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Abstract: We investigate the strategic nature of farmers’ groundwater usage with a rich dataset from
the American Midwest. We propose a new revealed preference test for the groundwater interaction
as a dynamic game. We reject a view of groundwater usage decisions as strategic substitutes in favor
of strategic complements as a better description.
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1. Introduction

Katherine Coman, in the first paper that appeared in the American Economic Review
over 100 years ago [1], discusses the need for large collective investments that could trans-
form the lands in the American Midwest from prairies into the nation’s breadbasket. She
focuses on the collective action problems associated with bringing farmers together to invest
into and maintain groundwater irrigation systems.1 Most of the steps she recommended in
the article were subsequently taken.

From a game-theoretic perspective, farmers overcame the collective action problem,
because, given a number of initial infrastructural investments (e.g., street and railroad
networks, storage and collection facilities, etc.), further investment decisions were strategic
complements. That is, individual costs decreased with investments overall (e.g., existing
canalization, pumping and irrigation systems made extensions thereof cheaper), and it
became increasingly profitable for farmers individually to participate, which eventually
caused a rush to farm in the Midwest.

Today, irrigation technologies are efficient and relatively cheap. The problem has
not been for a long time that farmers fail to access groundwater. Instead, collective over-
usage with resulting depletion and pollution of groundwater reservoirs has been a major
concern globally, in particular in the Midwest of the United States of America. The Global
Groundwater Crisis is underway:

“Groundwater is being pumped at far greater rates than it can be naturally replenished,
so that many of the largest aquifers on most continents are being mined, their precious
contents never to be returned. These include the North China Plain, Australia’s Canning
Basin, the Northwest Sahara Aquifer System, the Guarani Aquifer in South America, the
High Plains and Central Valley aquifers of the United States, and the aquifers beneath north-
western India and the Middle East. Nearly all of these underlie the word’s great agricultural
regions and are primarily responsible for their high productivity.” ([2], page 946).

An important aspect to understanding groundwater usage is whether farmers’ deci-
sions to pump (more or less) groundwater are strategic complements or strategic substitutes,
that is, if others’ increased groundwater usage decreases a farmer’s marginal cost of pump-
ing (as would be the case with complements) or increases a farmer’s marginal cost pumping
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(as would be the case with substitutes). Understanding the strategic dependencies of farm-
ers’ decisions is relevant, because the nature of the strategic incentives determines the
dynamic risk of tragedy of the commons [3], in particular whether the same rush to over-
exploitation as well-known from over-fishing scenarios [4], for the first discussions of the
‘race to fish’) ought to be expected also in the groundwater context.

In Part I [5] of our study of observational data of groundwater usage from the American
Midwest, we come to the conclusion that farmers’ decisions were strategic complements.
The approach we take in that paper is a network regression framework with instrumental
variables. We reject strategic substitutes in favor of strategic complements. The underlying
data from that study are from one of two farming districts that we consider here in this
paper. Here, we consider data from a second district and take a different analytical (revealed
preference) approach, ultimately reaching the same conclusion regarding the nature of the
strategic interaction in favor of strategic complements, not substitutes. We refer the reader
to our companion paper for a broader motivation of the Global Groundwater Crisis.

In the present paper, we build on theory by [6] to formulate a general class of games for
our groundwater interactions. We propose new non-parametric revealed preference tests
of strategic substitutes versus strategic complements in groundwater usage for this class of
games that we conduct on a dataset from two farming districts in Nebraska. There are three
closely related papers. First and foremost, our own companion paper is related, which we
discussed in the paragraph above. Second, Ref. [7] propose the type of revealed preference
test procedure that we shall adapt. Their model is Cournot, and their application is testing
for collusion amongst Organization of Petroleum Exporting Countries (OPEC). Our setting
is a dynamic CPR game, and considers groundwater decisions by individual farmers. Third,
Ref. [8], adapting [7], test and reject canonical (static) tragedy-of-the-commons models as
proposed by Gordon in a fishery setting. Their use of revealed preference tests inspired
our formulation of a more permissive and–in our views crucially–dynamic model that
allows to test strategic complements versus strategic substitutes, hence we have a different
use case (groundwater) and a different angle (dynamic). For a recent paper on dynamic
game theory of CPR dynamics, see [9]. For some recent papers focussing on dynamic game
theory and policy, see [10,11].

The remainder of the paper is structured as follows. Section 2 summarizes the applica-
tion and the data. Sections 3 and 4 contain model and results. Section 5 concludes. Proofs
are relegated to an appendix (Appendix A).

2. The Application

The datasets considered in this paper concern two of the 23 Natural Resources Districts
(NRDs) that govern groundwater pumping in Nebraska, namely the “Upper Big Blue” NRD
(UBB) and “Upper Republican” NRD (URD). The two are particularly interesting districts in
the context, because the UBB is the largest district that has not implemented any restriction
on groundwater usage, and the URD is the first district that introduced restrictions via
quotas. Data from the UBB was considered in [5], which pursued a parametric analysis that
was not suited for the URD dataset.

We refer the reader to an extended working paper version of our work on the subject
in [12] for a detailed discussion of the context of our data, particularly of the local farming
context. However, here are some interesting facts: The UBB has 15% (2%) of Nebraska’s
(America’s) irrigated acres, making it one of the most important agricultural districts in the
United States. It is and has been entirely policy-free, placing no restrictions on pumping.
The only formal rule is that usage has to be monitored by meters. This rule was put in place
in 2006, which is why our UBB data start in 2007.2 The URD is roughly half the size of the
UBB in terms of groundwater irrigated land. Unlike the UBB, the URD was the first district
in Nebraska to introduce a quota policy to govern individual-level groundwater usage. The
policy requires farmers to pump less groundwater than a certain set quota over the course
of five years (with usage being monitored via meters comparable to those used in the UBB
since 2001); farmers who fail to do so are subject to a fine. The first quota was implemented
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from 1982–87, allowing farmers to pump 80 inches. Since, this quota was decreased to
75 for 1988–92, 72.5 for 1993–2007, 67.5 for 2008–12, and 65 for 2013–17. Our data cover
2001–2014.3

For each of the circa 10,000/3000+ farmers in UBB/URD, we have data on total
groundwater usage for each season, which amounts to nearly 150,000 observations, with
latitude-longitude coordinates and acres serviced. See Figure 1 for the spatial location of
farmers, and for changes in groundwater levels. Based on location data, we define what
hydrologists call the “radius of influence”, within which local drawdown of the groundwater
table is measurable by the end of a farming season. This radius ranges from 200ft to a
mile [13]. In addition, we have relevant water table data for UBB and URD for our years of
interest that measures within- and between-season depletion at over 500 locations, pre- and
post-season, which allows us to obtain estimates for our whole dataset by interpolation.4

Other controls concern depths of wells, ground transmissivity, soil types, seasonal rain
and temperature, and average prices of corn (70% of production is corn), electricity and
farmland rental. Our core dataset considers the years 2008–2012, which spans one full
quota period for the URD, and for which we have the full set of data for both districts. See
Table 1.5

Table 1. Data description, 2008–12.

