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Abstract: We study asymmetric second-price auctions under incomplete information. The bidders
have two potentially different, commonly known, valuations for the object and private information
about their entry costs. The seller, however, does not benefit from these entry costs. We calculate the
equilibrium strategies of the bidders and analyze the optimal design for the seller in this environment
in terms of expected entry and the number of potential bidders.
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1. Introduction

In auctions with entry costs, each bidder can enter the auction only if he pays an entry
cost. The seller, however, does not benefit from the bidders’ entry costs (as opposed to entry
fees). This cost of entering is spent regardless of whether a bidder wins and is independent
of his bid. It reflects both an opportunity cost of the time of participating and the cost of

check for the effort needed to learn the rules and prepare a strategy (see [1-3]). For large auctions
updates (such as spectrum auctions), it also represents the cost of raising the necessary credit to
participate. The usual assumptions on entry costs are that they are common knowledge
and identical (for example, see [4-9]. Cao and Tian [10] assume that the entry costs are
asymmetric but they are still common knowledge. We instead assume that the bidders’
entry costs are private information. This is natural since a bidder should have a much better
Academic Editor: Daniel Friedman idea about his own opportunity, learning, and fundraising costs than about such costs of
and Ulrich Berger his opponents. Cao et al. [11] assume costs and values are both independently drawn from
a joint distribution. They prove existence and find conditions for uniqueness.

Another common assumption in the literature on auctions with entry costs is that
bidders’ decisions on whether or not to enter the auction are made before they learn their
private information. This timing assumption and the assumption that bidders are ex ante
symmetric causes the expected profit of each bidder to be zero with all the social surplus
going to the seller (as in [5]. We depart also from this timing assumption by having a
bidder’s entry cost known to the bidder before making his entry decision. Doing so best
captures the idea that entry costs are opportunity costs. We note that others have also

modeled the timing in this order. Samuelson [7] and Menezes and Monterio [12] consider

a model with incomplete information where a player first learns his private value for the
object being sold and then decides whether or not to enter the auction. However, contrary
to our model, in their symmetric model, all bidders have the same cost of entry, which is
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We find that our model has cutoff equilibria, where any bidder with an entry cost
higher than the cutoff for his valuation will stay out of the auction and any bidder with
an entry cost lower than the cutoff for his valuation will decide to participate in the
auction. We show that given these equilibrium strategies, a bidder may wish to have a
lower valuation for the object since, surprisingly, his expected payoff may decrease in his
valuation. Moreover, the expected payoff of a player may be lower than the expected payoff
of his opponents with lower valuations. Cao and Tian [10], who studied a different model
with asymmetric entry costs in which bidders have private valuations for the object but
participation costs are common knowledge, provided conditions under which there exists
only monotonic equilibria, namely equilibrium in which a lower participation cost results
in a lower cutoff to participate in an auction.

We analyze the optimal entry (design) in our environment given that the number of
bidders (potential entrants) is exogenous. In the special case where bidders are symmetric,
that is, they all have the same value for the object, we find that the seller would like to
reduce the number of bidders that choose to enter from the equilibrium. While reducing
the number that enter, the seller collects more from those that decided to enter. In the case
where bidders are asymmetric, that is, they have different values for the object, we show
that, independent of the distribution of the bidders’ entry costs and the bidders’ valuations
for the object, the seller always wishes to reduce participation of at least one type of bidders.
Sometimes the seller may prefer a less efficient situation where the optimal cutoff of bidders
with the high valuation is always smaller than the optimal cutoff of bidders with lower
valuation. For example, Gilbert and Klemperer [13] show that an auctioneer may wish to
run an inefficient auction to attract weaker bidders to enter the auction. However, we find
that if the numbers of bidders of each type are identical, the seller prefers a higher cutoff
for the bidders with a high valuation. In the asymmetric case, usually neither entry fees nor
reserve prices are sufficient to implement the optimal cutoffs for the seller, and therefore,
the seller should find alternative solutions. Only in the symmetric case, these two methods
(reserve prices and entry fees) are able to implement the optimal entry in the auction. This
result, by the way, is in contrast to the models with common entry costs in which entry
fees are useful but reserve price may not be, and thus they are not equivalent tools (see, for
example, [5,6]).

Finally, we assume that the number of bidders is endogenous and address the question
of what is the optimal number of bidders that maximizes the seller’s payoff or the social
surplus. We find that the answer to this question is quite ambiguous. We examine three
different scenarios. In one, the seller’s payoff and the social surplus increase in the number
of bidders. In another, both decrease in the number of bidders. Finally, in the last scenario,
we find the seller’s payoff and the social surplus may react in completely opposite ways
whereas an increase in the number of bidders yields an increase in the seller’s payoff but a
decrease in the social surplus.

