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Rational Play in Extensive-Form Games
Giacomo Bonanno

Department of Economics, University of California, Davis, CA 95616-8578, USA; gfbonanno@ucdavis.edu

Abstract: We argue in favor of a departure from the equilibrium approach in game theory towards
the less ambitious goal of describing only the actual behavior of rational players. The notions of
Nash equilibrium and its refinements require a specification of the players’ choices and beliefs not
only along the equilibrium play but also at counterfactual histories. We discuss an alternative—
counterfactual-free—approach that focuses on choices and beliefs along the actual play, while being
silent on choices and beliefs at unreached histories. Such an approach was introduced in an earlier
paper that considered only perfect-information games. Here we extend the analysis to general
extensive-form games (allowing for imperfect information) and put forward a behavioral notion of
self-confirming play, which is close in spirit to the literature on self-confirming equilibrium. We also
extend, to general extensive-form games, the characterization of rational play that is compatible with
pure-strategy Nash equilibrium.

Keywords: material rationality; behavioral model; self-confirming play; Nash equilibrium

1. Introduction

We address the issue of what kind of object qualifies as a “rational solution” of an
extensive-form game. Whereas the dominant approach focuses on strategy profiles that,
besides being Nash equilibria, satisfy additional—often increasingly complex—criteria,
we suggest moving in the opposite direction by doing without the notion of strategy and
focusing only on the actions and beliefs of the active players, that is, on choices made and
beliefs held at reached histories.

The notions of Nash equilibrium and its refinements require a specification of the
players’ choices and beliefs not only along the equilibrium play but also at counterfactual
(that is, unreached) histories. In Section 2, we argue that pinning down counterfactual
choices at unreached information histories is not a straightforward matter and that it may
be futile to search for a general theory of rationality that can achieve this result. Instead,
we argue in favor of a more basic approach that was put forward in [1]; while [1] was
exclusively focused on perfect-information games, in this paper we extend the approach
to general extensive-form games, by allowing for imperfect information. We put forward
a behavior-based notion of self-confirming play—which is close in spirit to the literature
on self-confirming equilibrium—and extend the characterization of rational play that is
compatible with pure-strategy Nash equilibrium to general extensive-form games.

The paper is organized as follows. In Section 2, we illustrate, by means of examples,
the difficulties that arise in the pursuit of specifying rational choices and beliefs at un-
reached information sets. In Section 3, we review the behavioral models introduced in [1],
extend them to general extensive-form games and put forward a notion of self-confirming
play, where each action taken is justified by the beliefs held at the time of choice and,
furthermore, those beliefs turn out to be exactly correct, so that no player receives infor-
mation that contradicts those beliefs (and thus experiences no regret). We also extend the
characterization of rational play that is consistent with pure-strategy Nash equilibrium to
general extensive-form games. Section 4 provides further discussion and a conclusion.
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2. What Is a Rational Solution?

What constitutes a rational solution of an extensive-form game? Two different ap-
proaches can be found in the literature.

1. The Nash-equilibrium approach. Within this approach the notion of rationality is
captured through the concept of Nash equilibrium or one of its refinements. Consider, for
example, the game of Figure 1 and the strategy profile (a, a, d).
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Figure 1. An extensive game with imperfect information.

Although (a, a, d) is a Nash equilibrium, popular refinements of Nash equilibrium
would deny it the status of a “rational solution” [for example, (a, a, d) is not a sequential
equilibrium [2] because strategy d can be a rational choice for Player 3 only if she assigns
positive probability to history bb, but the notion of consistency— which is part of the
definition of sequential equilibrium—requires Player 3’s beliefs to assign zero probability
to bb]. Regardless of one’s views on whether (a, a, d) can be considered a rational solution
of the game of Figure 1, there is a more fundamental issue to be considered, namely how
Player 3’s strategy d should be interpreted. The common interpretation seems to be in
terms of an objective counterfactual: Player 3 would play d if her information set were to be
reached. It is typically the case in extensive-form games that, given a strategy profile s, there
will be information sets that are not reached by the play generated by s. Thus, under this
interpretation of strategies, a rational solution of the game would determine, not only what
actions are actually taken by the players (that is, what the actual play of the game is), but
also—counterfactually— what actions would be taken at every unreached information set.

The standard theory of counterfactuals, due to Robert Stalnaker and David
Lewis [3–5], postulates a family of similarity relations on the set of possible worlds (one
for each possible world) and the sentence “if φ were the case then ψ would be the case” is
declared to be true at a possible world ω if ψ is true at the most similar world(s) to ω where
φ is true. Referring to the game of Figure 1, at a world where Players 1 and 2 play aa, we
can take φ to be the sentence “Player 3’s information set is reached” and ψ the sentence
“Player 3 plays d”. Then the sentence “if φ were the case then ψ would be the case” would
be true at the actual world (where Player 3’s information set is not reached, because Players
1 and 2 play aa) if and only if the most similar world to the actual world at which Player 3’s
information is reached is one where Player 3 plays d. However, how are we to determine
if the most similar world to the actual world is one where Player 3 plays d or one where
Player 3 plays c?

In general, pinning down counterfactual choices at unreached information sets is not
a straightforward matter. Consider, for example, the game illustrated in Figure 2 due to
Perea ([6], p. 169), where Player 1 can either play b and end the game, or play a, in which
case Players 1 and 2 play a “simultaneous” game.
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Figure 2. The conflict between the backward-induction-based counterfactual and the forward-
induction-based counterfactual encoded in Player 2’s strategy.

If one appeals to backward-induction reasoning, one is led to conclude that the “ratio-
nal solution” of this game is the strategy profile (b, e), which incorporates the counterfactual
claim that Player 2 would play e if her information set were to be reached [first apply the
procedure of iterative deletion of strictly dominated strategies to the subgame that starts
at history a to obtain (c, e): in the subgame, for Player 2 g is strictly dominated by both
e and f ; after deleting g, for Player 1 d becomes strictly dominated by c; after deleting
d, for Player 2 f becomes strictly dominated by e; then infer that Player 1 will play b;
backward-induction reasoning is captured by such notions as “common belief in present
and future rationality” [7], or forward belief in rationality [8,9].]

On the other hand, if one appeals to forward-induction reasoning (as captured by the
notion of extensive-form rationalizability [10,11]) one is led to conclude that the “rational
solution” of this game is the strategy profile (b, f ), incorporating the counterfactual claim
that Player 2 would play f if her information set were to be reached [first eliminate Player
1’s strategy ac, since it is strictly dominated by b, and Player 2’s strategy g; then eliminate
Player 1’s strategy ad and Player 2’s strategy e, with the conclusion that Player 1 will play b
and Player 2 would play f .]

Note, however, that the prediction in terms of play is the same, namely that Player 1
would end the game by playing b; the two solutions differ only in terms of the answer to
the question “what would Player 2 do if her information set were to be reached?”

The above example shows that it may be futile to search for a general theory of rational-
ity that would pin down counterfactual choices and beliefs at unreached information sets
(as shown recently by [12], besides backward-induction and forward-induction reasoning,
there are other types of rationality-based reasoning that lead to the same outcome but differ-
ent counterfactual “predictions” about choices at unreached information sets). It is natural,
therefore, to ask: Is it essential to provide an answer to such counterfactual questions? The
thesis put forward in this paper is that the answer to this question is negative.

