = 0 or
s10 = 1. If best performance is obtained when s10 = 0 then using (5) loss in performance is
given by

(xt,Axt,B(b− a) + δtxt,A(b− a) + δt(1− b(1− a)))(b− a)− (xt+1,B − xt,B)(b− a)
= (xt,Axt,B(b− a) + δtxt,A(b− a)− δtb(1− a))(b− a)s10

≤ xt,Axt,B(b− a)2s10

≤ 1
4

s10.

If instead best performance is obtained when s10 = 1 then loss in performance is
given by

δt(b− a)− (xt+1,B − xt,B)(b− a)
= −(xt,Axt,B(b− a) + δtxt,A(b− a)− δtb(1− a))(b− a)(1− s10)

≤ −(xt,Axt,B(b− a) + xt,Axt,A(b− a)− xt,Ab(1− a))(b− a)(1− s10)

= a(1− b)xt,A(b− a)(1− s10)

≤ 1
27

(1− s10).

We are interested in the maximal loss in performance where the maximum is taken over
all appropriate values of xt and yt, so (yt,B − xt,B)(b− a) ≥ 0. By the above calculations we
obtain that the loss in performance is bounded above by

max
{

1
4

s10,
1

27
(1− s10)

}
(6)
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where these calculations show that this bound is tight. Hence (6) represents the maximal
loss in performance.

For instance, the rule with s10 = 0 has maximal loss equal to 1/27 ≈ 0.037 while AI
(with s10 = 1) yields maximal loss 1/4. So when comparing these two extremes we prefer
s10 = 0 as it attains a smaller maximal loss. Maximal loss can be made smaller if one takes
a convex combination between these two rules, by choose s10 = 4/31 ≈ 0.129 as solution to
1
4 s10 = 1

27 (1− s10). This yields maximal loss equal to 1/31 ≈ 0.032 which is only slightly
better than the value 1/27 attained when s10 = 0.

To summarize, we find the most appealing improving rule satisfies s00 = s01 = s11 = 1
and s10 = 0. The simplicity of setting s10 = 0 is chosen to favor the slightly better rule that
requires s10 = 4/31. In the next section we consider more general payoffs.

Before we proceed, we need to discuss our restriction to rules that do not depend on
the labeling of actions. Intuitively, such rules will be chosen, given there is nothing known
about the environment. In fact, this is true when aiming to minimize maximal loss. The
formal reasoning is as follows. Consider some general improving rule F1 that depends on
the labeling of actions. Define a rule F by F(C, x, D, y) = 1

2 F1(C, x, D, y) + 1
2 F1(D, x, C, y).

Then F does not depend on the labeling of actions and it is easily seen that F is improving.
Moreover, the maximal loss of F is bounded above by the maximal loss of F1. This is because
the maximal loss of a sum is less than or equal to the sum of the maximal losses. Hence,
according to our criteria for selecting rules, we can restrict attention to rules that do not
depend on the labeling of actions.

4. Selecting Rules under General Payoffs

Above we selected a rule for environments where payoffs can be either 0 or 1. The
aim was to minimize the loss in performance from not knowing the parameters. The
selected rule satisfies s00 = s01 = s11 = 1 and s10 = 0. Clearly, maximal loss in more
general environments is weakly larger. In the following, we present several rules that
satisfy s00 = s01 = s11 = 1 and s10 = 0 where maximal loss is not larger, hence where
maximal loss is equal to 1/27.