It is important to notice that in the symmetric model with private entry costs, the
revenue equivalence theorem (see [14,15]) holds whether or not bidders observe how many
others have decided to enter before bidding in the auction (see [2,16]) This implies that
our results for symmetric second-price auctions will hold, for instance, if the auctions
are first-price auctions and bidders are uninformed about who entered the auction before
bidding. Indeed, Kaplan and Sela [17] studied a similar model of an all-pay auction with
two bidders in which the equilibrium has the same form as in our model. However, for
more than two bidders, the equivalence between both models does not hold. Levin and
Smith [18] show that for risk-averse bidders, usually, but not always, the seller prefers the
first-price auction to the second-price auction when there are entry costs.

In addition, in our asymmetric model, there may be a difference among the auctions;
in particular, the first-price auction when the bidders are uninformed about who enters
may generate lower revenue than the revenue in our model of second-price auctions.
This indicates that there is room to study other auction forms in our asymmetric environ-
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ment. However, other asymmetric auction forms are not necessarily as easily solvable as
asymmetric second-price auctions.

The paper is organized as follows: in Section 2, we describe the general environment.
We calculate the equilibrium strategies and examine the bidders” behavior in Section 3. Our
analysis of the optimal design in our environment is carried out in Section 4. The effects
of the number of bidders on these auctions are analyzed in Section 5. Finally, we discuss
future extensions in Section 6.

2. The Model

Consider a second-price auction (see [19]) with n > 2 bidders competing for an
indivisible item. The bidder with the highest bid wins the item and pays the second-highest
bid with ties broken randomly. If there is no second-highest bid, then the price of the item
is zero. The bidders are either type 1 or type 2 with 1y > 1 of type 1 and n; > 1 of type 2
(with nq 4+ np = n). A bidder of type i € {1,2} has v; > 0 valuation for the item, which is
common knowledge. Without loss of generality, assume v; > vp. Additionally, without
loss of generality, for each bidder j € {1,...,n}, assume the first ny bidders are of type 1,
and the remaining bidders are of type 2.

For each bidder j, participating in the auction generates a fixed cost c;, which is private
information and drawn independently from the cumulative distribution function F. We
assume that F is on the interval [a, b] where 0 < a2 < min{vy, v;} and that F is continuously
differentiable with F(a) = 0, all of which is common knowledge. To avoid a trivial solution,
assume that F(v;) > 0. The bidders’ entry costs are wasted in the sense that the seller does
not benefit from these costs. We assume that each bidder knows his entry cost and his value
before he makes his decision. This decision made by bidders can be split into two parts:
whether to enter or stay out and what to bid if entering. Denote by d;(c;) the entry decision
(the probability of entering) if one has cost c¢;, and let b; be the bid if one indeed enters .

3. Equilibrium

Once a bidder enters the auction, then we assume he plays his dominant strategy, that
is, to bid his value. Given this, the interesting analysis of our model is examining the entry
decisions of the bidders. In our model, there frequently are trivial equilibria strategies in
which one of the bidders decides to always participate independent of his entry cost, and
all the other bidders decide to stay out of the auction. In order to prevent such equilibrium
strategies (when n; > 1 or np > 1), we assume that bidders of the same type (same v)
follow the same strategy. We say that an equilibrium is type-symmetric if all bidders of
the same type follow the same strategy. With a slight reuse of notation, now denote b; and
d;(c) as the bid and entry decision of bidders of type i.

Proposition 1. A type-symmetric equilibrium exists and satisfies b; = v; and
1if c<cj,
di(c) =
0 if c>cj,
where the equilibrium cutoffs c;, i = 1,2 are given by
¢f = (o1 —02)(1 = F(c}))" ! + 0a(1 = F(c}))" (1 — E(c}))" 7, M

¢3 = va(1 = F(cf))" (1~ F(c3))"™ 1. @

In the symmetric case where v1 = vy and n is the total number of bidders, the symmetric equilibrium
is given by b;(v) = v and
1if c<c¥,
di(c) =
0 if c>c,



Games 2022, 13, 62

4 of 14

where the equilibrium cutoff ¢c* > 0 is the solution of
¢t =ov(1—F(c*)" L ©)]

The equilibrium described by Proposition 1 is such that any bidder with valuation
v; and an entry cost higher than the equilibrium cutoff ¢j will stay out of the auction.
Any bidder with valuation v; and an entry cost lower than the equilibrium cutoff ¢} will
participate in the auction.

In the equilibrium, a bidder has a positive payoff only if he is the only entrant. Thus,
the payoff of a bidder with valuation v; and entry cost ¢ < ¢ is ¢j — c¢. Thus, the expected
payoff of a bidder with value v; is

*

Aﬂquﬁ@) @)

We note that the Proposition’s equilibrium is for ny,ny > 1. If ny > 2,1, > 2 and
a = 0, then any type-symmetric equilibrium must be interior. If 7y = 1 or ny = 1, the
type-symmetric equilibrium can be non-interior with c}* >b,c;<aorc; >ba< ci‘ < b,
and additionally, for 2 > v1 — v2, non-interior with ¢5 > b,c] < a (where a cutoff ¢; > b
implies that everyone of type i would enter, and a cutoff ¢; < a implies that everyone of
type i stays out).