Panel A
Upper Big Blue District Upper Republican District

(2008) (2009) (2010) (2011) (2012) (2008) (2009) (2010) (2011) (2012)

Number of observations 10,375 10,546 10,435 10,426 10,714 3209 3209 3209 3209 3209
Groundwater-usaget

i 5.79 8.27 6.38 5.85 13.81 12.07 9.53 10.72 10.18 19.04
(Groundwater-usaget

i SD) (4.2) (5.1) (4.3) (4.1) (6.9) (4.01) (4.12) (4.09) (4.19) (5.49)
Groundwater control variables
Spring Groundwatert

i (ft) 81.18 81.89 81.98 81.68 82.00 113.6 114.39 115.61 114.47 111.91
(Spring Groundwatert

i SD) (12.2) (12.3) (12.2) (12.6) (11.9) (37.9) (37.8) (39.6) (38.8) (36.4)
Fall Groundwatert

i (ft) 82.89 82.67 80.70 78.47 84.58 117.97 117.62 112.64 110.56 108.49
(Fall Groundwatert

i SD) (9.8) (8.5) (8.6) (8.8) (7.5) (40.33) (39.6) (23.1) (26.3) (20.9)
Annual control variables
Price of cornt ($/bushel) 5.65 3.55 3.68 7.17 7.17 5.65 3.55 3.68 7.17 7.17
Electricityt (¢/kW-h) 11.26 11.51 11.54 11.72 11.88 11.26 11.51 11.54 11.72 11.88
Raint (in) 16.24 13.85 18.54 22.33 6.52 11.13 14.42 14.08 13.36 4.38
Temperaturet (◦F) 71.48 68.45 71.08 71.03 72.60 66.57 66.23 67.87 67.97 72.89
Farmland rental ratest

C ($/acre) 170.5 173.5 180.6 197.9 243.8 168.96 141.87 161.45 173.15 191.08
(Rental ratet

C–SD) (8.2) (8.2) (8.6) (9.4) (18.6) (30.2) (14.2) (21.3) (17.2) (24.7)

Panel B
Upper Big Blue District Upper Republican District

(mean) (SD) (range) (mean) (SD) (range)

Farm control variables
Land-sizei (acres) 101.51 35.72 [3.0 , 349.0] 141.0 57.5 [2.0, 702.9]
Well Depthi (ft) 184.82 31.93 [5.0, 470.0] 248.2 74.2 [22.0, 552.0]
Transmissivityi (ft3) 126.34 36.25 [1.66, 249.3] 106.5 3.82 [94.8, 112.4]
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The two NRD districts.

Figure 1. Top: Water-per-acre mean usages (all data). Bottom: Well-by-well change in groundwater
levels (restricted to years 2007–14). Both are quantified in inches, where each inch corresponds to
27,157 gallons of groundwater, the amount needed to add one inch of water on top of one acre of land.

3. Dynamic Game Setup

Building on [6], we model the groundwater interaction by a class of games that
subsumes both policy-free and quota-policy environments relevant for UBB and URD. Each
game consists of four ingredients:

(Section 3.1.1) The revenue associated with selling crops.
(Section 3.1.2) Intra-seasonal groundwater depletion due to pumping.
(Section 3.1.3) The cost of pumping groundwater.
(Section 3.1.4) The future impact of pumping groundwater.

Definitions are in bold. For notation, we let R+ = [0,+∞) and R++ = (0,+∞).
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3.1. Groundwater Games

Consider a set of farmers N = {1, 2, . . . , N} producing (possibly different) crops
during each season {1, 2, . . . , T} = T . The farmers are the active players in our game.6

Each farmer i ∈ N is characterized by a land-size li ∈ R++. For every t ∈ T , farmers
plant crops in spring and harvest in the late summer, and in between pump groundwater
in order to increase crop yield (or total supply that can be sold after harvest). We denote
farmer i’s action space in season t ∈ T as Wi = R+. An element wt

i ∈ Wi represents
groundwater usage-per-acre (this is the unit in Figure 1), and liwt

i represents the total
volume of groundwater pumped.

3.1.1. Revenue

Farmers make revenue by selling crops at the spot market (at possibly different prices
in October, November or December) or on the futures market. Alternatively, farmers can
store crops in long-term storage facilities (e.g., for raising cattle or selling later on). To
capture these diverse revenue streams, we define a revenue functionRt

i :Wi → R+, which
may be both farmer- and season-dependent, thus controlling for different yield and sale
strategies across farmers and price changes across seasons. We assume thatRt

i is absolutely
continuous and concave in wt

i .

3.1.2. Intra-Season Groundwater Depletion

Groundwater usage and recharge determine the evolution of the resource. Here, we
first focus on how groundwater levels change during the season as a result of farmers
pumping. For farmer i ∈ N in season t ∈ T , we denote gt,Spring

i ∈ R+ as the distance
between the water table level and wellhead in the spring. We denote gt,Fall

i ∈ R+ as this
distance when farmers stop pumping (i.e., at the beginning of harvest). Two dynamics
determine gt,Fall

i .
The first is due to aquifer-wide groundwater withdrawals, Wt = ∑i∈N li(wt

i − rt),
where depletion is offset by recharge from rain, rt ∈ R++. We define G : R → R as a
global depletion function, which we assume is (i) absolutely continuous and nondecreasing
in Wt − rt and (ii) slowly changing in individual groundwater-usage (i.e., ∂

∂wj
G ≈ 0

for any j ∈ N ).7 We then let gt,Spring
i + G(Wt − rt) represent the decline/recharge of i’s

groundwater level that is caused by aquifer-wide groundwater withdrawals.
The second type of change is a local, heterogeneous depletion called local drawdown,

which is a widely used measure of how much the groundwater table reduces locally before
it equilibrates with the surrounding aquifer as water travels through rock slowly.8 LetNi ⊆
N\{i} denote the set of farmers inducing local drawdown on farmer i. The groundwater-
usage of these farmers is wt

Ni
= ∑j∈Ni

ljwt
j . We define Li : R+ → R+ as a local drawdown

function, which is assumed to be absolutely continuous and nondecreasing in wt
Ni

+ liwt
i .

We then let gt,Spring
i + Li(wt

Ni
+ liwt

i ) represent the local decline in i’s groundwater level
due to local drawdown.

