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Abstract: Revision game is a very recent advance in dynamic game theory and it can be used to
analyze the trading in the pre-opening stock market. In such games, players prepare actions that will
be implemented at a given deadline, before which they may have opportunities to revise actions.
For the first time, we study the role of the deadline in revision games, which is the core component
that distinguishes revision games from classic games. We introduce the deadline distribution into
revision game model and characterize the sufficient and necessary condition for players’ strategies to
constitute an equilibrium. The equilibrium strategy with respect to the deadline uncertainty is given
by a simple differential equation set. Governed by this differential equation set, players initially fully
cooperate, and the cooperation level decreases as time progresses. The uncertainty has a great impact
on players’ behavior. As the uncertainty increases, players become more risk averse, in the sense
that they prefer lower mutual cooperation rate rather than higher payoff with higher uncertainty.
Specifically, they will not stay in full cooperation for a long time, while after they deviate from the
full cooperation, they adjust their plans more slowly and cautiously. The deadline uncertainty can
improve the competition and avoid collusion in games, which could be utilized for auction design
and pre-opening stock market regulations.

Keywords: revision game; uncertain deadline; stochastic process; multiagent cooperation; pre-opening
stock market

1. Introduction

Revision game [1] is a multiplayer continuous-time game with continuous action space.
It starts at time −T and ends at a fixed deadline time 0. Players can prepare an initial action
at time −T and thereafter revise their action according to a Poisson process, which is called
revision opportunity. During the game, players can fully observe each other’s action. When
a revision opportunity arrives, players can change their actions simultaneously. While
players can change their actions many times, the payoff is only obtained at the deadline,
which depends on the last action players choose.

Some work explores general properties of revision games. When players do not act
simultaneously, Moroni et al. propose asynchronous revision games and prove the existence
of trembling hand and sequential equilibrium [2]. The use of asynchronous revision game
in common and opposing game is studied by [3]. Stochastic revision game is defined
by [4] where players’ payoff not only depends on the last action, but also the environment
state. They prove the existence of Markov perfect equilibrium. Gensbittel et al. study the
equilibrium payoff revision game, which they call revision value, and characterize the
equilibrium strategy for zero-sum revision games [5].

Many real-world scenarios can be modeled as revision games. A mostly well-studied
case is the pre-opening phase in stock markets such as Nasdaq or Euronext. Traders can
submit orders before the opening of the market, which can be changed until the opening
time. The opening price is determined by submitted order price and quantity, which can
be seen on the public screen. Another case is the online auction websites like eBay, where
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bidders actually play a revision game during the auction. The eBay auctions usually have a
deadline, before which bidders can revise their bids many times. Bidders’ opportunities
to use eBay and to change bids are following a stochastic process (many human activities
can be characterized by a Poisson process). In [1], they apply revision game model into
stock pre-opening period, where traders can revise orders based on the refreshment of
public screen until market opens. They point out that traders may have incentive to revise
their order over time during the pre-opening phase and form collusion. Although the
result can not be interpreted as a precise description of the pre-opening phase, it provides
possibility of implicit collusion among the market participants. Kamada and Sugaya also
use revision game model to analyze candidates behaviors of election campaign. They
explain why candidates use ambiguous language in campaigns and change their policies
as the campaign progresses [6].

However, when players engage in games with a fixed deadline, there might be many
problems. For example, a fixed deadline may lead to price manipulation [7]. Traders can
profit from manipulating opening price by submitting large orders in the very last few
seconds [8]. To tackle this realistic challenge, many exchanges, like Euronext, Deutshe Borse
and Tel Aviv Stock Exchange, switched from opening trade that ends at a fixed time to one
that ends at a random time [9]. Introducing uncertain deadline is also meaningful for online
auction platforms such as eBay, where auctions usually have fixed deadlines [10]. Roth and
Ockenfels find that there exist many late bids (called snipping), where some bidders may
not bid until the last possible moment, thus reduce seller’s revenue [11]. Ockenfels and
Roth show that snipping is sensitive to the rules of how auction ends [12]. Füllbrunn and
Sadrieh conduct experiments about random-deadline auction and show that bidders in
such auctions bid more frequently in the early stage than in fixed-deadline auctions [13].
Google also designs a patent of random ending time system for online auction so that
bidders have no preferences over the time of bidding [14]. Häfner and Stewart show that
by choosing appropriate ending time distribution it can mitigate front-running problem in
a discrete blockchain auction [15].