2. The self-confirming equilibrium approach. Returning to the strategy profile
(a, a, d) in the game of Figure 1, an alternative approach is to interpret Player 3’s strategy
d not as a claim about what Player 3 would actually do in a counterfactual world where
her information is reached, but as a belief, shared by Players 1 and 2, about Player 3’s
hypothetical behavior. Such shared belief would support the rationality of playing a for
both Players 1 and 2.

This approach is in line with the literature that identifies rational play in extensive-
form games with the notion of self-confirming equilibrium, introduced in [13] (similar
notions are put forward in [14–16]; Refs. [17,18] provide a refinement of self-confirming
equilibrium that imposes constraints on the players’ beliefs about what actions an opponent
could take at an off-path information set and [19] provide a generalization of self-confirming
equilibrium; the related expression ‘conjectural equilibrium’ is mostly used in the context
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of strategic-form games: it was introduced in this context by [20,21] and is defined as a
situation where each player’s strategy is a best response to a conjecture about the other
players’ strategies and any information acquired after the play of the game does not induce
the player to change her conjecture). A self-confirming equilibrium is a strategy profile
satisfying the property that each player’s strategy is a best response to her beliefs about
the strategies of her opponents, and each player’s beliefs are correct along the equilibrium
play, even though beliefs about play at unreached information sets may be incorrect. The
essential feature of a self-confirming equilibrium is that no player receives information that
contradicts her beliefs.

If one follows the interpretation suggested above, then two issues arise. First of all, the
strategy profile (a, a, d) (for the game of Figure 1) is now a hybrid object, incorporating—on
the one hand—a prediction about actual behavior (namely, the (a, a) part) and—on the
other hand – an encoding of the beliefs of Players 1 and 2 (namely, the d part). This leaves
to be desired, since one should clearly distinguish between actions and beliefs and model
the latter explicitly. The second issue is that there seems to be no reason to require different
players to agree on the hypothetical choice of a third player at an unreached information
set. Consider, for example, the game of Figure 3, taken from ([13], p. 533).
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Figure 3. The play aA is consistent with the notion of self-confirming equilibrium, even though there
is no Nash equilibrium that yields aA.

In this game it is rational for Player 1 to play a, if she believes that Player 2 will play
A and Player 3 would play L, and it is rational for Player 2 to play A, if he believes that
Player 3 would play R. Thus, the play aA is supported by beliefs of Players 1 and 2 that are
not in agreement with each other.

Note, however, that the notion of self-confirming equilibrium is still defined in terms
of a strategy profile and thus one cannot claim that (a, A) is a self-confirming equilibrium.
One would have to state that both (a, A, L) and (a, A, R) are self-confirming equilibria
sustained by Player 1’s belief (correct in the former, erroneous in the latter) that Player 3
would play L and Player 2’s belief (erroneous in the former, correct in the latter) that Player
3 would play R. In other words, also the notion of self-confirming equilibrium requires an
answer to the counterfactual “what would Player 3 do if her information set were to be
reached?” Note also that in the game of Figure 3 there is no Nash equilibrium that yields
the play aA; thus, a self-confirming equilibrium need not be a Nash equilibrium.

Both the notion of Nash equilibrium and the notion of self-confirming equilibrium
require specifying choices at all information sets, whether they are reached or not. From a
conceptual point of view, however, it is not clear what role choices at unreached information
sets play beyond expressing the beliefs of the active players along the equilibrium path.
For example, consider again the game of Figure 3 and a situation where Player 1 plays
a – believing that Player 2 will play A and Player 3 would play L–and Player 2 plays A,
believing that Player 3 would play R. Why is this not enough as a “solution”? Why the need
to settle the counterfactual concerning what Player 3 would truly do if her information set
were to be reached and thus which of Players 1 and 2 is holding incorrect beliefs? [Note that,
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as [15] points out, in this game Player 3 gains from the uncertainty in the minds of Players
1 and 2 and, if asked what she would do, she would refuse to answer, since her payoff is
largest when Players 1 and 2 play aA.] Furthermore, it is not clear how the counterfactual
could be settled: both L and R can be justified as hypothetical rational choices for Player 3.

In this paper, we turn to an alternative approach, put forward in [1] in the context of
perfect-information games, and extend it to general extensive-from games. The proposed
framework restricts attention to the actual choices of the players and the beliefs that justify
those choices.

3. Behavioral Models of Games

There are two types of epistemic/doxastic models used in the game-theoretic literature:
the so-called “state-space” models and the “type-space” models. We will adopt the former
(note that there is a straightforward way of translating one type of model into the other). In
the standard state-space model of a given game, one takes as starting point a set of states (or
possible worlds) and associates with every state a strategy for every player, thus providing
an interpretation of a state in terms of players’ choices. If ω is a state and si is the strategy
of player i at ω then the interpretation is that, at that state, player i plays si. If the game
is simultaneous (so that there cannot be any unreached information sets), then there is no
ambiguity in the expression “player i plays si”, but if the game is an extensive-form game
then the expression is ambiguous. Consider, for example, the game of Figure 1 and a state
ω where Players 1 and 2 play aa, so that Player 3’s information set is not reached; suppose
also that the strategy of Player 3 associated with state ω is d. In what sense does Player 3
“play” d? Does it mean that, before the game starts, Player 3 has made a plan to play d if her
information happens to be reached? Or does it mean (in a Stalnaker-Lewis interpretation of
the counterfactual) that in the state most similar to ω where her information set is actually
reached, Player 3 plays d? [This interpretation is adopted in [22] where it is pointed out
that in this type of models “one possible culprit for the confusion in the literature regarding
what is required to force the backward induction solution in games of perfect information
is the notion of a strategy”.] Or is Player 3’s strategy d to be interpreted not as a statement
about what Player 3 would do but as an expression of what the opponents think that Player
3 would do?

While most of the literature on the epistemic foundations of game theory makes use
of strategy-based models, a few papers follow a behavioral approach by associating with
each state a play (or outcome) of the game (the seminal contribution is [23], followed
by [1,8,24,25]; the focus of this literature has been on games with perfect information).
The challenge in this class of models is to capture the reasoning of a player who takes a
particular action while considering what would happen if she took a different action. The
most common approach is to postulate, for each player, a set of conditional beliefs, where
the conditioning events are represented by possible histories in the game, including off-path
histories ([23] uses extended information structures to model hypothetical knowledge, [8]
use plausibility relations and [24] use conditional probability systems). Here we follow
the simpler approach put forward in [1], which models the “pre-choice” beliefs of a player,
while the previous literature considered the “after-choice” beliefs. The previous literature
was based on the assumption that, if at a state a player takes action a, then she knows that
she takes action a, that is, in all the states that she considers possible she takes action a.
The pre-choice or deliberation stage approach, on the other hand, models the beliefs of
the player at the time when she is contemplating the actions available to her and treats
each of those actions as an “open possibility”. Thus, her beliefs take the following form:
“if I take action a then the outcome will be x and if I take action b then the outcome will
be y”, where the conditional “if p then q” is interpreted as a material conditional, that is,
as equivalent to “either not p or q” (in [26] it is argued that, contrary to a common view,
the material conditional is indeed sufficient to model deliberation; it is also shown how
to convert pre-choice beliefs into after-choice beliefs, reflecting a later stage at which the
agent has made up her mind on what to do). This analysis does not rely in any way on
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counterfactuals; furthermore, only the beliefs of the active players at the time of choice are
modeled, so that no initial beliefs nor belief revision policies are postulated. The approach is
described below and it makes use of the history-based definition of extensive-form game,
which is reviewed in Appendix A.