A farmer’s groundwater level at the start of harvest is the result of local and global
depletion:

∀i, t : gt,Fall
i (wt

i , wt
−i)︸ ︷︷ ︸

Fall level

= gt,Spring
i︸ ︷︷ ︸

Spring level

+ G(Wt − rt)︸ ︷︷ ︸
Global depletion

+Li(wt
Ni

+ liwt
i )︸ ︷︷ ︸

Local drawdown

. (1)
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3.1.3. Cost of Pumping Groundwater

The cost of pumping groundwater is proportional to the distance between water table
and the pump wellhead, which is increasing as farmers pump. We capture the costs that
accrue from a changing pumping distance through

C t
i (w

t
i , wt
−i) = ei ·

∫ wt
i

0
gt,Fall

i
(
wt

i , wt
−i
)

dξi (2)

where ei > 0 is the farmer-specific energy cost of pumping, which takes into account
whether the farmer has a diesel or electricity pump, the age of the pump, etc. The interpre-
tation of (2) is that, taking other farmers’ groundwater usage as given, a farmer accounts
for self-imposed costs associated with his/her own contribution to the depletion he/she
experiences.

3.1.4. Future Profits

We suppose that every farmer is forward-looking and anticipates that present ground-
water usage impacts future payoffs. For many farmers, future profits can be extrapolated
from the amount of groundwater available next season. Farmers may also use neighbors’
groundwater-usage a means of extrapolating local groundwater depletion, which may be
more important than global depletion concerns (see [5,12]).

We capture the possibly diverse ways of viewing future profits viaF t
i :Wi×W−i → R,

where F t
i (w

t
i , wt
−i) represents farmer i’s perceived future profits in seasons (t + 1, t + 2, . . . )

if others’ groundwater is wt
−i ∈ W−i and i’s groundwater-usage is wt

i ∈ Wi. We make two
assumptions about F t

i . The first is that F t
i is absolutely continuous in all variables. The

second is that F t
i is concave in wt

i for each wt
−i, which means that the marginal self-imposed

cost of depletion is increasing. As we show below, the latter assumption is permissible
enough to explain real-world data.

There are several ways to derive F t
i from first principles, which opens the possibility of

taking into account discount factors, future groundwater-usage decisions, and information.
While doing so is beyond the scope of the present paper, we refer the interested reader
to [14] for one possible derivation of F t

i .

3.1.5. Profits

A farmer i’s profit function is given as

P t
i (w

t
i , wt
−i; x) = Rt

i(w
t
i )− C t

i (w
t
i , wt
−i)︸ ︷︷ ︸

Profits in season t

+F t
i (w

t
i , wt
−i; x)︸ ︷︷ ︸

Future profits

.

A farmer’s goal in season t is to maximize P t
i .

3.1.6. Definition of Groundwater Games

Having described the model ingredients and assumptions, we can now define a
groundwater game formally.

Definition 1. A groundwater (GW) game consists of revenue functions (Rt
i)(i,t)∈N×T , a global

depletion function G, local drawdown functions (Li)i∈N , energy costs (ei)i∈N , and future profit
functions (F t

i )(i,t)∈N×T , which, together, form a non-cooperative game at each time period:

{N , (Wi,P t
i )i∈N }t∈T .

3.2. Integrating a Quota Policy

Because one of our datasets is from a district (the URD) where a specific quota policy
exists, it is worth considering how such an environment could fit into the class of GW games.
The type of quota policies considered here work as follows. Going into a quota period,
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the URD first estimates the total amount of groundwater usage that can be withdrawn
sustainably, which determines the overall quota. Each farmer can then pump up to his/her
share of that quota over the span of T-years, where T = 5 for the URD. If any farmer uses
more (less) than his/her quota by X amount, then his/her quota is reduced (increased) by
X during the next quota period.

To see how such a quota policy fits into a GW game, consider t ∈ {1, 2, . . . , 5}. First
note that, because the quota has no immediate impact on profits, we can relegate the strategic
consequences of the quota to the future profit function. That is, the profit function of a
farmer pumping groundwater under a quota policy is given as

P t
i (w

t
i , wt
−i) = Rt

i(w
t
i )− C t

i (w
t
i , wt
−i) +F t

i (w
t
i , wt
−i | wt

i , wt−1
i , . . . , w1

i )

≡ Rt
i(w

t
i )− C t

i (w
t
i , wt
−i) +F t

i (w
t
i , wt
−i)

(3)

where (wt
i , wt−1

i , . . . , w1
i ) added to F t

i reflects the future consequences of using more/less
than the quota. The second line of (3) follows by treating past decisions, (wτ−1

i , . . . , w1
i ),

as exogenous variables. This means that such terms can be incorporated into F t
i via the

superscript t.
The main takeaway is that a quota policy is already included in the class of GW games.

This feature plays an important role in our analysis below.

3.3. GW Games Can Rationalize Any Dataset

We aimed to define our model as generally as possible so as not to depend on arbitrary
parameterizations. Compared with the revealed preference test procedure that also con-
cerns a CPR setting by [8], we introduce a future profit dimension to the problem. Now we
ask the question: can GW games account for real-world groundwater-usage behavior? Given the
size and permisiveness of the class of GW games defined above, it is perhaps unsurprising
to find that the answer is ‘yes’ in general, before we introduce further restrictions through
strategic substitutes versus complements assumptions.

3.3.1. Dataset

Our goal is to show that GW games can rationalize datasets. A dataset concerns
farmers N = {1, 2, . . . , N} in seasons T = {1, 2, . . . , T}. For each season, each farmer’s
groundwater usage (wt

i )(i,t)∈N×T ∈ RNT
++ is observed. Several control variables are also

observed, including farmers’ land-size (li)i∈N ∈ RN
++, groundwater levels at the beginning

of the season (gt,Spring
i )(i,t)∈N×T ∈ RNT

++, and rainfall (rt)t∈T ∈ RT
++. A dataset is the

collection of such observations:

O =
{

wt
i , li, gt,Spring

i , rt
}
(i,t)∈N×T

.

3.3.2. Rationalizability

We say that a GW game can rationalize a dataset if the Nash equilibrium of the
GW game coincides with observed behavior. We formalize this notion in the following
definition.

Definition 2. A dataset O = {wt
i , li, gt,Spring

i , rt}(i,t)∈N×T is rationalizable if there exists a
GW game such that, for each i ∈ N and t ∈ T ,

wi
t ∈ arg max

xi∈Wi

P t
i (xi, wt

−i).

In other words, rationalizability says that, at each observation t, each farmer i’s
observed groundwater usage maximizes profit given the groundwater usage of other
farmers.
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3.3.3. A Characterization of Rationalizability

It turns out that rationalizability of a dataset is characterized by a linear program,
which we call the GW program.