In this work, we introduce the deadline distribution into revision game model and
characterize the sufficient and necessary condition for players’ strategies to constitute an
equilibrium, where the equilibrium strategy is given by a simple set of differential equation
set. With theoretical analysis and experimental results on Cournot game and public goods
game, we find that as deadline uncertainty increases, players will become less cooperative
than in the fixed-deadline situation thus collusion can be controlled. Therefore, our work
can be helpful in auction design and pre-opening stock market regulations.

2. Preliminaries

Consider a symmetric game with two players i = 1, 2 (our results easily extends to
n-player case), where player i’ action and payoff are denoted by ai ∈ Ai and πi(a1, a2),
respectively. Players share the same action spaces A which is convex in R. The game starts
at time−T and ends at time 0. The ending time is called deadline. Players prepare an initial
action at time −T and can revise actions when revision opportunities arrive during time
interval (−T, 0]. Revision opportunities’ arrival is based on a Poisson process with arrival
rate λ > 0. Players can fully observe the opponents’ initial action and subsequent revised
actions. Players revise their actions according to revision opportunities simultaneously
without any cost. There is only one payoff for each player, which is realized at the deadline.
In this paper, we will analyze the symmetric equilibrium for this game, thus we denote
players’ payoffs at a symmetric action profile as π(a) := π1(a, a) = π2(a, a). We follow the
following assumptions of revision games [1].

Assumption 1. For each stage game at time −t, there exists a unique pure symmetric Nash
equilibrium action profile (aN , aN), which is a where both players totally defect, and their pay-
offs πN := π(aN , aN); there is also a unique optimal symmetric action profile (a∗, a∗) and
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a∗ = arg maxaπ(a, a). If aN < a∗, π(a) is strictly increasing for a ∈ [aN , a∗] (symmetrically
holds if a∗ < aN).

Assumption 2. Assume player i’s action ai and payoff πi are continuous and maxai πi(a1, a2)
always exists. We denote player i’s maximum deviation gain at a symmetric action profile (a, a)
by d(a) := maxai πi(ai, a) − πi(a, a). Moreover, d(a) is strictly increasing for a ∈ [aN , a∗]
(symmetrically holds if a∗ < aN).

Assumption 1 requires two distinct action profiles, one is Nash equilibrium action
profile, the other is optimal action profile. The symmetric payoff π(a) monotonically de-
creases as we move away from the optimal action a∗. Assumption 2 requires the continuity
of players’ action and payoff, and define the maximum deviation gain. The deviation gain
monotonically increase as we move away from the Nash equilibrium. The assumptions
above are all very common in continuous action games, and can be found in some classic
games such as continuous prisoner’s dilemma, the classic Cournot competition and the
Bertrand competition.

3. Trigger Equilibrium for Fixed Deadline

The currently existing equilibrium strategy is a grim trigger strategy. By grim trigger,
a revision game player initially follows her plan, but punishes the opponent if a certain
level of defection (i.e., the trigger) is observed.

Denote t the remaining period until the deadline. At any time −t, a player’s contin-
uation plan is function x(t) : [−T, 0] → A, which realizes an action a for each t. A plan
decides an action a for each time point t. We say that action a is cooperative (or collusive)
or achieves (some degree of) cooperation (or collusion) if it provides a higher payoff than
the Nash equilibrium: π(a) = πi(a, a) > πN .

A symmetric grim trigger strategy for revision games is defined as follows. Players
start with the initial action x(T), and when a revision opportunity arrives at time −t, they
change their actions to x(t). If any player fails to choose x(t), which we regard that as
betrayal, both players choose the Nash action aN in all future revision opportunities.

Next, we will characterize the set of trigger strategy equilibrium. Let λ be the arrival
rate of a Poisson process. By this arrival rate, the probability of no Poisson arrival in
the remaining time t is calculated as e−λt. The probability there is no future revision
opportunity after t is λe−λt. Therefore, the expected payoff of each player associated with
strategy x(t) over period (−T, 0] can be calculated as:

V(x) := π
(

x(T)
)
e−λT +

∫ T

0
π
(
x(t)

)
λe−λtdt (1)

To form subgame-perfect equilibrium at time t, the incentive constraint for the trigger
strategy with plan x(t) is:

d
(

x(t)
)
e−λt︸ ︷︷ ︸

deviation

≤
∫ t

0

[
π
(
x(s)

)
− πN]λe−λsds︸ ︷︷ ︸

punishment

(2)

The left side means that, if the player who deviates from the plan x(t) wants to realize
the deviation gain, then no revision opportunity should arrive during (−t, 0]. The right
side says that, if there is one revision opportunity that arrives at time −s, the player who
deviates from the plan gets the punishment π(x(s))− πN . The incentive constraint shows
that a player can not increase her payoff by deviating from x(t). There are many x(t) that
satisfy incentive constraint, so that many trigger strategy equilibrium exist.