The following example shows that type-symmetric equilibrium is not necessarily
unique and the difference among the equilibrium points is meaningful. (Note that for
simplicity of exposition, in our examples, we will write the equilibrium cutoff equations,
(1) and (2), assuming there is an interior solution and then see if this is indeed the case.)

Example 1. Consider an auction where n1 = 2, np = 1, v1 = 2.25, vo = 2 and F is a uniform
distribution on [0, 1].

By (1) and (2), the equilibrium interior cutoffs are given by:

¢ = (225-2)(1-c)+2(1—c)(1—ch),
¢ = 2(1-ch)

There are two solutions to this system of equations: 1. c] = 0.34255 and c; = 0.8644;
2.c] = 0.62993 and c; = 0.2739. Note that in the first solution, the bidders exhibit
paradoxical behavior in the following sense. The equilibrium cutoff of the bidder with
the low valuation v; is higher than the equilibrium cutoff of the bidders with the higher
valuation v1. This results in the expected payoff of the bidder with the low valuation v;
being larger than the expected payoff of his opponents with the higher valuations v1. We
note that when v; > 205, such a paradoxical equilibrium cannot exist. In a similar vein,
there always exists an equilibrium where the cutoff ¢ is larger than the cutoff c;, but as the
example shows, it is not always unique.

Corollary 1. A bidder with a relatively high valuation and low entry cost may decide to stay out
of the auction, whereas a bidder with a relatively low valuation and high entry cost may decide to
participate in the auction.

The intuition for why this is possible is that a bidder’s willingness to enter depends
upon his expected surplus of being in the auction. This surplus depends upon not only the
bidder’s valuation but who else decides to enter the auction. Hence, if high bidders are
less likely to enter the auction, then it is indeed possible for low-value bidders to be more
willing to enter since they are more likely to be alone and reap all the profits.

We note that this result (or any) is not dependent on two bidders having the same
value. In a three-type model where values are v; = 2.25, v = 2.24, v3 = 2, there are still
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two possible interior equilibria: c] = 0.34828, c; = 0.8762, ¢ = 0.327774 and ¢} = 0.635516,
c; = 0.629634, c5 = 0.269985..

Another paradoxical behavior in the asymmetric auctions is illustrated in the following
example.

Example 2. Consider an auction where ny = np = 1 and F is a uniform distribution on [1/2,1].
Let vy > vp and v1,vp bein (1/2,1).

The only potential interior equilibrium is given by

. 201(v1 + v — 1)

c 4(01)2 — (01 + 7)2)
L7 4(0)2-1 '

*
and ¢; = Ko —1

It is indeed interior when v, < (4(v1)? — 1)/2v; + 1 — v; which is possible when
v1 > 0.78. Note that in this case ¢ > ¢5. Itis clear that c; decreases with v; and ¢} increases
with v,. Furthermore, one can show that c; increases with v1, and c¢] decreases with v;. We
note that by (4), a type-1 bidder’s expected payoff is increasing in cutoff c] leading to the
following corollary.

Corollary 2. The expected payoff of a player may decrease in his valuation and increase in the
valuations of his opponents.

We gain intuition for why this may happen by comparing our model with private
entry costs to the model with commonly known entry costs. For example, consider the case
of two bidders with valuations v; > v; and entry costs of ¢y, ¢c2. The valuations as well as
the entry costs are common knowledge. Then the auction reduces to the following 2 x 2
game:

Bidder 2
In Out
Bidder 1 In (1 —v2—c1, —2) (v1 —¢1,0)
Out (0,02 — c2) (0,0)

This game has two pure-strategy equilibrium points and one mixed-strategy equi-
librium. The pure-strategy equilibrium strategies are identical to those in our model in
which, independent of costs, one bidder decides to enter and the other bidder decides to
stay out of the auction. In the mixed-strategy equilibrium the probability that player 1 will
participate is p; = %, and the probability that player 2 will participate is pp = %
Note that the probabilities that both bidders will participate in the auction increase in their
opponents’ valuation, and the probability that bidder 2 will participate even decreases in
his own valuation. Hence, we can say that the probabilities of participation in both models
have almost the same properties. However, while the expected payoff of the bidders in this
2 x 2 game is zero and, hence, independent on the bidders’ valuations, in our model, the
expected payoff of each bidder is positive and may decrease in his valuation as we can see
in Example 2.