There is a unique imitating rule with this property where switching probability is linear
in payoffs, it satisfies F(A, u, B, v) = 1− u(1− v). The following slightly more complicated
rule maximizes the switching probability among all improving rules that satisfy σ = 1. It
is the imitating rule that satisfies F(C, u, D, v) = 1 if v ≥ u and F(C, u, D, v) = 1− (u− v)
if u > v for C 6= D. This rule is called the Reverse Proportional Imitation Rule (RPIR)
and can equivalently be characterized by being the imitating rule such that F(C, u, D, v) =
1−max{u− v, 0} for C 6= D. The name comes from the fact that it is as if one switches roles
with the observed and chooses the strategy that the observed would choose if the observed
would be using the Proportional Imitation Rule. The property of maximal switching follows
from the fact that

F(A, u, B, v)− F(B, v, A, u) = v− u

since F is improving with σ = 1, and hence

F(C, u, D, v) ≤ v− u + F(C, v, D, u) ≤ min{1, v− u + 1} = 1−max{u− v, 0}. (7)

This leads us to the following result. First, for completeness, we define maximal loss
in performance of a rule F (given xt,A and yt,A) among improving rules by

max
PA ,PB

{
max

F0 improving
{(xt+1,B(F0)− xt,B)(b− a)} − (xt+1,B(F)− xt,B)(b− a)

}
where xt+1,B = xt+1,B(F0) is given by (1). Once again this is the difference between the
maximal performance of one of the desired rules, namely improving rules, and the actual
performance of the rule.
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Proposition 2. Consider novices observing experienced.

(i) The Reverse Proportional Imitation Rule is the unique rule that increases payoffs at least as
much as any other improving rule with σ = 1. In particular, RPIR minimizes maximal loss in
performance among all improving rules with σ = 1 and have a maximal loss in performance
equal to 1/27.

(ii) The rule F∗ that is imitating and satisfies F∗(A, u, B, v) = F∗(B, u, A, v) = 1− 27
31 max

{u− v, 0}minimizes the maximal loss in performance among all improving rules. Its maximal
loss in performance equals 1/31.

Following up on our discussion after Proposition 1, we find that a higher switching
probability is better when comparing improving rules with the same value of σ. Ignoring
the value of σ, AI is the rule that switches most. This rule does best when the difference
in experience is maximal but does worst when the difference in experience is negligible.
On the other hand, RPIR does best when the difference in experience is small, as σ = 1,
and also does well when the difference in experience is large. There is no rule that does
best among the improving rules in all environments. Trade-offs have to be made and are
captured by maximal loss. Our analysis of loss reveals that RPIR is preferred to AI. It is
better to protect for a small difference in experience than to bet on the fact that experience
difference is maximal. In fact, a maximal loss can be made slightly smaller than under
RPIR by randomizing between these two extreme rules. The improving rule that minimizes
maximal loss puts a probability of 27/31 on RPIR and a probability of 4/31 on AI.

Note that the Proportional Imitation Rule that was selected for learning within a
group no longer performs that well for learning between groups. While it is improving for
learning between groups, it is dominated by the RPIR. Its maximal loss is substantial as it
equals 1/4. So we find very different rules for learning between groups than for learning
within the group.

Proof. Part (i). As shown above, the Reverse Proportional Imitation Rule maximizes
switching probability among all improving rules with σ = 1. Together with (3) this then
shows that RPIR increases payoffs at least as much as any other improving rule with σ = 1.
In fact, (7) shows that it is the unique rule with this property.

Let F1 be the imitating rule such that F1(C, u, D, v) = 1− u(1− v), which satisfies
s00 = s01 = s11 = 1 and s10 = 0. Given linearity in u and v and our results in Section 3,
the maximal loss in performance of F1 equals 1/27. Following (3), the maximal loss in
performance of FRPIR is weakly smaller. However, as the maximal loss of F1 is attained
when u, v ∈ {0, 1}, and as F1(C, u, D, v) = FRPIR(C, u, D, v) when u, v ∈ {0, 1} we obtain
that the maximal loss in performance of FRPIR also equals 1/27.