Definition 3. For a dataset O , there exists a solution to the GW program if and only if there are
positive numbers { f̂ t

i , λ̂t
i}(i,t)∈N×T that satisfy the following three conditions:

(CGD) Common global depletion,

∀i, j, t : f̂ t
i − λ̂t

i − gt,Spring
i = f̂ t

j − λ̂t
j − gt,Spring

j ;

(MGD) Monotone global depletion,

∀i, s, t : Ws − rs > (=) Wt − rt =⇒ f̂ s
i − λ̂s

i − gs,Spring
j > (=) f̂ t

i − λ̂t
i − gt,Spring

i ;

(MLD) Monotone local depletion,

∀i, s, t : ws
Ni

+ liws
i > (=) wt

Ni
+ liwt

i =⇒ λ̂s
i − λ̂t

i > (=) 0.

The logic of the GW program works as follows. First, a dataset O is substituted into
the system of linear equations above to create the GW program. Second, the GW program
works by identifying positive numbers { f̂ t

i , λ̂t
i}(i,t)∈N×T that solve the system of linear

equations—if such coefficients exist. It turns out that the existence of a solution to this
system provides the key to determining whether or not GW games can rationalize UBB
and/or URD data.

The following theorem is the first theoretical contribution of this paper, which shows
that the GW program is necessary and sufficient for rationalizing a dataset with a GW game.

Theorem 1. The following sentences about O are equivalent:

(A) There exists a solution to the GW program defined by O .
(B) O is rationalizable by a GW game.

In other words, Theorem 1 provides a non-parametric test that works as follows:
(sufficiency) if there is a solution to the GW program, then there is at least one GW game,
policy-free or with a quota policy, that can rationalize a dataset; (necessity) if there does
not exist a solution to the GW program, then no GW game can rationalize the dataset of
interest. This means that, by virtue of being necessary and sufficient, studying the GW
program is equivalent to studying whether we can account for behavior in the UBB and/or
URD using a GW game.

The proof of Theorem 1 clarifies what each part of the GW program represents. (CGD)
represents the assumption that farmers are optimizing profits whilst drawing from a
common resource (hence the = sign). (MGD) is derived from the assumption that global
depletion is nondecreasing in aquifer-wide groundwater withdrawals. Finally, (MLD)
represents the assumption that local drawdown is nondecreasing in local groundwater-
usage.

There are two somewhat surprising features of Theorem 1. First, we find that the
non-parametric class of GW games is characterized by a parametric, simple, and easy-to-
implement linear system of equations. Second, we find that the same test can be used to
study policy-free datasets and quota policy datasets. This means that we have a somewhat
unique opportunity to compare strategic behavior in policy-free vs. policy regions in an
unbiased manner.

3.3.4. Rationalizing Behavior in the UBB and URD

By means of Theorem 1 and the GW program, it is relatively straightforward to show
that any dataset can be rationalized with a GW game. Consider some arbitrary O . For all
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i, j ∈ N and s, t ∈ T , let λ̂s
i = λ̂t

i = λ̂t
j = λ∗—this means that (MLD) is always satisfied.

For all i ∈ N and t ∈ T , let f̂ t
i = gt,Spring

i . Consequently, f̂ t
i − λ̂t

i − gt,Spring
i = λ∗ for every

i ∈ N and t ∈ T , which means that (CGD) and (MGD) are always satisfied. Taken together,
a solution to the GW program always exists for any dataset. It thus follows from Theorem 1
that both the UBB and URD datasets are rationalizable via a GW game. This observation
is perhaps unsurprising as it reflects the many folk theorems that exist for these types of
games [15–17].

We summarize this observation in the following corrollary.

Corollary 1. Any dataset O is rationalizable by a GW game.

Although GW games as stated above do not have any testable predictions, there are
two advantages of using this framework as a starting point. First, we assure ourselves of
studying a sufficiently general class of models that can describe UBB and URD behavior.
Second, this generality helps clarify the role of any additional assumptions we impose on
GW games below for our purpose of testing strategic substitutes versus complements.

4. Revealed Preference Results

In this section, we test whether those games exhibiting strategic substitutability or
strategic complementarity within the class of games we proposed in the previous section
are able to rationalize our groundwater data. In sum, our hypotheses are as follows:

Substitutes null hypothesis, H SUBS
0 : Farmers’ groundwater-usage decisions are strate-

gic substitutes.

Substitutes alternative hypothesis, H −SUBS
0 : Farmers’ groundwater-usage decisions are

strategic complements, or neither strategic substitutes nor complements.

Complements null hypothesis, H COMP
0 : Farmers’ groundwater-usage decisions are strate-

gic complements.

Complements alternative hypothesis, H −COMP
0 : Farmers’ groundwater-usage decisions

are strategic substitutes, or neither strategic substitutes nor complements.

In this section, we pose our null hypotheses as revealed preference tests. We do so in
two steps. First, we incorporate strategic substitutes and complements into the class of GW
games defined above. Second, we identify linear programs that are necessary and sufficient
for checking whether there exists any GW game with strategic substitutes/complements
that can rationalize our data. We conclude by presenting empirical results. In the end, our
main finding is a resounding rejection of strategic substitutes in favor of complements.

4.1. Strategic Substitutes vs. Complements

Following [18], strategic substitutes and complements are defined according to marginal
cost. We say i’s and Ni’s pumping decisions are strategic substitutes (complements) if a
decrease in wt

Ni
increases (decreases) i’s marginal cost of pumping. The comparative statics

consequence is that, ifNi decreases groundwater-usage, then i has the incentive to free-ride
(reciprocate) by increasing (decreasing) groundwater-usage (we formalize this comparative
statics observation in Appendix A.3.2).

Equivalently, strategic substitutes (complements) can be defined in terms of submod-
ularity (supermodularity). We say that P t

i is submodular (supermodular) in (wt
i , wt
Ni
) if

ceteris paribus wt
Ni

> wt
Ni

implies that, for each wt
i > wt

i ,

Marginal gain/cost of pumping more GW at wt
Ni︷ ︸︸ ︷

P t
i (w

t
i , wt
Ni
)−P t

i (w
t
i , wt

Ni
) ≤ (≥)

Marginal gain/cost of pumping more GW at wt
Ni︷ ︸︸ ︷

P t
i (w

t
i , wt
Ni
)−P t

i (w
t
i , wt
Ni
).

Submodularity (supermodularity) means that decreasing wt
Ni

increases (decreases) i’s

marginal cost of pumping.9
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We incorporate strategic substitutes and complements in GW games in the follow-
ing way.

Definition 4. A tuple {N , (Wi,P t
i )i∈N }t∈T is a GW game with strategic substitutes (comple-

ments) if, for every i ∈ N and t ∈ T :

(i) Rt
i(w

t
i ) ≡ Ri(wt

i ) and F t
i (w

t
i , wt
−i) ≡ Fi(wt

i , wt
Ni
);

(ii) P t
i is submodular (supermodular) in (wt

i , wt
Ni
).