4. The Optimal Entry

We assume that the number of bidders is exogenous such that the seller cannot
determine the number of bidders and the bidders use type-symmetric equilibria. However,
the seller can change the entry decision of the players (the equilibrium cutoff) by imposing
entry fees, reserve prices, bid caps, or other methods. In this section, we examine what the
optimal level of entry is in this environment. We do so under two conditions: (i) the seller
must treat all bidders equally and (ii) the equilibrium is a type-symmetric equilibrium.
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Under these two conditions and the additional assumption that any bidder considered in
the mechanism must pay the entry cost, we show in Appendix A that the second-price
auction with the optimal level of entry set is also the optimal mechanism.

The seller’s expected surplus in the auction is the total surplus minus the bidders’
surplus. The total surplus for the seller and the bidders together must equal the chance that
at least one bidder with value v; enters times v; plus the chance that no bidder with value
v1 enters and at least one bidder with value v, enters time v minus the expected cost of
entry for both types of bidders. The chance that at least one bidder with value v; enters is
1— (1 —F(cj))™, while the chance that no one with value v; enters and at least one bidder
with value v, enters is (1 — F(c))" (1 — (1 — F(c;))"). The expected entry cost of a bidder

with value v; is foc " cdF. Hence, we can write the seller’s expected surplus as:
ms(cr,62) = (1= (1 =F(cq))™)or + (1= F(e7))" (1 = (1 = F(c3))™)v2

_— /061 cdF —ny /OCZ cdF — m /(:l (c] —c)dF —ny /Ocz(c§ —c¢)dF (5)
= (1=(1=F())")or+ (1 —=F(c1))" (1= (1= F(cz))"™)v2
—npc5F(c3) — nyciF(cy)

Consider now that the seller could influence the equilibrium cutoff. By using the above
expression, we show that the seller always wishes to decrease the equilibrium cutoff of at
least one type of bidders, namely, he wishes to reduce the participation of these bidders.

Proposition 2. For at least one type v;, the optimal cutoff cfp for the revenue-maximizing seller is

smaller than the equilibrium cutoff ¢}, that is, either c‘ljp < ¢t orcy < c5. However, for either type,
it is possible that the optimal cutoff is larger (or smaller) than the equilibrium cutoff

Proof. For the first part, see Appendix A. For the second part, we can further examine
Example 1. Recall that in Example 1, ny = 2,np =1, v = 225, v = 2and Fisa
uniform distribution on [0, 1]. It can be shown that the optimal cutoffs are c‘l’p = 0452,
¢,/ = 0.3. Recall that there are two equilibria: ¢; = 0.343 and cj = 0.864; ¢ = 0.62993 and
c5 = 0.2739. This shows that the optimal cutoff c?p can be either smaller or larger than the
equilibrium cutoff c¢;'. [

The optimal cutoff from the above proposition is optimal given the limitation of sym-
metry (all bidders should have identical strategies). Any mechanism that induces behavior
according to this optimal cutoff is an optimal mechanism (as shown in Appendix A).

A consequence of Proposition 2 is that the seller may wish to either decrease or increase
the equilibrium cutoff of either type of bidders. However, if the number of bidders from
each type is identical, the seller will always prefer the participation of the bidders with the
higher type.

Proposition 3. If ny = ny, then the optimal cutoff of the bidders with the high valuation c‘;p is
always larger than the optimal cutoff cgp of the bidders with the lower valuation.

Proof. See the Appendix A. [J

On the other hand, if the number of bidders of each type is not identical, that is,
n1 # ny, then the seller does not necessarily prefer participation of bidders with the higher
type, as we can see in the following example.

Example 3. Consider an auction where ny =5, np = 2, v1 = 1.5, vp = 1.4, and F is a uniform
distribution on [0.8,1].
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By (A1) and (A3), the optimal cutoffs are c({p = 0.699 and c;p = 0.979. That is, the seller
would prefer to get the bidders with the lower valuation v; to almost always enter while
leaving the bidders with the higher valuation v; to partially stay out (30% of the time).

Finally, we can investigate the symmetric case by setting v; = v, and obtain:

Proposition 4. When vy = vy, the optimal cutoff c°P for the revenue-maximizing seller is strictly
positive and always smaller than the equilibrium cutoff c*.

Proof. See Appendix A. [

The relevant question now is: how can the seller implement the optimal entry? Can
he implement the optimal entry by entry fees or reserve prices? As we show below, the
implementation of the optimal entry is quite simple in the symmetric case and much more
complicated in the asymmetric case.

Let us begin by examining the symmetric case, where v; = v,. Here, we find that
the optimal critical entry cost can be obtained by imposing an entry fee or, alternatively, a
reserve price.