Part (ii). Consider the linear rule F2 that is imitating and defined by F2(A, u, B, v) =
1− 27

31 u(1− v). Note that F2 is improving with σ = 27
31 and satisfies s00 = s01 = s11 = 1 and

s10 = 4/31. Following Section 3 this rule attains the smallest maximal loss in performance
among all improving rules if payoffs are in {0, 1}. The linearity of F2 implies that this
statement also holds when payoffs belong to [0, 1]. As the rule F∗ given in (ii) is identical to
F2 when payoffs belong to {0, 1} but always switches more likely than F2 it follows that
maximal loss under F∗ cannot be larger than under F2 which completes the proof.

5. Limited Observability

Next, we revisit our analysis in the previous two sections for the case where fewer
payoffs are observable. First, we consider the case where one cannot observe the payoffs
of others. So, we now consider rules F that map {A, B} × [0, 1]× {A, B} into [0, 1] where
F(C, u, D) denotes the probability of not choosing action C in the next round after choosing
action C and receiving payoff u and observing someone else who chose action D.

The rule selected by Schlag [6] for learning within the group is the Proportional
Reviewing Rule (PRR). It is an imitating rule defined by F(C, u, D) = 1− u for u ∈ [0, 1].
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Our previous analysis shows that the experienced should not change behavior when
observing novices.

We now select among improving rules for novices who observe experienced. Let F be
an improving rule.

We first consider payoffs in {0, 1}. Let si = F(A, i, B) = F(B, i, A) for i ∈ {0, 1}.
Following Proposition 1(i), F must be improving when δt = 0, so s0 − s1 = σ. We adapt (4)
and obtain

xt+1,B − xt,B = xt,Axt,B(s0 − s1)(b− a) + δtxt,A(s0 − s1)(b− a)
+δt((1− b)as0 + b(1− a)s1 + (1− a)(1− b)s0 + abs1)

= (xt,B + δt)xt,Aσ(b− a) + δt(s0 − bσ).

W.l.o.g. we can assume that B is better than A. We then see that increase in payoffs of
novices is largest when s0 = 1. This yields

xt+1,B − xt,B = (xt,B + δt)xt,A(1− s1)(b− a) + δt(1− b(1− s1)).

We now select s1 by analyzing loss in performance. If best performance is given when
s1 = 0 we obtain with a few additional steps that

((xt,B + δt)xt,A(b− a) + δt(1− b))(b− a)− (xt+1,B − xt,B)(b− a) ≤ 1
4

s1.

In case best performance is achieved when s1 = 1 we obtain

δt(b− a)− (xt+1,B − xt,B)(b− a) ≤ 1
4
(1− s1).

Hence, loss in performance is given by 1
4 max{s1, (1− s1)} and maximal loss is mini-

mal by choosing s1 = 1
2 .

Now consider the case of general payoffs in [0, 1]. The argument made in the proof of
Proposition 2 also shows here that the the linear rule that coincides with the selected rule
above when payoffs are in {0, 1}minimizes maximum loss.

Proposition 3. Consider novices observing choice but not payoff of experienced. The rule F
that minimizes maximal loss in performance among all improving rules is imitating and satisfies
F(C, u, D) = 1− 1

2 u for u ∈ [0, 1] and C 6= D. It guarantees loss in performance below 1/8.

Note that the rule selected above can be interpreted as mixing equally likely between
AI and PRR. AI and PRR are the rules that are best when δt = 1 and when δt = 0,
respectively. Each of them on itself yields a maximal loss in performance equal to 1/4 while
mixing equally likely between them reduces it to 1/8.

We find that the rule that guarantees the lowest maximal loss in performance is an
improving rule that has a value of σ equal to 1/2. It gives up learning when the difference
in experience is marginal (as otherwise σ = 1 is best when δt = 0) in order to benefit from
higher switching probability when the difference in experience is larger.

Note the substantial value of observing the payoff of the other, in that case, the
maximal loss was 1/31 ≈ 0.033 while without observability we obtain 1/8 = 0.125.