As discussed above, the second assumption distinguishes between strategic substitutes
and complements. The first assumption is needed to derive meaningful revealed preference
tests. The first part of this assumption asserts that revenue and future profits functions are
the same across seasons. This is obviously a strong condition, and its consequences are
clear in the final results—however, we can somewhat attenuate this condition with our test
procedure described below. The second part of this assumption, F t

i (w
t
i , wt
−i) ≡ Fi(wt

i , wt
Ni
),

asserts that neighbors’ behavior is sufficient to formulate future profits. This can be
viewed as a condition that emphasizes the importance of locality for groundwater-usage
decisions (and, it turns out, this condition is particularly important for deriving the revealed
preference tests below).

4.2. A Test Based on Revealed Preferences

Our test of the null hypotheses is based on Definition 4. We are interested in whether
strategic substitutes—H SUBS

0 —and/or strategic complements—H COMP
0 —can character-

ize real-world behavior. The test procedure is similar to Section 3.3. We find evidence in
favor of (against) H SUBS

0 if, for a given dataset O , we can (cannot) find a GW game with
strategic substitutes that can rationalize O (see Definition 2 for the definition of ‘rationalize’).
We find evidence in favor of (against) H COMP

0 if, for a given dataset O , we can (cannot)
find a GW game with strategic complements that can rationalize O .

Similar to Theorem 1, we operationalize our test procedure by means of a linear
program, which builds directly on the GW program (see Definition 3).

Definition 5. For a dataset O , consider the following equations:

(SUBS) Strategic substitutes,

∀i, s, t : ws
i < wt

i and ws
Ni

< wt
Ni

=⇒ ( f̂ s
i − λ̂s

i )− ( f̂ t
i − λ̂t

i) ≤ 0;

(COMP) Strategic complements,

∀i, s, t : ws
i < wt

i and ws
Ni

> wt
Ni

=⇒ ( f̂ s
i − λ̂s

i )− ( f̂ t
i − λ̂t

i) ≤ 0.

There exists a solution to the GW program with strategic substitutes if and only if there are
nonnegative numbers { f̂ t

i , λ̂t
i}(i,t)∈N×T that satisfy (CGD, MGD, MLD) and (SUBS).

There exists a solution to the GW program with strategic complements if and only if there are
nonnegative numbers { f̂ t

i , λ̂t
i}(i,t)∈N×T that satisfy (CGD, MGD, MLD) and (SUBS).

The following theorem is the second main theoretical contribution of this paper,
which shows that the GW program with strategic substitutes (complements) is a necessary
and sufficient for rationalizing a dataset with a GW game with strategic substitutes
(complements).

Theorem 2. The following sentences about O are equivalent:

(C) There exists a solution to the GW program with strategic substitutes (complements) defined by O.
(D) O is rationalizable by a GW game with strategic substitutes (complements).

Similar to above, Theorem 2 provides a straightforward way of testing whether farmers’
behavior exhibit strategic substitutes vs. complements. This test is nonparametric, simple,
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and easy to implement as a system of linear equations. In addition, we can employ this
test on both UBB and URD data, which provides us with an unbiased way of comparing
behavior in a policy-free vs. policy region.

4.3. Test Setup

In implementing the GW program, testing all UBB and URD data at the same time
with a somewhat unforgiving revealed preference test is perhaps not the most informative
test. We are trying to account for nearly 15,000 farmers and 100,000 decisions. If a single
farmer is acting ‘irrationally’ or a single decision is ‘irrational’, then the test will fail and
we loose information about how the remaining N − 1 farmers are behaving. This is one of
several issues we can overcome by taking a more nuanced testing approach.

Following [7], we run the GW program on subsets of UBB and URD data, with each
subset consisting of {2, 3, 4, 5, 6, 8} farmers over two consecutive seasons. All our tests
take a two-period view exclusively. It follows from Theorem 2 that the GW program with
strategic substitutes (complements) is necessary and sufficient for any subset of the data to
be rationalized by a GW game with strategic substitutes (complements). We also restrict
attention to {2, 3, 4, 5, 6, 8} farmers who are mutual neighbors.10 This is because our goal is
to test farmers who are likely to view each others’ actions as strategically interdependent—
this argument is more compelling for farmers in a one mile proximity rather than, e.g., a
thirty mile proximity.

As noted above, there are several advantages to testing subsets of our data, rather
than the entire dataset. First, we exclude the possibility that the GW program is rejected
because a few farmers are not responding optimally to others. Second, running the test on
subsets of the data mitigates errors that might result from unobserved variable bias. It is
very likely that idiosyncratic shocks impact farmers’ behavior during the season, such as
the mechanical failure of a center pivot irrigator, which may render behavior as seemingly
irrational. Third, we rule out the possibility of spurious rejection rates due to farmers
learning and innovating to improve their farming practices between seasons. Such learning
can change a farmer’s revenue function and/or cost function over time, which is a process
that is not captured by the class of GW games presented above. Looking at smaller samples
addresses this issue. Finally, as is made clear below, we demonstrate the ability of the test
to reject behavior on a small number of observations notwithstanding the permissiveness
of our non-parametric framework.

Unlike [7] (and also [8]), the size of our dataset renders it computationally impossible
to sample over the 4.7 trillion farmer pairs, 3.7 × 1018 farmer quadruplets, let alone each
consecutive time sequence. We thus randomly sample subsets of our data, run the GW
program on each such subset, and record the percentage of cases with a solution to the
corresponding GW program—we call this the acceptance rate. In doing so, we can leverage
the law of large numbers and randomly sample until we reach a convergence in the rejection
rate (in practice, running the GW program on 1000 random sub-samples is sufficient).

4.4. Results

Results for the UBB can be found in Table 2. Each reported number is an acceptance
rate, and it is interpreted as the probability of sampling a subset of farmers whose behavior
is rationalizable by a GW game with (Panel A) strategic substitutes or (Panel B) strategic
complements. Acceptance rates are clearly decreasing in the number of farmers, because,
if a dataset consisting of (e.g.,) five farmers passes the GW program test, then any subset
of this dataset involving four or less farmers will also pass the GW program test. This
is unsurprising because of the season-independence assumption made in the definition
of GW games with strategic substitutes/complements. For the UBB, we find that the
GW programs with strategic substitutes exhibit low acceptance rates compared with high
acceptance rates for strategic complements.
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Table 2. Acceptance rates of the GW program with (Panel A) strategic substitutes and (Panel B)
strategic complements (sub-sample = 1000).