When the seller imposes an entry fee, e, the symmetric equilibrium is given by
bi(v) = vand

1if ¢; <c°,
di(c) =
0 if ¢; > c*

where the equilibrium cutoff ¢* is the solution of

®+e=n0(1—-F()" L (6)

Now, if we sete = %, then the solution of (6) yields the optimal cutoff: From the
proof of Proposition 4 (see Appendix A), the optimal entry cost is such that F(c°?) > 0. In
addition, F'(c°?) > 0 since if F/(¢°?) = 0 then ‘;’CE; (c°P) < 0, which would be a contradiction
given our continuity assumptions that implies % (c°?) = 0. It can be easily verified that
setting the optimal reserve price is an equivalent operation to setting an entry fee in the
symmetric setup, both of which yields the optimal entry in the auction. This result is in
contrast to the models with common entry costs in which a reserve price and an entry fee
are not equivalent tools. For example, Levin and Smith [5] show that in common value
auctions, the seller should discourage entry by charging a positive entry fee but no reserve
price.

In contrast to symmetric auctions, in asymmetric auctions, the seller’s aim to obtain
the optimal entry costs (c}’,c") is not simple, since, in these auctions, using tools such
as entry fees or reserve prices are not always sufficient for the seller to reach this goal.

Moreover, these tools are not equivalent as they are in the symmetric auctions.

Example 4. Consider an auction where ny = ny =1, v1 =1, v, = 0.5, and F is a uniform
distribution on [0, 1].

The unique equilibrium is c] = 1,¢5 = 0. The optimal cutoffs obtained by the solution
of Equations (A1) and (A3) are: cil’p = %, Cgp = %

Therefore, the aim of the seller is to decrease the equilibrium cutoff of the bidder
with the high valuation while increasing the equilibrium cutoff of the bidder with the low
valuation.

If the seller imposes an entry fee e, the equilibrium cutoffs ¢{ i = 1,2 are given by
cf+e=(v1—v2) +v2(1—F(c5)) =05+0.5(1—F(c5)),

c5 +e=10v(1—F(cf)) = 05(1 — F(c5))-
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If the entry fees are restricted to be the same, the solution of these equations yields

¢c1 =1—2/3eand ¢c; = —2/3e. Then, the seller cannot induce an interior solution with
a uniform e. Any positive e will result in c; = 0 and ¢; = 1 — ¢, and any negative e will
result in c; = 1 and ¢; = —e. The negative ¢ would not be profitable since it will only

cause additional unuseful entry. With a positive e, the seller’s profit will be e(1 — e), which
reaches its maximum at e = 1/2 with a profit of 1/4.

On the other hand, if the seller imposes a reserve price r (less than v;), then the
equilibrium cutoffs ¢} i = 1,2 are given by

cf = (v1—v2)+ (v2—r)(1—F(c})) =05+ (0.5 —7)(1 —c}),

¢y =(vp—r)(1—F(c})) = (05—r)(1 —c}), forevery 0 < r < 0.5.

By using a reserve price 7, the equilibrium cutoff of the bidder with the high valuation
decreases, and the equilibrium cutoff of the bidder with the low valuation increases.
The solution to the above equations yields

o = 3— 4¢2
3+ 4r — 472’

6 — 2r — 4r?
3+ 4r — 472’

and the seller’s profit is

_ 4r(3— 2r2 — 47%)
TCS(”) - (3 . 4(1, _ 1)1,)2 '

The maximum profit achievable by using a reservation price is 0.252366, which,
although close, is still different than the optimal profit 0.26666. However, it is better than
the best achievable with uniform entry fees, which is 0.25.

Unlike in Levin and Smith [5], the seller’s payoff is not equivalent to the social surplus.
This social surplus 7t is the chance that someone enters and gets the object minus the
expected costs of all the entrants. Thus, the social surplus is given by:

mo(ch ) = (1= (1—F(e))™)or +

(1— E(c)™ (1 — (1 — F(c5))")vs — my /OC1 cdF — /OCZ cdF.  (7)

It can be easily verified that the first-order conditions of the social surplus are identical
to the equilibrium conditions. Therefore, in order to maximize the social surplus, we should
not use tools such as entry fees or reserve prices; rather, we should just let the bidders
compete without any interference (this is under the restriction that the seller must run an
auction and cannot treat bidders differently).

5. The Optimal Number of Bidders

Thus far, we assumed that the number of potential bidders is exogenous. Suppose
that the seller can determine the number of bidders. We also assume that the bidders that
are excluded will not pay entry costs. We note that this is consistent with our vision that
the seller cannot reduce the entry costs of the bidders. Here, we picture that the seller is
simply able to send a message that the auction is closed at an early enough stage. Usually,
in auctions under incomplete information, the optimal number of bidders is infinity. In our
model, the optimal number of bidders is more complex. In order to demonstrate this point,
it is sufficient to consider the simpler case of symmetric auctions. The following example
consists of three cases and shows that an increase in the number of potential bidders has an
ambiguous effect both on the seller’s expected payoff and on the social surplus.
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Example 5. Consider an auction where v1 = vy = 1.