Similarly, one can consider the case in which own payoffs are not observable. This
case arises naturally when one has not made a choice yet. For instance, this is the case in
the models of the fish experiments of Pike et al. [10]. Here F(C, D, v) is the probability of
not choosing C after observing another who chose D and obtained payoff v. The results
are very similar to those obtained when only own payoff is observable. Calculations are
straightforward and left to the reader. Once again, experienced will not change behavior
when observing a novice. The analysis of novice behavior is analogous to the above.
The rule that minimizes maximal loss in performance is the imitating rule that satisfies
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F(C, D, v) = 1
2 v for C 6= D. Its maximal loss is 1

8 . This rule arises when choosing equally
likely between Never Switch and the Proportional Observation rule where F(C, D, v) = v
for C 6= D, as defined in [6].

6. Evolution of Experience

We now return to the setting where self and others’ payoffs are observable and in-
vestigate how differences in experience change over time. The current paper relies on the
common knowledge that novices are less experienced than the experienced. This can occur
quite naturally, namely when the experienced have been facing the environment several
times while the novices have only faced it once. Here one has to assume they both started
with the same distribution of actions. The difference in experience is also present when
both start with the same distribution, the novices have faced the environment less often and
neither group has learned from the other. The present paper applies to the first time there
is learning between these two groups. A natural question is to investigate what happens
when these two groups are learning from each other the second time or later. To apply the
present paper it has to be the case that the difference in experience is still present after the
first time they have learned from each other. As they do not know which environment
they are facing, this has to hold true for any environment. So we now investigate how the
difference in experience evolves over time.

Population dynamics are defined by four rules, depending on which group is learning
and which group is being observed. We assume that experienced never switch when
observing a novice and that the other three rules belong to the class of improving rules
with σ = 1. Let λ be the probability that novices observe an experienced, so any novice
observes another random novice with probability 1− λ, λ ∈ [0, 1]. We distinguish two
different cases, according to whom experienced observe.

6.1. Experienced Observe only Experienced

Consider first the situation where experienced only observe other experienced, which
defacto means that there are only three different rules are being used. This scenario is
motivated by the fact that experienced do not wish to learn from novices. Using (3) we
obtain that population dynamics are given by

xt+1,B − xt,B = (1− λ)xt,Axt,B(b− a) + λ(xt,Axt,B(b− a) + δtxt,A(b− a) + δt fBA)

= xt,Axt,B(b− a) + λδt(xt,A(b− a) + fBA), (8)

yt+1,B − yt,B = yt,Ayt,B(b− a).

We now investigate how the difference in experience changes over time and find

δt+1 = yt+1,B − xt+1,B

= yt,B + yt,Ayt,B(b− a)− (xt,B + xt,Axt,B(b− a) + λδt(xt,A(b− a) + fBA))

= δt +
(

xt,Axt,B + xt,Aδt − δtxt,B − (δt)
2
)
(b− a) (9)

−(xt,Axt,B(b− a) + λδt(xt,A(b− a) + fBA))

= δt[1 + (xt,A − xt,B − δt)(b− a)− λ fBA − λxt,A(b− a)]
≥ δt(1− λ)(1− xt,B(b− a)) ≥ 0

as δt ≤ xt,A and fAB − fBA = σ(b− a) with σ = 1 implies fBA ≤ 1− (b− a). Note that
δt < xt,A holds if and only if yt,B < 1. Hence, even if novices only observe experienced, so
if λ = 1, then δt+1 > 0 if δt > 0 and yt,B < 1. Moreover, note that if yt,B < 1 then yt′ ,B < 1
for all t′ > t. This proves the following.
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Proposition 4. Assume that experienced observe only experienced. Then the property of being
more experienced in round t persists over time, i.e., δt(b− a) ≥ 0 implies δt′(b− a) ≥ 0 for all
t′ > t. Novices never become as good as the experienced when not all experienced choose the same
action in round t, i.e., δt(b− a) > 0 and yt,B ∈ (0, 1) implies δt′(b− a) > 0 for all t′ > t.