Panel A–Strategic substitutes
Number of farmers (N )

2 3 4 5 6 8

UBB 0.63 0.56 0.52 0.44 0.39 0.30
URD 0.79 0.76 0.67 0.64 0.59 0.54

Panel B–Strategic complements
Number of farmers (N )

2 3 4 5 6 8

UBB 0.90 0.87 0.84 0.82 0.75 0.74
URD 0.90 0.85 0.80 0.74 0.70 0.62

Following [22], we evaluate the explanatory power of our revealed preference results
discussed above based on [23]’s index for predictive success, which accounts for prediction
accuracy and precision. With A for accuracy and P for precision, Selten’s index is given by

m(A, P) = A− P. (4)

In our case, A represents the acceptance rate reported in Table 2. We estimate the precision
associated with GW games by assuming thatWi = [0, 40 in] ∀i ∈ N (40 in is the most
common groundwater-usage observed in our datasets). We randomly sample (wt

i )(i,t)∈N×T
and farmers, and then run the GW program with strategic substitutes/complements; P is
then the acceptance rate using this randomly sampled data. See Table 3 for the results. The
evidence shows that strategic complements are more successful at predicting behavior than
substitutes in the UBB: with strategic substitutes, we find that m(A, P) ≤ 0 for each (N)
case; this means that the theory is systematically predicting the wrong region of ×i∈NWi;
by contrast, with strategic complements, we find that m(A, P) ≥ 0 for each (N) case.

Table 3. Selten and Krischker’s (1983) [23] measure of predictive success of the GW program with
(Panel A) strategic substitutes and (Panel B) strategic complements (sub-sample = 1000).

Panel A–Strategic substitutes
Number of farmers (N )

2 3 4 5 6 8

UBB −0.17 −0.15 −0.15 −0.18 −0.18 −0.14
URD −0.09 −0.09 −0.11 −0.06 −0.04 0.03

Panel B–Strategic complements
Number of farmers (N )

2 3 4 5 6 8

UBB 0.12 0.25 0.29 0.36 0.38 0.49
URD 0.1 0.22 0.25 0.28 0.33 0.34

The URD results are reported in Tables 2 and 3. A similar pattern emerges as for
the UBB. Strategic complements describe better than strategic substitutes. However, the
difference is not as stark as for the UBB. While strategic complements rationalizes 25% more
UBB data than strategic substitutes, we find that only 7% more URD data are rationalized
by strategic complements than strategic substitutes. This qualitative confirmation of the
UBB with a smaller differential is also confirmed by the predictive success comparison.

4.5. Robustness Check: Larger N

Our main results were reported for neighborhoods of eight farmers or less. We
now repeat the analysis for N = {10, 20, . . . , 100, 200, 300} (we stopped at 300 because
of computational limitations) for both the UBB and URD. The question here amounts to
asking whether the long-term trend of acceptance rates go up or down for the strategic
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substitutes/complements models—if both acceptance rates go down, then our results
might not map to UBB- and URD-wide behavior more generally. We report our findings
in Figure 2. They reinforce the findings in Tables 2 and 3: especially for large N, strategic
complements is a better predictor of behavior than strategic substitutes. In both the UBB
and URD, acceptance rates for the GW program with strategic complements increases with
increasing N. The opposite is true for the strategic substitutes, where acceptance rates
decrease with increasing N. The difference in explanatory power is most obvious in the UBB
for N = 300: in this case, GW games with strategic complements rationalizes nearly 80%
more data than GW games with strategic substitutes.

Robustness check: GW program with large N
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Figure 2. Acceptance rate of the GW program with strategic substitutes/complements as a function
of N.

5. Summary

Groundwater decisions are strategic complements, not substitutes, is what our re-
vealed preference results suggest. This conclusion is consistent with the one of our com-
panion paper. In addition, we find that policy-free data resulted in higher degrees of
strategic complementarity, compared with where a quota policy has been in place for a
long time. This allows to formulate the hypothesis that policies reduce degrees of strategic
complementarity, which deserves proper testing. Understanding the strategic nature of
an interaction such as groundwater usage is important to evaluate policy options, as is
understanding the impact of policies on the strategic nature of the interaction itself. A lot
of work is still needed to appropriately inform policymaking empirically. We hope that our
approach will prove useful for future research in this area.
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Appendix A. Proofs

Appendix A.1. Brief Summary of Nonsmooth Optimization

Before we prove Theorems 1 and 2, we review some concepts related to nonsmooth op-
timization, in particular a necessary (and sufficient condition) for a local (global) maximum
of a nonsmooth function (these notes are taken from [24]).

Let f : RK → R be an absolutely continuous function. The generalized directional
derivative of f at x ∈ RK in the direction of d ∈ RK is given as

f ◦(x; d) = lim sup
y→x,t↓0

f (y + td)− f (y)
t

.

The generalized directional derivative always exists for an absolutely continuous function.
Following [24], we define the subdifferential of f at x as

∂ f (x) = {ξ ∈ RK : f ◦(x; d) ≥ ξTd ∀d ∈ RK}.

Each vector ξ ∈ ∂ f (x) is called a subgradient of f at x.
The following theorem is an analog of the first-order condition from standard smooth

optimization theory. Broadly speaking, it says that x is a local maximizer of f only if 0 is
a subgradient of f at x. If f is concave, then 0 ∈ ∂ f (x) is both a necessary and sufficient
condition for x to be a global solution to maxx′∈RK f (x′).

Theorem A1 ([24]). Let f : RK → R be an absolutely continuous function.

(i) If f attains a local maximum at x then 0 ∈ ∂ f (x).
(ii) If f is concave, then f attains a global maximum at x if and only if 0 ∈ ∂ f (x).

Appendix A.2. Proof of Theorem 1

Let ∂Rt
i(w

t
i ) denote the subdifferential of Rt

i at wt
i . The subdifferentials ∂F t

i (·, wt
−i)

and ∂P t
i (·, wt

−i) with respect to wt
i are defined accordingly. These subdifferentials are

non-empty sets since all functions are assumed to be absolutely continuous.

Appendix A.2.1. (B) =⇒ (A)

We prove the necessity of (CGD), (MGD), and (MLD) separately.

Necessity of (CGD)

Consider farmer i in season t. Because P t
i is absolutely continuous and wt

i ∈ Wi = R+

is an interior solution, it follows from Theorem A1 that wt
i solves maxxi∈Wi P

t
i (xi, wt

−i) only
if 0 ∈ ∂P t

i (w
t
i , wt
−i). That is, wt

i ∈ arg maxxi∈Wi
P t

i (xi, wt
−i) only if there exists T ildeρt

i ∈
∂Rt

i(w
t
i ) and T ilde f t

i ∈ ∂F t
i (w

t
i , wt
−i) such that

T ildeρt
i − ei ·

(
gt,Spring

i + G(Wt − rt) + Li(wt
Ni

+ wt
i )
)
+ T ilde f t

i = 0. (A1)

Let λ̂t
i = Li(wt

Ni
+ wt

i ) and f̂ t
i =

(
T ildeρt

i + T ilde f t
i
)
/ei. Then re-arranging terms in (A1)

yields
G(Wt − rt) = f̂ t

i − λ̂t
i − gt,Spring

i . (A2)
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Note that G(Wt − rt) is common for all farmers. Consequently,

∀i, j, t : f̂ t
i − λ̂t

i − gt,Spring
i = f̂ t

j − λ̂t
j − gt,Spring

j .