By (3), (5) and (7), the equilibrium cutoff, the seller’s payoff and the social surplus,
respectively, are given for three different cases as follows:
Case 1: The bidders’ entry costs are distributed according to a uniform distribution on

0,1].
Number of Bidders Equilibrium Cutoff Seller’s Payoff Social Surplus

2 0.5 0.25 0.5

3 0.381966 0.326238 0.545085
4 0.317672 0.379581 0.581412
5 0.275508 0.420873 0.610635
10 0.175699 0.546468 0.700819

1000 0.00524 0.9673 0.9810

In this case, an increase in the number of potential bidders yields an increase in both
the seller’s payoff and the social surplus.
Case 2: The bidders’ entry costs are distributed according to a uniform distribution on

[0.5,0.75].
Number of Bidders Equilibrium Cutoff Seller’s Payoff Social Surplus

2 0.6 0.16 0.2
3 0.5625 0.15625 0.17969
4 0.5457 0.15501 0.17171
5 0.53608 0.15443 0.16745
10 0.51764 0.15368 0.1599

1000 0.50017 0.15335 0.15340

In this case, an increase in the number of potential bidders yields a decrease in both
the seller’s payoff and social surplus.
Case 3: The bidders’ entry costs are distributed according to a uniform distribution on

0.5,1].
Number of Bidders Equilibrium Cutoff Seller’s Payoff Social Surplus
2 0.66667 0.11111 0.16667
3 0.60961 0.12311 0.15915
4 0.58244 0.12947 0.15665
5 0.56626 0.13355 0.1555
10 0.5337 0.1426 0.15396
1000 0.5003 0.1533 0.1534

In this case, an increase in the number of bidders yields an increase in the seller’s
payoff but a decrease in the social surplus. In all three cases, as the number of potential
entrants increase, the seller captures more of the social surplus.

Bolton and Farrell [20] use games of entry with private costs of entry to compare
centralized to decentralized decision making. Centralization has the manager (seller) limit
the potential entrants by assignment. They find that depending upon the parameters either
centralized decision making is superior by avoiding coordination costs or decentralized
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decision making is superior by providing entry-cost advantages. Our examples show
that this trade-off exists for auctions with entry: while a seller could save on coordination
costs by a centralized assignment of participants, the seller would potentially lose out
due to higher entry costs. In case one, decentralization is superior while in case two,
centralization is superior. In case three, centralization is superior for a seller concerned only
with revenue, while decentralization is superior for a seller concerned with efficiency (such
as a government).

In Example 5, we showed that the seller’s payoff in equilibrium may either increase
or decrease with the number of bidders. The following example shows that the seller’s
payoff with the optimal cutoff (seller’s optimal payoff) may also decrease with the number
of bidders. (While we will not show it here, the seller’s optimal payoff may also increase
with the number of bidders.)

Example 6. Consider an auction where v1 = vy = 1 and F is a uniform distribution function on
[0.5,0.75].

By (4) and (A4), the seller’s optimal cutoff and the seller’s optimal payoff are as follows:

Number of Bidders Seller’s Optimal Cutoff Seller’s Optimal Payoff
2 0.58333 0.16667
3 0.55481 0.15915
4 0.54122 0.15665
5 0.53313 0.15550
10 0.51685 0.15396
1000 0.500173 0.1534

Note that the seller’s optimal cutoff as well as the seller’s optimal payoff decrease with
the number of bidders. Thus, the optimal number of bidders for the seller in this example
is 2.

6. Discussion

We study environments with one area of private information (costs) and one of com-
plete information (values). Our environments have the advantage that the introduction of
asymmetry does not obstruct solvability. Cao et al. [11] studied environments with two
areas of private information: costs and values. They showed that there always exists an
equilibrium in this general setting with two-dimensional types of ex ante heterogeneous
bidders. When bidders are ex ante homogeneous, there is a unique symmetric equilibrium,
but asymmetric equilibria may also exist. They further examined conditions that guarantee
uniqueness when there are two bidders. Their results are consistent with the existence of
the asymmetric equilibria present in our model.