As a consequence, following (8), we obtain in the long run (as t → ∞) that all
choose the better action provided each of the two actions are initially chosen by some
of the experienced.

6.2. Experienced and Novices Learn from Each Other

Now consider the scenario where subjects observe each other. As a novice observes an
experienced with probability λ, this is also the probability that an experienced observes a
novice. The dynamics of the group of novices remain unchanged (see (8)). As experienced
choose not to change behavior when observing a novice, we obtain

yt+1,B − yt,B = (1− λ)yt,Ayt,B(b− a).

Learning among the experienced is slower than in the previous scenario. Change in
experience is now given by

δt+1 = yt+1,B − xt+1,B

= yt,B + (1− λ)yt,Ayt,B(b− a)− (xt,B + xt,Axt,B(b− a) + λδt(xt,A(b− a) + fBA))

= δt + (1− λ)
(

xt,Axt,B + xt,Aδt − δtxt,B − (δt)
2
)
(b− a)

−(xt,Axt,B(b− a) + λδt(xt,A(b− a) + fBA))

= δt[1 + (1− λ)(xt,A − xt,B − δt)(b− a)− λ fBA − λxt,A(b− a)]− λxt,Axt,B(b− a).

In particular, subjects who are a novice in round t need not be less experienced in
round t + 1. For instance, given xt,B ∈ (0, 1), λ > 0 and b > a, if yt,B is chosen such that δt
is sufficiently small, then δt+1 ≈ −λxt,Axt,B(b− a) < 0. This comes as no surprise as the
experienced are choosing not to learn from the novices even though it turns out that the
experience of novices is very similar.

Proposition 5. Assume that experienced and novices observe each other. The property of being more
experienced need not carry over from round t to round t + 1. More specifically, given xt,B ∈ (0, 1),
λ > 0 and b 6= a there exists yt,B such that δt(b− a) > 0 > δt+1(b− a).

So, assume that there are two groups in the population and that in round t it is known
that those in one group are on average more experienced than those in the other group.
Then our analysis and selection of rules in this paper only applies to round t only. The
subjects in the population cannot infer that those more experienced in round t are also
more experienced in round t + 1.

6.3. Individuals Are Free to Choose Whom to Learn From

Finally, consider the following scenario. There are two groups, and it is known in
round t that the subjects belonging to the one group are on average more experienced
than those belonging to the other. In each round, with probability µ a subject can choose
which group of subjects to learn from and with probability, 1− µ can only observe someone
from the same group. Then clearly each subject will choose in round t, when possible, to
observe an experienced. This leads to the dynamics in Section 6.1 with λ = µ. The same
group remains more experienced in round t + 1, and again all subjects wish to observe
these subjects. Differences in experience carry over from one round to the next round and
persist forever.
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6.4. Discussion

We summarize our findings. The difference in experience does not necessarily per-
sist when experienced learn from novices whenever novices learn from the experienced.
Initially one might think that novices cannot overtake the experienced. However, on the
second inspection, it is clear how they can turn more experienced. This namely happens
when the difference in experience is very small. Novices are learning and hence increase the
choice of the better action. Experienced on the other hand do not change their action. Hence
more of the novices may choose the better action in the next round than the experienced.
So, when novices learn from experienced as often as vice versa then the current paper is
only applicable the first time experienced and novices learn from each other.

On the other hand, we find that difference in experience persists if everyone learns
from those with better experience. In this case, the present paper can be applied in each
round. Novices never completely catch up with the experienced.

In this paper, there is no assumption about the size of the difference in experience.
However, one would imagine that the difference in experience is initially bounded away
from zero. In that case, one expects that the difference in experience persists for several
rounds. An analysis of such aspects is however outside the scope of the present paper.