The plan which satisfies the binding constraint of Equation (2) (i.e., the LHS is equal
to the RHS) is called the trigger strategy equilibrium plan, or equilibrium plan. As time
−t approaches the deadline 0, the RHS becomes zero. So the deviation gain on the LHS
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decreases as time goes by. This means the plan x(t) should be more uncooperative as the
deadline approaches. When time is very close to the deadline, d(x(t)) is near zero, so it
must be that x(t) is close to the Nash equilibrium action aN . At the very deadline, we
can know that: x(0) = aN . Equation (3) is the condition for subgame-perfect equilibrium:
no player can obtain excess payoff by deviating the plan at any time −t. By solving
Equation (2), one can have the following Theorem 1.

Theorem 1. Assume d is differentiable on (aN , a∗] and d′ > 0 if aN < a∗ (or symmetrically d′ < 0
if a∗ < aN), then differentiating both sides of the binding incentive constraint of Equation (2) by t,
we obtain a differential equation about the continuation plan x as:

dx
dt

=
λ
(
d(x) + π(x)− πN)

d′(x)
, (3)

with the boundary condition x(0) = aN . Equation (3) gives the equilibrium plan for revision games
with fixed deadline.

Note that this differential equation is a first-order ordinary differential equation, where
x(t) is monotonically decreasing for a∗ < aN (symmetrically holds if a∗ > aN). To solve
it, we only need one boundary condition, which is x(0) = aN . In summary, we can use
the solution to Equation (3) with boundary condition x(0) = aN as the trigger strategy
in the fixed-deadline revision game. As long as every player obeys the trigger strategy,
cooperation is achieved and everyone gets a higher payoff than Nash Equilibrium payoff.

4. Games with Bernoulli Deadline Distribution

In Section 3, the deadline (at time 0) is fixed and is common knowledge to every
player. In this section, we will give the form of trigger strategy and equilibrium plan in the
two-point random deadline situation.

4.1. Extended Revision Game

Consider a revision game where there are two possible deadlines, and the deadlines
can be captured by binomial distribution. The scenario is depicted in Figure 1. The deadline
is either time 0 with probability p or time −a with probability 1− p. Note that when
players are in time period [−t,−a), they do not know when is the deadline time, only know
the deadline probability distribution. But when they are at time −a, they will know the
exact deadline time because the game either ends at time −a or continues. When the game
continues, player know the deadline is not time −a, but time 0. As long as players pass
through the time −a, the two-point deadline game suddenly transfers to the fixed deadline
situation. For each case of the deadline, we can utilize the trigger strategy described in
Section 3 to determine players’ plan.

Figure 1. Two possible deadlines, one is at 0 with probability p, and the other one is at −a with
probability 1− p. Player makes a plan taking into consideration of both possible deadlines.
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Therefore, by extending the LHS of Equation (2), the expectation of deviation gain at
time −t in the two-point deadline situation can be written as follows.

d
(
x(t)

)
e−λt · p + d

(
x(t)

)
e−λ(t−a) · (1− p). (4)

The first term in Equation (4) is the expectation of deviation gain if the deadline is time 0,
the second term is the expectation of deviation gain if the deadline is time −a.

Similarly, by extending the RHS of Equation (2), we can also rewrite the expectation of
continuation punishment in the future as follows:{ ∫ t

0

[
π(x(s))− πN]λe−λsds

}
· p+{ ∫ t

a [π(x(s))− πN ]λe−λsds
}
· (1− p),

(5)

where the first integral is the punishment if the deadline is −t = −a, while the second
integral is that if the deadline is −t = 0. It can be simplified into∫ t

a

[
π(x(s))− πN]λe−λsds + p

∫ a

0
[π(x(s))− πN ]λe−λsds

This simplified form indicates, no matter when the deadline is realized, players will
punish the deviation in the time period [−t,−a] as long as there is a revision opportunity.
But only if the deadline is time 0, they can take punishment measures in the time period
[−a, 0]. So the punishment from [−a, 0] needs to multiply a probability factor p, while the
punishment from [−t,−a] does not need to.