As in [1] we take a non-quantitative approach based on qualitative beliefs and ordi-
nal utility.

3.1. Qualitative Beliefs

Let Ω be a set, whose elements are called states (or possible worlds). We represent
the beliefs of an agent by means of a binary relation B ⊆ Ω×Ω. The interpretation of
(ω, ω′) ∈ B, also denoted by ωBω′, is that at state ω the agent considers state ω′ possible;
we also say that ω′ is reachable from ω by B. For every ω ∈ Ω we denote by B(ω) the set of
states that are reachable from ω, that is, B(ω) = {ω′ ∈ Ω : ωBω′}.

B is transitive if ω′ ∈ B(ω) implies B(ω′) ⊆ B(ω) and it is euclidean if ω′ ∈ B(ω)
implies B(ω) ⊆ B(ω′) (it is well known that transitivity of B corresponds to positive
introspection of beliefs: if the agent believes an event E then she believes that she believes
E, and euclideanness corresponds to negative introspection: if the agent does not believe E
then she believes that she does not believe E). We will assume throughout that the belief
relations are transitive and euclidean so that ω′ ∈ B(ω) implies that B(ω′) = B(ω). Note
that we do not assume reflexivity of B (that is, we do not assume that, for every state ω,
ω ∈ B(ω); reflexivity corresponds to the assumption that a player cannot have incorrect
beliefs: an assumption that, as [27] points out, is conceptually problematic, especially in a
multi-agent context). Hence, in general, the relation B does not induce a partition of the set
of states.

Graphically, we represent a transitive and euclidean belief relation as shown in
Figure 4, where ω′ ∈ B(ω) if and only if either there is an arrow from ω to the rounded
rectangle containing ω′, or ω and ω′ are enclosed in the same rounded rectangle (that is, if
there is an arrow from state ω to a rounded rectangle, then, for every ω′ in that rectangle,
(ω, ω′) ∈ B and, for any two states ω and ω′ that are enclosed in a rounded rectangle,
{(ω, ω), (ω, ω′), (ω′, ω), (ω′, ω′)} ⊆ B).

α β γ

Figure 4. The relation B = {(α, β), (α, γ), (β, β), (β, γ), (γ, β), (γ, γ)}.

The object of beliefs are propositions or events (i.e., sets of states; events are denoted
by bold-type capital letters). We say that at state ω the agent believes event E ⊆ Ω if and only
if B(ω) ⊆ E. For example, in the case illustrated in Figure 4, at state α the agent believes
event {β, γ}. We say that, at state ω, event E is true if ω ∈ E. In the case illustrated in
Figure 4, at state α the agent erroneously believes event {β, γ}, since event {β, γ} is not true
at α (α /∈ B(α) = {β, γ}). We say that at state ω the agent has correct beliefs if ω ∈ B(ω) (note
that it is a consequence of euclideanness of the relation B that, even if the agent’s beliefs
are objectively incorrect, she always believes that what she believes is true: if ω′ ∈ B(ω) then
ω′ ∈ B(ω′)).

3.2. Models of Games

As a starting point in the definition of a model of a game, we take a set of states Ω
and provide an interpretation of each state in terms of a particular play of the game, by
means of a function ζ : Ω→ Z that associates, with every state ω, a play or terminal history
ζ(ω) ∈ Z. Each state ω also provides a description of the beliefs of the active players by
means of a binary relation Bh on Ω representing the beliefs of ι(h), the player who moves at
decision history h. It would be more precise to write Bι(h) instead of Bh, but we have chosen
the lighter notation since there is no ambiguity, because we assume (see Appendix A) that
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at every decision history there is a unique player who is active there. Note that beliefs are
specified only at histories that are reached at a given state, in the sense that Bh(ω) 6= ∅ if
and only if h ≺ ζ(ω).

Definition 1. A model of an extensive-form game is a tuple
〈
Ω, ζ, {Bh}h∈D

〉
where

• Ω is a set of states.
• ζ : Ω→ Z is an assignment of a terminal history to each state.
• For every h ∈ D, Bh ⊆ Ω×Ω is a belief relation that satisfies the following properties:

1. Bh(ω) 6= ∅ if and only if h ≺ ζ(ω) [beliefs are specified only at reached decision
histories and are consistent: consistency means that there is no event E such that both
E and its complement ¬E are believed; it is well known that, at state ω, beliefs are
consistent if and only if B(ω) 6= ∅].

2. If ω′ ∈ Bh(ω) then h′ ≺ ζ(ω′) for some h′ such that h′ ≈ι(h) h [the active player at
history h correctly believes that her information set that contains h has been reached;
recall (see Appendix A) that h′ ≈ι(h) h (also written as h′ ∈ [h]) if and only if h and h′

belong to the same information set of player ι(h) (thus ι(h) = ι(h′))].
3. If ω′ ∈ Bh(ω) then (1) Bh(ω

′) = Bh(ω) and (2) if h′ ≺ ζ(ω′) with h′ ≈ι(h) h then
Bh′(ω

′) = Bh(ω) [by (1), beliefs satisfy positive and negative introspection and, by
(2), beliefs are the same at any two histories in the same information set; thus one can
unambiguously refer to a player’s beliefs at an information set, which is what we do in
Figures 5–9].

4. If ω′ ∈ Bh(ω) and h′ ≺ ζ(ω′) with h′ ≈ι(h) h, then, for every action a ∈ A(h) (note
that A(h′) = A(h)), there is an ω′′ ∈ Bh(ω) such that h′a - ζ(ω′′) .

The last condition states that if, at state ω and history h reached at ω (h ≺ ζ(ω)),
player ι(h) considers it possible that the play of the game has reached history h′, which
belongs to her information set that contains h, then, for every action a available at that
information set, there is a state ω′′ that she considers possible at h and ω (ω′′ ∈ Bh(ω))
where she takes action a at history h′ (h′a - ζ(ω′′)). This means that, for every available
action, the active player at h considers it possible that she takes that action and thus has a
belief about what will happen conditional on taking it. A further “natural” restriction on
beliefs will be discussed later (Definition 6).

Figure 5 reproduces the game of Figure 1 and shows a model of it. For every reached
decision history, under every state that the corresponding player considers possible we
have shown the action actually taken by that player and the player’s payoff (at the terminal
history associated with that state).

Suppose, for example, that the actual state is γ. State γ encodes the following facts
and beliefs.

1. As a matter of fact, Player 1 plays a, Player 2 plays b and Player 3 plays d.
2. Player 1 (who chooses at the null history ∅) believes that if she plays a then Player 2

will also play a (this belief is erroneous since at state γ Player 2 actually plays b, after
Player 1 plays a) and thus her utility will be 2, and she believes that if she plays b then
Player 2 will play a and Player 3 will play d and thus her utility will be 1.

3. Player 2 (who chooses at information set {a, b}) correctly believes that Player 1 played
a and, furthermore, correctly believes that if he plays b then Player 3 will play d and
thus his utility will be 1, and believes that if he plays a his utility will be 2.