7. Conclusions

Cultural transmission can come in many forms. It can be one generation passing
on traits to the next generation, it can be individuals learning from others who have
different experiences. In this paper, we caution not to forget that newcomers have their
own experiences and old-timers need not all have found the best solutions. The suggestion
is that, when passing on info to the newcomers, the success of both sides should be
incorporated. For instance, what if the strategy used by the old-timer was not successful,
and what if the initial efforts of the newcomer using a different method had been successful?
The objective of this paper is to find out whether such additional information should be
taken into account, and how this should be done.

Schlag [6] introduced a new methodology and thus opened insights into the value
of imitation for social learning. Yet many of the papers that have built on these insights
have applied them to a setting where it does not apply. The original paper [6] considers
a setting where individuals within the same group are learning from each other how to
make good choices. Yet many of the applications consider one group learning from another
more experienced group. Those who are making the choice are disjoint from those they
are learning from. This paper closes this gap in the literature and investigates exactly
this situation, where those choosing belong to a different group than those who they
are observing.

The results of this paper are consoling in two senses. First of all, the findings show
that it is possible to have a social learning rule that enables learning from other groups in
any environment. Second of all, the learning rules (improving rules) that enable learning
the better action are the same as they were in the original paper. So those papers applying
the within-group learning insights to learning between groups are partially validated.
Specifically, rules are improving the within-a-group setting if, and only if, they are for
learning from the more experienced.

On the other hand, new aspects arise in how to best learn. Recall for learning within
groups that the amount of switching should be kept minimal (within the constraints
imposed by the class of improving rules) to reduce variance in finite populations. Yet when
learning from more experienced we find that switching should be maximized in order to
take advantage of the superior experience of the observed. We learn that all the insights
of the original paper by Schlag [6] cannot be automatically applied to other contexts. In
particular, the best rule for within-group learning (PIR) does not perform very well when
learning from more experienced.

In terms of cultural transmission of traits from the older generation (experienced)
to the younger (novices), we obtain the following insights. The older generation should
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not change their own behavior. At the same time, they should convince the younger to
copy their behavior unless by chance the younger are more successful than they are in
which case the younger should continue with their own behavior with a probability that
is proportional to how much better they are. In particular, it is not best for them to both
adopt the same choice. This is not a contradiction but a consequence of their different
objectives, each of them wishes to improve payoffs within their group. This makes the
experienced very conservative, worried that the novices are doing the wrong thing so that
the experienced do not change their behavior. On the other hand, the novices have the
opportunity to learn from more experienced and hence can change.

Given the straightforward analysis in this paper, we observe that the methodology
from [6] is easily adapted to investigate new contexts. In this paper, the new context is
learning from other groups. Minor adjustments are made to the original methodology as
we now include minimax loss as a measurement of performance (as in [11]) and use settings
in which extreme payoffs can only be generated to gain insights on the general rules.

We briefly mention other contexts to which the original methodology has been applied.
Alós-Ferrer and Schlag [12] show how to learn when some subjects are more likely to
be observed than others. They also investigate the setting where individuals do not face
independent choice problems. Schlag [13] and Hofbauer and Schlag [14] consider the
availability of multiple observations influences learning behavior and success. Schlag [11]
allows for learning rules to be time-dependent. All of these investigations concern learning
within a group setting.

Numerous gaps in our understanding of social learning remain. How will learning
look when subjects are more sophisticated, such as when they have memory and can learn
about the situation they face? How should learning between groups be done when there
are more than two actions? How can individuals find the right cues to condition their
learning on? How can this model be extended when not all face the same environment?
Last but not least, how does this theory compare to how real human subjects learn under
minimal information? On this matter, note that [3] only provides partial insights as there is
not enough variability in the payoffs to be able to get an understanding of the details of the
learning rule.
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Note
1 When payoffs are known to belong to [α, ω], for some α < ω, replace each x ∈ [α, ω] by (x− α)/(ω− α) and then

proceed as if payoffs belong to [0, 1].
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