Necessity of (MGD)

By assumption, G is absolutely continuous and nondecreasing in {Wt − rt}t∈T . Then
for any z′, z′′ ∈ {Wt − rt}t∈T , it follows that z′ > (=) z′′ =⇒ G(z′) > (=) G(z′′).
Translating this to farmer i ∈ N in seasons s, t ∈ T amounts to

Ws − rs > (=) Wt − rt

=⇒ G(Ws − rs) > (=) G(Wt − rt)

⇐⇒ f̂ s
i − λ̂s

i − gs,Spring
i > (=) f̂ t

i − λ̂t
i − gt,Spring

i

where ⇐⇒ holds from (A2). Since Ws − rs > (=) Wt − rt =⇒ f̂ s
i − λ̂s

i − gs,Spring
i > (=)

f̂ t
i − λ̂t

i − gt,Spring
i , it follows that (MGD) is necessary.

Necessity of (MLD) —

By assumption, Li is absolutely continuous and nondecreasing in {wt
Ni

+wt
i}t∈T . This

means that, for any s, t ∈ T ,

ws
Ni

+ ws
i > (=) wt

Ni
+ wt

i

=⇒ Li(ws
Ni

+ ws
i ) > (=) Li(wt

Ni
+ wt

i )

⇐⇒ λ̂s
i − λ̂t

i > (=) 0

where ⇐⇒ holds by the definition of λ̂s
i and λ̂s

i . Since ws
Ni

+ ws
i > (=) wt

Ni
+ wt

i =⇒
hatλs

i − λ̂t
i ,> (=) 0, it follows that (MLD) is necessary.

Appendix A.2.2. (A) =⇒ (B)

Here, we prove that the GW program is sufficient for the existence of a GW game that
can rationalize O .

Suppose that { f̂ t
i , λ̂t

i}(i,t)∈N×T are positive numbers that solve the GW program. We
construct each function underlying the GW game separately.

Revenue Functions

We define all revenue functions as constant (which means they are all concave). That
is, ∀i ∈ N and t ∈ T , we letRt

i(wi) = R ∀wi ∈ Wi.

Local Drawdown Functions

We begin by defining local drawdown functions. For any farmer i, let {wt
Ni

+ wt
i}t∈T

be in increasing order. Then it follows from (MLD) that wt
Ni

+ wt
i > (=) wt+1

Ni
+ wt+1

i =⇒
λ̂t

i > (=) λ̂t+1
i . We define Li : R+ → R+ as a piecewise linear function such that Li(wt

Ni
+

wt
i ) = λ̂t

i ∀t ∈ T . As such, (MLD) ensures that Li is an absolutely continuous and
nondecreasing function of wNi + wi.

Global Depletion Function

Fix i ∈ N (which i is used is inconsequential because of (CDG)). Let {Wt − rt}t∈T
be in increasing order. It then follows from (MGD) that Wt − rt > (=) Wt+1 − rt+1 =⇒
f̂ t
i − λ̂t

i − gt,Spring
i > (=) f̂ t+1

i − λ̂t+1
i − gt+1,Spring

i . We define G : R → R as a piecewise

linear function such that G(Wt − rt) = f̂ t
i − λ̂t

i − gt,Spring
i ∀t ∈ T . As such, (MGD) ensures

that G : R→ R defined as such is an absolutely continuous and nondecreasing function of
W − r.
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Energy Cost

We let ei = 1 ∀i ∈ N .

Future Profit Functions

Fix i ∈ N and t ∈ T . Let ht
i : W → R+ be a function of (wi, w−i) with the following

properties: (i) ht
i is continuously differentiable in all arguments, (ii) ht

i(·, w−i) is strictly
decreasing in wi for every w−i ∈ W−i, and (iii) ht

i(w
t
i , wt
−i) = f̂ t

i . We define a future profit
function F t

i :W → R as follows:

F t
i (wi, w−i) =

∫ wi

0
ht

i(ξi, w−i) dξi.

It follows by construction that: (i) Fi is concave in wi because ht
i(·, w−i) is strictly decreasing

in wi for each w−i and (ii) f̂ t
i ∈ ∂F t

i (w
t
i , wt
−i). Each (F t

i )(i,t)∈N×T is defined accordingly.

Optimizing Profits

All that remains is to show that wt
i optimizes i’s profit function in season t. By

construction, P t
i is concave in wt

i since: Rt
i is concave, −C t

i is concave in wt
i as G and Li

are nondecreasing in their respective arguments, and F t
i is concave in wt

i for each wt
−i.

Consequently, it follows from Theorem A1(ii) that wt
i solves maxxi∈Wi P

t
i (xi, wt

−i) if and
only if 0 ∈ ∂P t

i (w
t
i , wt
−i). This holds if

0− gt,Spring
i − G(Wt − rt)−Li(wt

Ni
+ wt

i ) + f̂ t
i = 0

⇐⇒ f̂ t
i − λ̂t

i − gt,Spring
i = G(Wt − rt),

(A3)

where the latter equation in (A3) is ensured by (CGD). Hence, wt
i solves maxxi∈Wi P

t
i (xi, wt

−i)
by Theorem A1.

Appendix A.3. Proof of Theorem 2

Appendix A.3.1. (D) =⇒ (C)

Here, we prove the necessity of the GW program with strategic substitutes/complements.
Necessity of (CGD), (MGD), and (MLD) follow directly from the proof of Theorem 1. Hence,
all that remains is to show the necessity of (SUBS)/(COMP).

Let {T ildeρt
i}(i,t)∈N×T and {T ilde f t

i }(i,t)∈N×T be from the proof of Theorem 1 (specifi-
cally Appendix A.2.1). Define ρi(·) such that (i) ρi(wi) ∈ ∂Ri(wi) ∀wi ∈ Wi and (ii) ρi(wt

i ) =
T ildeρt

i for every t ∈ T . Similarly, define fi(·) such that (i) fi(wi, wNi ) ∈ ∂Fi(wi, wNi )
∀(wi, wNi ) ∈ R2

+ and (ii) fi(wt
i , wt
Ni
) = T ilde f t

i ∀t ∈ T .
Consider farmer i ∈ N in seasons s, t ∈ T . Suppose that ws

Ni
> wt

Ni
(ws
Ni

< wt
Ni

) and

ws
i > wt

i . Consider ∂
∂wi
P t

i :

∂

∂wi
P t

i = ρi(wt
i )− ei ·

(
gt,Spring

i + G(Wt − rt) +

=λ̂t
i︷ ︸︸ ︷

Li(wt
Ni

+ wt
i )
)
+ fi(wt

i , wt
Ni
) (A4)