4. Player 3 (who chooses at information set {ab, ba, bb}) erroneously believes that both
Player 1 and Player 2 played b; thus, she believes that if she plays c her utility will be
0 and if she plays d her utility will be 1.

On the other hand, if the actual state is β, then the actual play is aa and the beliefs
of Players 1 and 2 are as detailed above (Points 2 and 3, respectively), while no beliefs are
specified for Player 3, because Player 3 does not get to play (that is, Player 3 is not active at
state β since her information set is not reached).
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Play: → bad aa abd bbd bbc

State: → α β γ δ ε

Information
set: ↓

∅
b, 1 a, 2

{a, b}
a, 2 b, 1

{ab, ba, bb}
d, 1 c, 0

Figure 5. The top part reproduces the game of Figure 1 and the bottom part shows a model of it.

3.3. Rationality

Consider again the model of Figure 5 and state γ. There Player 1 believes that if she
takes action a, her utility will be 2, and if she takes action b, her utility will be 1. Thus, if
she is rational, she must take action a. Indeed, at state γ she does take action a and thus she
is rational (although she will later discover that her belief was erroneous and the outcome
turns out to be abd not aa so that her utility will be 1, not 2). Since Player 1 has the same
beliefs at every state, we declare Player 1 to be rational at precisely those states where she
takes action a, namely β and γ. Similar reasoning leads us to conclude that Player 2 is
rational at those states where she takes action a, namely states α and β. Similarly, Player 3
is rational at those states where she takes action d, namely states α, γ and δ. If we denote by
R the event that all the active players are rational, then in the model of Figure 5 we have
that R = {β} (note that at state β Player 3 is not active).

We need to define the notion of rationality more precisely. Various definitions of
rationality have been suggested in the context of extensive-form games, most notably
material rationality and substantive rationality [28,29]. The notion of material rationality
is the weaker of the two in that a player can be found to be irrational only at decision
histories of hers that are actually reached (substantive rationality, on the other hand, is
more demanding since a player can be labeled as irrational at a decision history h of hers
even if h not reached). Given that we have adopted a purely behavioral approach, the
natural notion for us is the weaker one, namely material rationality. We will adopt a very
weak version of it, according to which at a state ω and reached history h (that is, h ≺ ζ(ω)),
the active player at h is rational if the following is the case: if a is the action that the player
takes at h at state ω (that is, ha - ζ(ω)) then there is no other action at h that, according to
her beliefs, guarantees a higher utility.

Definition 2. Let ω be a state, h a decision history that is reached at ω (h ≺ ζ(ω)) and a, b ∈ A(h)
two actions available at h.

(A) We say that, at ω and h, the active player ι(h) believes that b is better than a if, for all
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ω1, ω2 ∈ Bh(ω) and for all h′ such that h′ ≈ι(h) h (that is, history h′ belongs to the same
information set as h), if a is the action taken at history h′ at state ω1, that is, h′a - ζ(ω1), and b is
the action taken at h′ at state ω2, that is, h′b - ζ(ω2), then uι(h)(ζ(ω1)) < uι(h)(ζ(ω2)). Thus,
the active player at history h believes that action b is better than action a if, restricting attention to
the states that she considers possible, the largest utility that she obtains if she plays a is less
than the lowest utility that she obtains if she plays b.

(B) We say that player ι(h) is rational at history h at state ω if and only if the following is true: if
ha - ζ(ω) (that is, a ∈ A(h) is the action played at h at state ω) then, for every b ∈ A(h), it is
not the case that, at state ω and history h, player ι(h) believes that b is better than a.

Finally, we define the event that all the active players are rational, denoted by R as
follows:

ω ∈ R if and only if, for every h ≺ ζ(ω),
player ι(h) is rational at h (at state ω).

(1)

For example, as noted above, in the model of Figure 5 we have that R = {β}.

3.4. Correct Beliefs

The notion of correct belief was first mentioned in Section 3.1 and was identified with
local reflexivity (that is, reflexivity at a state, rather than global reflexivity). Since, at any
state, only the beliefs of the active players are specified, we define the event that players
have correct beliefs by restricting attention to those players who actually move. Thus, the
event that the active players have correct beliefs, denoted by T (‘T’ stands for ‘true’), is defined
as follows:

ω ∈ T if and only if ω ∈ Bh(ω) for every h such that h ≺ ζ(ω). (2)

For example, in the model of Figure 5, T = {β}.
What does the expression “correct beliefs” mean? Consider state β in the model of

Figure 5 where the active players (Players 1 and 2) have correct beliefs in the sense of (2)
(β ∈ B∅(β) and β ∈ B{a,b}(β)). Consider Player 1. There are two components to Player
1’s beliefs: (i) she believes that if she plays a then Player 2 will also play a, and (ii) she
believes that if she plays b then Players 2 and 3 will play a and d, respectively. The first
belief is correct at state β, where Player 1 plays a and Player 2 indeed follows with a. As
for the second belief, whether it is correct or not depends on how we interpret it. If we
interpret it as the material conditional “if b then bad” (which is equivalent to “either not
b or bad”) then it is indeed true at state β, but trivially so, because the antecedent is false
there (Player 1 does not play b). If we interpret it as a counterfactual conditional “if Player 1
were to play b then Players 2 and 3 would play a and d, respectively” then in order to decide
whether the conditional is true or not one would need to enrich the model by adding a
“similarity” or “closeness” relation on the set of states (in the spirit of [3,4]); one would
then check if at the closest state(s) to β at which Player 1 plays b it is indeed the case that
Players 2 and 3 play a and d, respectively. Note that there is no a priori reason to think
that the closest state to β where Player 1 plays b is state α. This is because, as pointed out
by Stalnaker ([30], p.48), there is no necessary connection between counterfactuals, which
capture causal relations, and beliefs: for example, I may believe that, if I drop the vase that
I am holding in my hands, it will break (because I believe it is made of glass) but my belief
is wrong because—as a matter of fact—if I were to drop it, it would not break, since it is
made of plastic.

Our models do not have the resources to answer the question: “at state β, is it true —as
Player 1 believes—that if Player 1 were to play b then Players 2 and 3 would play a and d,
respectively?” One could, of course, enrich the models in order to answer the question,
but is there a compelling reason to do so? In other words, is it important to be able to
answer such questions? If we are merely interested in determining what rational players
do, then what matters is what actions they actually take and what they believe when they
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act, whether or not those beliefs are correct in a stronger sense than is captured by the
material conditional.

Is the material conditional interpretation of “if I play a then the outcome will be x”
sufficient, though? Since the crucial assumption in the proposed framework is that the
agent considers all of her available actions as possible (that is, for every available action
there is a doxastically accessible state where she takes that action), material conditionals are
indeed sufficient: the material conditional “if I take action a the outcome will be x” zooms
in—through the lens of the agent’s beliefs— on those states where action a is indeed taken
and verifies that at those states the outcome is indeed x, while the states where action a is
not taken are not relevant for the truth of the conditional.

3.5. Self-Confirming Play

We have defined two events: the event R that all the active players are rational and the
event T that all the active players have correct beliefs. In the model of Figure 5 we have that
R ∩ T = {β} and it so happens that ζ(β) = aa is a Nash equilibrium play, that is, there is a
pure-strategy Nash equilibrium (namely, (a, a, d)) whose associated play is aa. However, as
shown below, this is not always the case.