We also wish to bring up a motivating example suggested by a referee. There is a
physical used-car auction held downtown in the morning of a workday. The two types of
bidders are consumers and dealers. Consumers (type 1) value the car more than dealers
with resale motives (type 2). On the morning of the auction, both the consumer and the
dealer check their calendar, and figure out whether it is worth it to drive downtown to
attend. The iid assumption on entry costs is realistic given that everyone is busy and people
live all over the place. There can be two types of equilibria: consumer-prevalent (consumers
go almost regardless of cost, so dealers only go if not too busy) and dealer-prevalent (dealers
go almost regardless of cost, so consumers only go if not too busy). The dealer-prevalent
equilibrium is somewhat counter-intuitive in that a consumer with the same opportunity
cost as a dealer may not go even though the consumer values the car more.
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In the realm of market entry games, our model fits in the class of one-shot games.
There is another class of multi-period games [20,21]. While these capture the ability of
firms to enter if a market is left empty, they lack the potential sunk cost associated with
such actions (as one would expect if entry decisions need to be made several periods in
advance). Such a multi-period model (entry if the market is left empty) cannot be used
to study auctions with sunk entry costs since they will allow non-winning participants
to avoid the entry cost. For example, the seller could run a multi-period mechanism that
imitates a Dutch auction, where each period he offers the item to a random potential entrant
and in case of non-entry slightly lowers his price. This scenario is not reasonable if, for
instance, the costs represent raising the necessary credit to participate. One extreme of
the multi-period models is to keep the time element of the entry, but have entry decisions
made completely in advance. In such a model, earlier entry costs more, but provides higher
expected profits. These have been studied as all-pay auctions by Kaplan et al. [22] and
Kaplan et al. [23]. There, the coordination failure is costly only to the loser. Such a scenario
best fits patent races and markets with strong network externalities. This paper presents
another extreme that de-emphasizes the time element of entry and keeps the dual cost of
coordination failure. This fits cases where entry decisions must be made far in advance, but
there is not an overwhelming advantage to the first entrant. All such models have their
place and complement each other, with this paper’s model being the most tractable.

Finally, while we talk about entry costs in auctions, our results can also be applied to
the Bertrand price competition with entry costs. They add to this literature, particularly
in regards to the number of potential entrants. Lang and Rosenthal [24] show that if the
number of entrants is unknown at the time of bidding, but there is symmetry and complete
information about values and costs, then the total welfare (which equals the seller’s surplus)
decreases with the number of potential entrants. Elberfeld and Wolfstetter [25] show that
when there is complete information about the symmetric entry costs and the number of
entrants, but incomplete information about the values, then total welfare decreases in the
number of potential entrants. Thomas [26] on the other hand, shows that with complete
information about entry costs and about the number of entrants, but with asymmetric
entry costs, the total welfare increases in the number of potential entrants. This built
upon Samuelson [7], who has complete information about entry costs, but incomplete
information about values. Our results in this paper show that all the situations described
above are possible in one model. The Bertrand setting can also make use of our optimal
design analysis. Here, the optimal design for the seller is the same as an optimal design for
a regulatory agency with the consumer interest as the objective. This may shed light on
which policies may work best in price competitions such as the Bertrand competition.
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Appendix A
Appendix A.1. Proof of Proposition 1

The standard result that bidding your value in a second-price auction is the weakly
dominant strategy (see Vickrey, 1961) holds in our asymmetric environment. (We will ignore



Games 2022, 13, 62

12 of 14

other equilibria that are not trembling-hand perfect and therefore would not withstand
some uncertainty in the values.)

Given the equilibrium bidding behavior, a bidder with a low valuation v, will profit
only when he is in the auction alone. The probability of thisis (1 — F(c}))™ (1 — F(c}))" 1,
which implies Equation (2). On the other hand, a bidder with a high valuation vy will
profit v; — vy when there are no other v;-value bidders and will profit an additional v, when
there are no v,-value bidders as well. These happen with probabilities (1 — F(c}))" ! and
(1—F(c3))™(1— F(c}))™ !, respectively, which implies Equation (1).

Another way to derive Equation (1) is to see that a bidder with value v; profits v4
when alone in the auction, which occurs with probability (1 — F(c5))"2(1 — F(c}))" ! and
profits v; — v, when not alone, but there are only bidders with value v; in the auction,
which occurs with probability (1 — F(c}))™ (1 — (1 — F(cj))"), which then simplifies to
the expression.

The existence of the equilibrium is derived by Brower’s fixed-point theorem. The RHS
of Equations (1) and (2) form a bounded function from [0, v1]x [0,v2] to [0,v1] X [0, v7] that
is continuous since F is continuous. Therefore, a fixed point must exist (note that if the
cutoff ¢} of the fixed point is above b, then it would imply that everyone with value v;
enters. Likewise, if cutoff c; of the fixed point is below g, then it would imply that everyone
with value v; stays out).

In the following we show that if ny, n > 2, and a = 0, then any fixed point is
interior; that is, F(cj), F(c}) are from (0,1). (We also assume that F'(a) > 0.) The RHS of
Equations (1) and (2) are decreasing in cj and c3. If F(c}) = 0, then the RHS of (1) is greater
than or equal to v; — v > 0—a contradiction. If F(cj) = 1, then the RHS of (1) is zero—also
a contradiction. Hence, 0 < F(cj) < 1. A similar argument shows that 0 < F(c5) < 1
as well.