≥ ρi(ws
i )− ei ·

(
gt,Spring

i + G(Wt − rt) + Li(wt
Ni

+ wt
i )
)
+ fi(ws

i , wt
Ni
) (A5)

≥ ρi(ws
i )− ei ·

(
gt,Spring

i + G(Wt − rt) + Li(ws
Ni

+ wt
i )
)
+ fi(ws

i , ws
Ni
) (A6)

≥ ρi(ws
i )− ei ·

(
gt,Spring

i + G(Wt − rt) + Li(ws
Ni

+ ws
i )︸ ︷︷ ︸

λ̂s
i

)
+ fi(ws

i , ws
Ni
) (A7)
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were (A5) follows becauseRi and Fi are concave in wi and ws
i > wt

i , (A6) follows because
P t

i is submodular (supermodular) in (wi, wNi ) and G is slowly changing in wNi , and (A7)

follows because Li is nondecreasing and ws
i > wt

i . Because f̂ t
i =

(
ρi(wt

i ) + fi(wt
i , wt
Ni
)
)

/ei

and f̂ s
i =

(
ρi(ws

i ) + fi(ws
i , ws
Ni
)
)

/ei, it follows that (A4) ≥ (A7) if and only if

f̂ t
i − gt,Spring

i − G(Wt − rt)− λ̂t
i ≥ f̂ s

i − gt,Spring
i − G(Wt − rt)− λ̂s

i

⇐⇒ 0 ≥
(

f̂ s
i − λ̂s

i

)
−
(

f̂ t
i − λ̂t

i

)
,

which means that (SUBS)/(COMP) is necessary.

Appendix A.3.2. (C) =⇒ (D)

Here, we prove the sufficiency of the GW program with strategic substitutes (comple-
ments). Let { f̂ t

i , λ̂t
i}(i,t)∈N×T be positive numbers that solve the GW program with strategic

substitutes (complements).

Revenue Functions

We define all revenue functions as constant (which means they are all concave). That
is, ∀i ∈ N , we letRi(wi) = R ∀wi ∈ Wi.

Local Drawdown Functions

We let Li(x) = 0 ∀x ∈ R+.

Global Depletion Functions

Fix i ∈ N (which i is used is inconsequential because of (CDG)). Let {Wt − rt}t∈T
be in increasing order. It then follows from (MGD) that Wt − rt > (=) Wt+1 − rt+1 =⇒
f̂ t
i − λ̂t

i − gt,Spring
i > (=) f̂ t+1

i − λ̂t+1
i − gt+1,Spring

i . We define G : R → R as a piecewise

linear function such that G(Wt − rt) = f̂ t
i − λ̂t

i − gt,Spring
i ∀t ∈ T . As such, (MGD) ensures

that G : R→ R defined as such is an absolutely continuous and nondecreasing function of
W − r.

Energy Costs

We let ei = 1 for every (i, t) ∈ N × T .

Future Profit Functions

Fix i ∈ N . Let hi : R2
+ → R+ be a function of (wi, wNi ) with the following properties:

(i) hi is absolutely continuous in all arguments, (ii) hi(·, wNi ) is strictly decreasing in wi for
every wNi ∈ R+, (iii) hi(wi, ·) is strictly decreasing/increasing in wNi for every wi ∈ R+,
and (iv) hi(wt

i , wt
Ni
) = f̂ t

i − λ̂t
i for each t ∈ T . Note that (iii) and (iv) can be ensured by

(SUBS)/(COMP).
We define a future profit function Fi : R2

+ → R as follows:

Fi(wi, wNi ) =
∫ wi

0
hi(ξi, wNi ) dξi.

It follows by construction that: (i)Fi is concave in wi because hi(·, wNi ) is strictly decreasing
in each wNi and (ii) f̂ t

i − λ̂t
i ∈ ∂F t

i (w
t
i , wt
−i) ∀t ∈ T . Each (Fi)i∈N is defined accordingly.

Submodularity (Supermodularity) of P t
i

We must check that, given the definitions above, P t
i is indeed submodular (supermod-

ular) in P t
i . The partial derivative of P t

i is given as

∂

∂wi
P t

i (wi, w−i) = 0− ei ·
(

gt,Spring
i + G(W − rt)

)
+ hi(wi, wNi ) (A8)
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(which exists a.e. since P t
i is absolutely continuous in wi). Note that G is slowly changing

in wNi by assumption. Consequently, because hi is decreasing (increasing) in wNi ,
∂

∂wi
P t

i
is decreasing (increasing) in wNi . This means that P t

i is submodular (supermodular) in
(wi, wNi ).

Optimizing Profits

Consider i’s profit function. By construction, P t
i is concave in wt

i since: Ri is concave,
−C t

i is concave in wt
i as G(·) is a nondecreasing function, and Fi(·, wt

Ni
) is concave in wt

i for
each wt

Ni
. Consequently, it follows from Theorem A1(ii) that wt

i solves maxxi∈Wi Pi(xi, wt
−i)

if and only if 0 ∈ ∂P t
i (w

t
i , wt
−i). This holds if

0−
(

gt,Spring
i + G(Wt − rt) + 0

)
+

∈ Fi(wt
i ,w

t
−i)︷ ︸︸ ︷

f̂ t
i − λ̂t

i = 0

⇐⇒ f̂ t
i − λ̂t

i − gt,Spring
i = G(Wt − rt),

(A9)

where the latter equation in (A9) is ensured by (CGD). Hence, wt
i solves maxxi∈Wi Pi(xi, wt

−i)
by Theorem A1.

Notes
1 The article appeared on pages 1–19 of the inaugural issue of the AER. The author, Katherine Coman, was a pioneer in studying

social dilemmas, and a pioneer in other respects too, being the first female statistics professor in the United States and a co-founder
of the American Economics Association.

2 We thank our friends at the UBB for this data.
3 We thank Nate Jenkins and Julia Franck for the URD data and very helpful conversations.
4 We thank Dana Divine and Aaron Young.
5 The UBB part of the table is also reported in [5].
6 While there are other relevant “players” in the broader context such as authorities, consumers, etc., our game is that played by

the farmers with each other taking context and market conditions as given.
7 The latter is a somewhat innocuous assumption since a single farmer represents ∼0.008% (0.03%) of the UBB (URD) farming

population.
8 The local drawdown effects match with our baseline specifications of the neighborhood radius, that is, do not go beyond.
9 If P t

i is submodular (supermodular) in (wt
i , wt
Ni
), it follows from (e.g.,) [19] that wt

Ni
> wt

Ni
=⇒ arg maxxi∈WiP t

i (xi, wt
Ni
) is less

(greater) than arg maxxi∈WiP t
i (xi, wt

Ni
) by the strong set order (for more details see, e.g., [20,21].

10 Operationally, we do so by randomly selecting i, recovering his/her closest {1, 2, 3, 4, 5, 7} neighbors, and then running the GW
program on these farmers.
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