At a play associated with a state ω ∈ R ∩ T, each active player’s chosen action
is rationally justified by her beliefs at the time of choice (since ω ∈ R) and the beliefs
concerning what will happen after that action turn out to be correct (since ω ∈ T), so that
no player is faced with evidence that her beliefs were wrong. Does that mean that, once
the final outcome ζ(ω) is revealed, no player regrets her actual choice? The answer is
negative, because it is possible that a player, while not having any false beliefs, might not
anticipate with precision the actions of the players who move after her. In the model shown
in Figure 6 we have that R ∩ T = {α, β, γ}, that is, at every state the active players are
rational and have correct beliefs. Consider state β, where the play is ad. At state β Player
1 is rational because she believes that if she plays b her utility will be 1 and if she plays a
her utility might be 0 but might also be 2 (she is uncertain about what Player 2 will do).
Thus, she does not believe that action b is better than a and hence it is rational for her to
play a (Definition 2). Player 2 is rational because she is indifferent between her two actions.
However, ex post, when Player 1 learns that the actual outcome is ad, she regrets not taking
action b instead of a. This example shows that, even though β ∈ R ∩ T, ζ(β) = ad is not a
Nash equilibrium play, that is, there is no Nash equilibrium whose associated play is ad.

a b

c d

1

2
1
2

2
1

0
1

Play: → ac ad b

State: → α β γ

Information
set: ↓

∅
a, 2 a, 0 b, 1

{a}
c, 1 d, 1

Figure 6. A perfect-information game and a model of it.
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Next we introduce another event which, in conjunction with T, guarantees that the
active players’ beliefs about the opponents’ actual moves are exactly correct (note that a
requirement built in the definition of a self-fulfilling equilibrium ([13], p.523) is that “each
player’s beliefs about the opponents’ play are exactly correct”). Event C (’C’ for ’certainty’)
defined below rules out uncertainty about the opponents’ past choices (Point 1) as well as
uncertainty about the opponents’ future choices (Point 2). Note that Point 1 is automatically
satisfied in games with perfect information and thus imposes restrictions on beliefs only in
imperfect-information games.

Definition 3. A state ω belongs to event C if and only if, for every reached history h at ω (that is,
for every h ≺ ζ(ω)), and ∀ω′, ω′′ ∈ Bh(ω), ∀h′, h′′ ∈ [h] (recall that [h] is the information set
that contains h),

1. if h′ ≺ ζ(ω′) and h′′ ≺ ζ(ω′′) then h′ = h′′,
2. ∀a ∈ A(h), if h′a ≺ ζ(ω′) and h′′a ≺ ζ(ω′′) then ζ(ω′) = ζ(ω′′).

Note that—concerning Point 1—a player may be erroneous in her certainty about
the opponents’ past choices, that is, it may be that ω ∈ C, the actual reached history is
h ≺ ζ(ω) and yet player ι(h) is certain that she is moving at history h′ ∈ [h] with h′ 6= h
(for example, in the model of Figure 5, at state γ, which belongs to event C, and at reached
history ab, Player 3 is certain that she is moving at history bb while, as a matter of fact, she
is moving at history ab), and—concerning Point 2— a player may also be erroneous in her
certainty about what will happen after her choice (for example, in the model of Figure 5, at
state γ and history ∅, Player 1 is certain that if she takes action a then Player 2 will also
play a, but she is wrong about this, because, as a matter of fact, at state γ Player 2 follows
with b rather than a).

In the model of Figure 5 C = Ω, while in the model of Figure 6 C = ∅, because at the
null history ∅ Player 1 is uncertain about what will happen if she takes action a.

If state ω belongs to the intersection of events C and T then, at state ω, each active
player’s beliefs about the opponents’ actual play are exactly correct. Note, however, that—
as noted in Section 3.4—there is no way of telling whether or not a player is also correct
about what would happen after her counterfactual choices, because the models that we are
considering are not rich enough to address the issue of counterfactuals.

Definition 4. Let G be a game and z a play (or terminal history) in G. We say that z is a self-
confirming play if there exists a model of G and a state ω in that model such that (1) ω ∈ R∩T∩C
and (2) z = ζ(ω).

Definition 5. Given a game G and a play z in G, call z a Nash play if there is a pure-strategy
Nash equilibrium whose induced play is z.

It turns out that, in perfect-information games in which no player moves more than
once along any play, the two notions of self-confirming play and Nash play are equivalent
([1], Proposition 1, p. 1012). For games with imperfect information, while it is still true
that a Nash play is a self-confirming play, there may be self-confirming plays that are not
Nash plays. The reason for this is that two players might have different beliefs about the
potential choice of a third player. Figure 7 reproduces the game of Figure 3 together with a
model of it.
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d

a

L R

D

L R

A1 2

3

0
0
0

3
0
1

0
3
1

0
0
0

1
1
2

Play: → dR dL aA aDR

State: → α β γ δ

Information
set: ↓

∅
a, 1d, 0

{a}
A, 1 D, 0

{d, aD}
R, 1 L, 0

Figure 7. The game of Figure 3 and a model of it.

In the model of Figure 7, R = {γ}, T = {β, γ} and C = Ω, so that R ∩ T ∩ C = {γ}.
Thus, at state γ the active players (Players 1 and 2) are rational, have correct beliefs and have
no uncertainty and yet ζ(γ) = aA which is not a Nash play (there is no Nash equilibrium
that yields the play aA). Players 1 and 2 have different beliefs about what Player 3 would
do at her information set: at state γ Player 1 believes that if she plays d then Player 3 will
play L, while Player 2 believes that if he plays D then Player 3 will play R.

Next we introduce a new event, denoted by A (‘A’ stands for ‘agreement’), that rules
out such disagreement and use it to provide a doxastic characterization of Nash play in
general games (with possibly imperfect information). First we need to add one more
condition to the definition of a model of a game that is relevant only if the game has
imperfect information.

The definition of model given in Section 3 (Definition 1) allows for “unreasonable”
beliefs that express a causal link between a player’s action and her opponent’s reaction to
it, when the latter does not observe the former’s choice. As an illustration of such beliefs,
consider a game where Player 1 moves first, choosing between actions a and b, and Player
2 moves second choosing between actions c and d without being informed of Player 1’s choice,
that is, histories a and b belong to the same information set of Player 2. Definition 1 allows
Player 1 to have the following beliefs: “if I play a, then Player 2 will play c, while if I play b
then Player 2 will play d”. Such beliefs ought to be rejected as “irrational” on the grounds
that there cannot be a causal link between Player 1’s move and Player 2’s choice, since
Player 2 does not get to observe Player 1’s move and thus cannot react differently to Player
1’s choice of a and Player 1’s choice of b. [It should be noted, however, that several authors
have argued that such beliefs are not necessarily irrational: see, for example, [31–36]]. A
“causally correct” belief for Player 1 would require that the predicted choice(s) of Player 2
be the same, no matter what action Player 1 herself chooses.

Definition 6. A causally restricted model of a game is a model (Definition 1) that satisfies the
following additional restriction (a verbal interpretation follows; note that, for games with perfect
information, there is no difference between a model and a restricted model, since (3) is vacuously
satisfied).