The symmetric case can be shown in a similar, but simpler manner.

Appendix A.2. Proof That the Optimal Cutoff Is the Optimal Mechanism for the Seller

Here we show that an auction with an equilibrium with an optimal cutoff is the
optimal mechanism for the seller. Since our participation costs are wasted, any bidder that
agrees to participate in the mechanism must incur his costs. This eliminates the possibility
of a mechanism that queries the bidders about their costs before they are incurred. We also
restrict mechanisms to being symmetric in regards to the individual bidders and assume
that the equilibrium of such mechanisms are also symmetric. (If this restriction were lifted
it may be indeed possible for the optimal mechanism to be asymmetric.)

If in equilibrium of the mechanism m, a bidder with cost c; enters and receives expected
payoff m(cq), then a bidder with cost ¢; < ¢ would also have to enter in equilibrium since
he can always imitate a bidder with cost c;. This, as before, leads to cutoff strategies. Since
at the cutoff, anyone above the cutoff can not pretend to have cost ¢, the expected profits of
the cutoff must be zero, m(c®) — ¢® = 0. Additionally, since any bidder with cost below ¢°
can always receive payoff m(c’) and the bidder with cutoff ¢’ can always pretend to have
lower costs, the payoff to entering must be m(c?). Thus, the expected profits of a bidder
entering with costs ¢ must be m(c?) — ¢ = ¢° — c. Therefore, the expected profits of each
bidder is the same as shown for the auction and likewise for the seller’s profits.

Appendix A.3. Proof of Proposition 2 (First Part)

The derivative of the seller’s surplus with respect to the cutoff of bidders with value
vq is:

drts

G = mlE-e) - Fe)

0p(1 = F(c§))" 1 (1 — F(c9))™ — c‘{] F'(c§) — nyF(9). (A1)
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Substituting the equilibrium cutoff (1) in (A1) yields
dT[S * ok *
T (,0) = —mF(cp) <0. (A2)
1

References
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Since the RHS of (A1) is decreasing in both ¢{ and c§, we obtain for any ¢; > ¢} and

cp > c5 the expression ‘;7;{ (c1,¢2) < 0.

Likewise,

U = ma[oa(1 = F@) (- F()" ' = 8] F ()~ maF(d). (A9
2

Substituting the equilibrium entry cost (2) in (A2) yields

dr . .
Wg(ci‘,CZ) = —npF(c3) < 0.

Since the RHS of (A3) is decreasing in both ¢{ and cj, then we obtain that for any ¢; >
cj and ¢y > ¢3, we have ’%“(cl,cz) < 0. Thus, 7s(c1,¢2) < ms(ci,c5) forallc; > ¢, c0 > ¢
with at least one strict inequality. This implies that it is better to decrease at least one of the

equilibrium cutoffs cj, ¢5, and particularly, these equilibrium cutoffs are not optimal.

Appendix A.4. Proof of Proposition 3

Assume that C(l)p < ¢,/ Let us compare the sellers’ profits using the optimal cutoffs to
the sellers’ profits reversing the optimal cutoffs, i.e., using c;" for the cutoff for a bidder
with value v; and vice versa. The advantage of the optimal cutoffs to this new set of
cutoffs is ns(cllw, c;p) — ns(cgp, cip). Since n; = n,, we have ns(cip,cgp) — ns(cgp, cip) =
—(v1 —v2)((1 = F(c7"))™ — (1 — F(c5"))™) < 0. This is a contradiction to the optimality
of the cutoffs and therefore the optimal cutoffs must satisfy c‘ljp > Cgp .

Appendix A.5. Proof of Proposition 4
The derivative of the seller’s profit with respect to ¢° yields:

%(cor’) —n [0(1 — F(coP))"1 — cﬂ F'(c°P) — nE(c%P). (A4)
Substituting the equilibrium entry cost c* (3) in (A4) yields that
d
(;CTOS (c*) = —nF(c*) < 0.
Furthermore, v(1 — F(c°F))"~! — ¢ is decreasing in ¢°?. Additionally, —nF(c°F) is
drg

decreasing. Therefore, for any ¢ > c*, the 73 (c) < 0 as well. Thus, the optimal critical
entry cost c is always smaller than the equilibrium critical entry cost c*.

Note, the optimal critical entry cost is strictly positive (with strictly positive entry
F(c°?) > 0). We can see this since the profits for no entry is zero. Thus, we need to only
show that there is a possibility for the seller to make a profit. Our assumption that F(v) > 0
and continuity of F imply that there exists a ¢’ such that v(1 — F(c’))""! — ¢ > 0 and
F(c") > 0. 1If the seller set an additional entry fee e = v(1 — F(c’))"~! — ¢/, all bidders with
¢ < ¢’ will enter. Hence, the seller would make profit of at least F(¢') - ¢ > 0.
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