5. Let ω be a state, h a decision history reached at ω (h ≺ ζ(ω)) and a and b two actions
available at h (a, b ∈ A(h)). Let h1 and h2 be two decision histories that belong to the same
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information set of player j = ι(h1) (h1 ≈j h2) and c1, c2 be two actions available at h1
(c1, c2 ∈ A(h1) = A(h2)). Then the following holds (recall that [h] denotes the information
set that contains decision history h, that is, h′ ∈ [h] if and only if h′ ≈ι(h) h):

if h′, h′′ ∈ [h], ω1, ω2 ∈ Bh(ω), h′a ≺ h1c1 - ζ(ω1) and
h′′b ≺ h2c2 - ζ(ω2), then either c1 = c2 or there exist
ω′1, ω′2 ∈ Bh(ω) such that h′a ≺ h1c2 - ζ(ω′1) and
h′′b ≺ h2c1 - ζ(ω′2).

(3)

In words: if, at state ω and reached history h, player i = ι(h) considers it possible
that, if she takes action a, history h1 is reached and player j = ι(h1) takes action c1 at h1
and player i also considers it possible that, if she takes action b, then history h2 is reached,
which belongs to the same information set as h1, and player j takes action c2 at h2, then
either c1 = c2 or at state ω and history h player i must also consider it possible that (1) after
taking action a, h1 is reached and player j takes action c2 at h1 and (2) after taking action b,
h2 is reached and player j takes action c1 at h2.

Figure 8 shows a game and four partial models of it, giving only the beliefs of Player
1 (at history ∅): two of them violate Condition 5 of Definition 6 (the ones on the left that
are labeled “not allowed”), while the other two satisfy it. Note that the models shown in
Figures 5–7 are all causally restricted models.

a

c
d

b

e f e f

1

2

3

Not allowed (at the root):

ac ad f be b f

α β γ δ

∅

∅

Allowed (at the root):

ac ad f be b f ade

α β γ δ ε

∅

∅

Figure 8. A game and four partial models of it (showing only the beliefs of Player 1 at history ∅),
two of which violate Condition 5 of Definition 6 and the remaining two do not.

Now we turn to the notion of agreement, which is intended to rule out situations like
the one shown in Figure 7 where Players 1 and 2 disagree about what action Player 3 would
take at her information set {d, aD}.

Definition 7. We say that at state ω active players i and j consider future information set [h]
of player k = ι(h) if there exist

1. two decision histories h1 and h2 that are reached at ω (that is, h1 ≺ h2 ≺ ζ(ω)) and belong
to i and j, respectively, (that is, i = ι(h1) and j = ι(h2)),

2. states ω1 ∈ Bh1(ω) and ω2 ∈ Bh2(ω),
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3. decision histories h′, h′′ ∈ [h],

such that, for some h′1 ≈i h1, h′1 ≺ h′ ≺ ζ(ω1) and, for some h′2 ≈j h2, h′2 ≺ h′′ ≺ ζ(ω2).

That is, player i at h1 considers it possible that the play has reached history h′1 ∈ [h1]
and, after taking an action at h′1, information set [h] of player k is reached, and player j at h2
considers it possible that the play has reached history h′2 ∈ [h2] and, after taking an action
at h′2, that same information set [h] of player k is reached.

Definition 8. We say that at state ω active players i and j are in agreement if, for every future
information set [h] that they consider (Definition 7), they predict the same choices(s) of player
k = ι(h) at h, that is, if player i is active at reached history h1 and player j is active at reached
history h2, with h1 ≺ h2 ≺ ζ(ω), then

1. if ω1 ∈ Bh1(ω) and h′1 ≺ h′a - ζ(ω1) with h′1 ∈ [h1], h′ ∈ [h] and a ∈ A(h), then there
exists an ω2 ∈ Bh2(ω) such that, for some h′′ ∈ [h] and h′2 ∈ [h2], h′2 ≺ h′′a - ζ(ω2), and

2. if ω2 ∈ Bh2(ω) with h′2 ≺ h′′b - ζ(ω2) with h′2 ∈ [h2], h′′ ∈ [h] and b ∈ A(h) then here
exists an ω1 ∈ Bh1(ω) such that, for some h′ ∈ [h] and h′1 ∈ [h1], h′1 ≺ h′b - ζ(ω1).

Finally we define the event, denoted by A, that any two active players are in agreement:

ω ∈ A if and only if any two players active at ω are in agreement at ω. (4)

We can now state our characterization result, according to which a self-confirming
play is a Nash play if and only if the beliefs of any two players are in agreement about the
hypothetical choice(s) of a third player at a future information set that they both consider.
As in [1] we restrict attention to games that satisfy the property that each player moves at
most once along any play. Equivalently, one could consider the agent form of the game,
where the same player at different information sets is regarded as different players, but
with the same payoff function.

Proposition 1. Consider a finite extensive-form game G where no player moves more than once
along any play. Then,

(A) If z is a Nash play of G then there is a causally restricted model of G and a
state ω in that model such that (1) ζ(ω) = z and (2) ω ∈ R ∩ T ∩ C ∩A.

(B) For any causally restricted model of G and for every state ω in that model,
if ω ∈ R ∩ T ∩ C ∩A then ζ(ω) is a Nash play.

The proof of Proposition 1 is given in Appendix B.
Note that, in a perfect-information game, T ∩ C ⊆ A. Hence Proposition 1 in [1] is a

corollary of the above Proposition.

4. Further Discussion and Conclusions

A reviewer suggested a discussion of the similarities and differences between the
approach put forward in this paper and Steven Brams’ Theory of Moves (TOM) [37] (see
also the very recent [38]). TOM deals mostly with two-person strategic-form games in
which each player has a strict ordinal ranking of the outcomes. TOM assumes that, instead
of choosing strategies simultaneously and independently, players start from an outcome
(that is, a strategy profile)—called the “initial state”—and from that outcome they consider
the consequences of a series of moves and countermoves that lead from state to state. The
sequence of moves and countermoves is strictly alternating and the process continues
until the game terminates in a “final state” which is called the “final outcome” or simply
“outcome” of the game. It is assumed that no payoffs accrue to players from being in a
state unless it is the final state (which could be the initial state if the players choose not
to move from it). Players make farsighted calculations of where play will terminate after
a finite sequence of moves and countermoves. The result of such farsighted calculations
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is called a Non-Myopic Equilibrium (NME). Thus, an NME can be understood as the
backward-induction solution of a finite perfect-information “moves game” (with no ties).

There are two points in common between TOM and our approach. First of all, only
ordinal preferences are considered in both approaches. Secondly, both approaches are based
on a departure from standard solution concepts in game theory. However, the differences
between the two approaches are substantial. Brams’ theory is not based at all on epistemic
considerations: no beliefs are attributed to the players and the conceptual nature of a “state”
is very different; in TOM a state is merely an outcome, while in our doxastic approach a
state is described not only in terms of an outcome but also in terms of doxastic relations that
describe what the active players believe about the possible outcomes when it is their turn to
move. Furthermore, while TOM starts from a strategic-form game and builds on it a finite
perfect-information game by specifying an initial outcome and the rules for moves and
countermoves from it, we analyze a given extensive-form game (with possibly imperfect
information) without modifying it in any way. Our approach falls within the “epistemic
foundations approach” in which beliefs play an essential role. TOM, on the other hand, is
entirely “belief-free”.

In Section 2, we raised the question “what constitutes a rational solution of an
extensive-form game?” Most of the epistemic game theory literature has gone in the
direction of imposing more and more subtle and complex conditions on counterfactual
beliefs and choices of the players at unreached information sets. We suggested going in
the opposite direction, by focusing only on the actions and beliefs of the active players.
Within this framework, a natural notion of rational play is captured by the definition of self-
confirming play, where each action taken is justified by the beliefs held at the time of choice
and those beliefs turn out to be exactly correct, so that no player receives information that
contradicts those beliefs and thus experiences no regret. This approach is flexible enough
to allow one to explore the epistemic foundations of standard solution concepts such as
Nash equilibrium and backward induction (within the behavioral approach described
in this paper, the epistemic conditions needed to obtain a characterization of backward
induction in perfect information games, or a generalized version of it for a class of games
with imperfect-information, are investigated in [1] and [9], respectively).

The characterization of Nash play given in Proposition 1—unlike characterizations
of Nash equilibrium provided for strategic-form games (for a discussion of the relevant
literature the reader is referred to ([1], Section 6))—does not require players to believe in
each other’s rationality. This can be seen in the game and model shown in Figure 9, where
R = {γ}, T = {β, γ} and C = A = {α, β, γ}, so that R ∩ T ∩ C ∩A = {γ} but at γ Player
1 does not believe that Player 2 is rational, because β ∈ B∅(γ) and at β Player 2 is not
rational (she plays d believing that c gives her higher utility).

In Definition 4 we put forward the notion of self-confirming play, which is in the
spirit of self-confirming equilibrium ([13]), but framed in behavioral terms and without
making use of the notion of strategy. Whereas in perfect-information games the notion
of self-confirming play is equivalent to the notion of Nash play, the equivalence does not
extend to imperfect information games. Proposition 1 identified the additional restriction
that is needed to characterize the set of Nash plays in games with imperfect information.

The main purpose of this paper was to show that one can go a long way in the analysis
of rational play in extensive-form games without using the notion of strategy, that is,
without the need to specify choices at all histories—even those that are not reached—and
without the need to model players’ beliefs at unreached histories. We argued that the
standard approach based on Nash equilibrium and its refinements is too ambitious in its
goal to tackle the counterfactual behavior and beliefs of players at unreached histories and
that there is no need to pursue this goal in order to have a theory of rational behavior in
dynamic games.
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1
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Figure 9. γ ∈ R ∩ T ∩ C ∩A but at γ Player 1 does not believe that Player 2 is rational.

In what directions can the approach discussed in this paper be further developed?
One natural extension is to move from ordinal preferences to von Neumann-Morgenstern
preferences and from qualitative beliefs to probabilistic beliefs; one would then, corre-
spondingly, move from the very weak definition of rationality given in Definition 2 to the
stronger definition of rationality as expected utility maximization. Another possible line
of inquiry would be to identify the circumstances (if any) that would make the structures
used in this paper inadequate and would require a full analysis in terms of counterfactuals
(which in turn would require extending those structures by adding similarity relations
among states, as explained in Section 3).
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Appendix A. The History-Based Definition of Extensive-Form Game

For simplicity we will restrict attention to games with ordinal payoffs and without
chance moves. We will not, however, make the common assumption of “no relevant ties”
or genericity of payoffs; furthermore we allow for imperfect information.

If A is a set, we denote by A∗ the set of finite sequences in A. If h = 〈a1, . . . , ak〉 ∈ A∗

and 1 ≤ i ≤ k, the sequence h′ = 〈a1, . . . , ai〉 is called a prefix of h and we denote this by
h′ - h; furthermore, if h′ - h and h′ 6= h then we write h′ ≺ h and say that h′ is a proper
prefix of h. If h = 〈a1, . . . , ak〉 ∈ A∗ and a ∈ A, we denote the sequence 〈a1, . . . , ak, a〉 ∈ A∗

by ha.
A finite extensive form without chance moves is given by the following elements, where

all the sets are finite:

1. A set of players denoted by N.
2. A set of actions, denoted by A.
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3. A set of histories, denoted by H ⊆ A∗, which satisfies the property that, if h ∈ H and
h′ ∈ A∗ is a prefix of h, then h′ ∈ H. The null history 〈〉, denoted by ∅, belongs to H
and is a prefix of every history. A history h ∈ H such that, for every a ∈ A, ha /∈ H, is
called a terminal history or play. Z denotes the set of terminal histories and D = H\Z
the set of decision histories.

4. To every decision history is assigned a player, by means of a function ι : D → N. Thus,
ι(h) ∈ N is the player who moves, or is active, at h ∈ D. For notational simplicity we
assume that there is exactly one player who is active active at any decision history;
thus, a simultaneous move by, say, Players 1 and 2 is represented in the traditional
way by having Player 1 move first followed by Player 2, who is not informed of Player
1’s move. Let Di = {h ∈ D : i = ι(h)} denote the set of histories at which player i is
active. For every h ∈ D, A(h) denotes the set of actions available at h (to player ι(h)),
that is, a ∈ A(h) if and only if a ∈ A and ha ∈ H.

5. For every player i ∈ N, we postulate an equivalence relation ≈i on Di: h ≈i h′ if and
only if, when choosing an action at history h ∈ Di, player i does not know whether
she is moving at h or at h′. The equivalence class of h ∈ D is denoted by [h] and
is called an information set of player ι(h); thus [h] = {h′ ∈ Dι(h) : h ≈ι(h) h′}. The
actions available at an information set are not allowed to differ across histories in that
information set, that is, if h ≈i h′ then A(h′) = A(h). We also assume the property
of perfect recall, according to which a player always remembers her own past moves:
if h1, h2 ∈ Di, a ∈ A(h1) and h1a is a prefix of h2 then, for every h′ such that h′ ≈i h2,
there exists an h ≈i h1 such that ha is a prefix of h′.
When every information set consists of a single history, the game is said to have perfect
information, otherwise it is said to have imperfect information.

In order to lighten the notation, histories will be denoted succinctly by listing the
corresponding actions, without brackets, without commas and omitting the empty history:
thus instead of writing 〈∅, a1, a2, a3, a4〉 we will simply write a1a2a3a4.

An extensive game with ordinal payoffs is obtained from a given extensive form, by
adding, for every player i ∈ N, a complete and transitive preference relation Ri over the set
Z of terminal histories; the interpretation of zRiz′ is that player i considers z to be at least
as good as z′. It is often convenient to replace the relation Ri with a real-valued utility (or
payoff ) function ui : Z → R satisfying the property that ui(z) ≥ ui(z′) if and only if z Riz′.

Appendix B. Proof of Proposition 1

Given a finite extensive-form game and a pure-strategy profile s, define the function
fs : H → Z as follows: if z ∈ Z (that is, if z is a terminal history) then fs(z) = z and if
h ∈ D (that is, if h is a decision history) then fs(h) is the terminal history reached from h
by following the choices prescribed by s. We denote by z∗s the play generated by s, that is,
the terminal history reached by s from the null history: z∗s = fs(∅). We say that z∗s avoids
information set [h] if, for all h′ ∈ [h], h′ 6≺ z∗s . If z∗s does not avoid information set [h] then
we denote the unique history in [h] that is a prefix of z∗s by h∗s ([h]) (thus h∗s ([h]) ∈ [h] and
h∗s ([h]) ≺ z∗s ).

Definition A1. Given an extensive-form game G, denote by I the set of information sets. Let s be a
pure-strategy profile of G. A selection function based on s is a function gs : I → D that selects
for every information set [h] ∈ I a unique decision history in [h] subject to the constraint that if z∗s
does not avoid information set [h] then gs([h]) = h∗s ([h]).

Definition A2. Let G be an extensive-form game, s a pure strategy profile and gs a selection
function based on s. The model of G generated by s and gs is the following model.

• Ω = Z.
• ζ : Z → Z is the identity function: ζ(z) = z, ∀z ∈ Z.
• For every h ∈ D and z ∈ Z define Bh(z) as follows:

1. If h 6≺ z, then Bh(z) = ∅.
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2. If h ≺ z∗s then Bh(z∗s ) = {z′ ∈ Z : z′ = fs(ha) for some a ∈ A(h)}. [That is, if h is
on the play generated by s, then at h the active player believes that, for every available
action a, if she takes action a then the outcome will be the terminal history reached from
ha by s.]

3. If h 6≺ z∗s , but [h] is not avoided by z∗s , then, for all z ∈ Z such that h ≺ z, Bh(z) =
{z′ ∈ Z : z′ = fs(h∗s ([h])a) for some a ∈ A(h)}. [That is, at every decision history in
an information set crossed by the play generated by s, the player believes that the play
has reached history h∗s ([h]) (the history in [h] that is on the play to z∗s ) and her beliefs
are as given in Point 2.]

4. If [h] is avoided by z∗s , let ĥ = gs([h]). Then, for every h′ ∈ [h] and every z ∈ Z such
that h′ ≺ z, Bh′(z) = {z′ ∈ Z : z′ = fs(ĥa) for some a ∈ A(h)}. [That is, at every
decision history in an information set that is not crossed by the play generated by s, the
player believes that she is at the history selected by gs, denoted by ĥ, and that, for every
available action a, if she takes action a then the outcome will be the terminal history
reached from ĥa by s.]

Remark A1. Note that the model generated by a pure-strategy profile s and a selection function gs
is a causally restricted model (Definition 6).

Remark A2. Let G be a finite extensive-form game and consider the model generated by a pure-
strategy profile s of G and a selection function gs (Definition A2). Then the no-uncertainty
conditions 1 and 2 of Definition 3 and the agreement condition (4) are satisfied at every state, that
is, C = A = Z. Furthermore, by Point 1 in Definition A2, z∗s ∈ Bh(z∗s ) for all h such that h ≺ z∗s ;
that is, z∗s ∈ T.

We can now prove Proposition 1.

Proof. (A) [Note that, for this part of the proof, the restriction that no player moves more
than once along any play of the game is not needed.] Fix a finite extensive-form game
G and let s be a pure-strategy Nash equilibrium s of G. Fix a selection function gs based
on s (Definition A1) and consider the model generated by s and gs (Definition A2). By
Remark A2, z∗s ∈ C ∩ T ∩A (recall that z∗s is the play generated by s, that is, z∗s = fs(∅)).
Thus, it only remains to show that z∗s ∈ R. If h is a decision history, denote by s(h)
the choice selected by s at h. Fix an arbitrary decision history h that is reached at state
z∗s (that is, h ≺ z∗s ) and let a be the action at h such that ha - z∗s , that is, s(h) = a;
then fs(ha) = fs(∅) = z∗s . Suppose that player ι(h) is not rational at h. Then there
must be a b ∈ A(h) \ {a} that guarantees a higher utility to player ι(h): if z′ ∈ Bh(z∗s )
is such that hb - z′, then uι(h)(z′) > uι(h)(z∗s ). By Definition A2, z′ = fs(hb) so that
uι(h)( fs(hb)) > uι(h)( fs(ha)); hence, by unilaterally changing her strategy at h from a to
b (while leaving the rest of her strategy unchanged), player ι(h) can increase her payoff,
contradicting the assumption that s is a Nash equilibrium.

(B) Fix a finite extensive-form game G where no player moves more than once along
any play and consider an arbitrary model of it where there is a state α such that α ∈
R ∩ T ∩ C ∩A. We want to show that we can construct a pure-strategy Nash equilibrium s
of G such that fs(∅) = ζ(α).

STEP 1. If h is a decision history on the play ζ(α), that is, h ≺ ζ(α), let s(h) = a where
a ∈ A(h) is the action at h such that ha - ζ(α).

STEP 2. Fix an arbitrary decision history h that is reached at state α (that is, h ≺ ζ(α)) and
an arbitrary b ∈ A(h) such that hb is not a prefix of ζ(α) (that is, b 6= s(h) where s(h) was
defined in Step 1). By Definition of model (Definition 1) there exists an ω̂ ∈ Bh(α) such that
ĥb - ζ(ω̂) for some ĥ ∈ [h]. Since α ∈ C, by Point 1 of Definition 3 for every ω′ ∈ Bh(α)
and for every h′ ∈ [h], if h′b - ζ(ω′) then h′ = ĥ. Since α ∈ C, by Point 2 of Definition 3
for any other ω ∈ Bh(α) such that ĥb - ζ(ω), ζ(ω) = ζ(ω̂). Define, for every h′ such that
ĥb - h′ ≺ ζ(ω̂), s(h′) = c where c ∈ A(h′) is the action at h′ such that h′c - ζ(ω̂). Note
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that, since α ∈ A, if any other active player at any reached history at state α considers the
information set that contains history h′, then that player will also predict choice c at h′.
Thus, s(h′) is well defined.

Steps 1 and 2 define the choices prescribed by s along the play ζ(α) as well as for paths to
terminal histories following one-step deviations from this play.

STEP 3. Complete s in an arbitrary way.

Because of Step 1, ζ(α) = fs(h), for every h - ζ(α) (in particular, fs(∅) = ζ(α)). We want
to show that s is a Nash equilibrium. Suppose not. Then there is a decision history h such
that h ≺ ζ(α) (that is, h reached at state α) and, by switching her choice at h from s(h) to a
different choice, player ι(h) can increase her payoff (by hypothesis there are no successors
of h that belong to player ι(h)). Let s(h) = a (that is, ha - ζ(α)) and let b be the choice at h
that yields a higher payoff to player ι(h); that is,

uι(h)( fs(hb)) > uι(h)(ζ(α)). (A1)

By Item 4 of Definition 1 there exists a β ∈ Bh(α) such that hb - ζ(β). Since α ∈ C, for
every ω ∈ Bh(α) such that hb - ζ(ω), ζ(ω) = ζ(β). By Step 2 above,

ζ(β) = fs(hb). (A2)

Hence, by (A2), at decision history h and state α, player ι(h) believes that if she plays b her
payoff will be uι(h)( fs(hb)). Since α ∈ T, α ∈ Bh(α), and since α ∈ C, for every ω ∈ Bh(α)
such that ha - ζ(ω), ζ(ω) = ζ(α). Hence, at state α and history h, player ι(h) believes that
if she plays a her payoff will be uι(h)(ζ(α)). It follows from this and (A1) that at α and h
player ι(h) believes that action b is better than action a (Definition 2), which implies that at
α player ι(h) is not rational, contradicting the assumption that at α ∈ R.
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