4.2. Risk-Averse Equilibrium Plan

With Equation (4) denoting the expectation of deviation gain, and Equation (5) denot-
ing the expectation of future punishment, we write the incentive constraint like Equation (2)
to form the subgame perfect equilibrium in time period [−t,−a):

d
(
x(t)

)
e−λt · p + d

(
x(t)

)
e−λ(t−a) · (1− p) ≤∫ t

a
[
π
(

x(s)
)
− πN]λe−λsds + p

∫ a
0

[
π
(
x(s)

)
− πN]λe−λsds

(6)

While there could be many trigger strategies which can satisfy Equation (6), we only
focus on the strategy that can bring the player highest expected payoff.

Comparing Equation (2) and Equation (6), we can find that with deadline uncertainty
introduced, the deviation gain in equation Equation (6) becomes larger than that in equa-
tion Equation (2), while the future punishment becomes smaller. This means with the
deadline uncertainty, players get more temptation of deviation at time −t. Once deviated
from the predetermined plan, the uncertainty of deadline can diminish the punishment
harshness. Therefore, when players confronted with a more complex deadline rather than
a fixed deadline, they will become less cooperative. Technically, the binding constraint of
Equation (6) can give us the equilibrium plan in the following theorem.

Lemma 1. For revision games with Bernoulli deadline distribution, the equilibrium plan on
[−t,−a) satisfying the binding constraint of Equation (6) is:

dx
dt

=
λ · d(x) +

(
π(x)− πN) · λ

p+eλa(1−p)

d′(x)
(7)

Proof. Differentiating the LHS of Equation (6) by t, we can get[
d′
(
x(t)

)dx
dt
− λd(x(t)

)]
· e−λt ·

[
p + eλa(1− p)

]
.
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As for the RHS of Equation (6), notice that only the first item contains t, so we transfer the
first item from the integral on [a, t] to the difference between integral on [0, t] and integral
on [0, a]. After differentiating by t, the RHS of Equation (6) becomes[

π
(

x(t)
)
− πN] · λe−λt.

Let the two differentials be equal, we can get Equation (7) as long as d′
(
x(t)

)
6= 0.

Comparing Equation (7) with Equation (3), we can find that in the equilibrium plan for
revision games with uncertain deadline, the players’ risk aversion is captured by the term

RA =
1

p + eλa(1− p)
, (8)

where the denominator is greater equal than 1. Thus the gradient dx
dt for adjusting the plan

becomes smaller, which indicates that even when confronting with one additional possible
deadline, players become more conservative to adjust their actions. Thus we refer to the
term in Equation (8) as the degree of risk aversion. As time point −a moves to time point 0,
the denominator becomes closer to 1, which means as time goes by, players are more intent
to go to a non-cooperative state. In the extreme case, if−a = 0, then p+ eλa(1− p) becomes
1 and Equation (7) degenerates to Equation (3). We will further interpret the meaning of the
change in Section 4.2. It is worth noting that the Equation (7) only describes in which form
the equilibrium strategy should be during the time period [−t,−a), but the exact solution
to it can not be determined because of the lack of boundary condition. We will give the
method of how to calculate the equilibrium strategy in Section 5.

5. Games with Multiple Deadline Distribution

The previous section investigates revision games with uncertain deadline in a simple
Bernoulli distribution case as a warm-up, this section extends these games into an arbitrary
deadline distribution cases.

5.1. Multiple Possible Deadlines

Consider a game with a set of multiple possible deadlines z = [0,−z1,−z2, . . . ,−zn]
and the corresponding probability distribution p = [p0, p1, p2, . . . , pn]. During time period
[−t,−zn), players can not be sure when the deadline will come. Similarly as in Equation (4),
we can derive the expectation of deviation gain as follows.

G(t) =d
(
x(t)

)
e−λt · p0 + d

(
x(t)

)
e−λ(t−z1) · p1 (9)

+ . . . + d
(

x(t)
)
e−λ(t−zn) · pn

Each term in Equation (9) represents one expected deviation gain for a possible
deadline. For instance, for deadline −zk, the value of e−λ(t−zk) denotes the probability no
revision opportunity arrives during time period [−t,−zk), while the deadline at time −zk
is realized with probability pk.

Similarly, we can derive the continuation punishment when someone deviates from
the predetermined plan at time −t:

P(t) =
{ ∫ z1

0
[π(x(s))− πN ]λe−λsds

}
· p0+ (10){ ∫ z2

z1

[π(x(s))− πN ]λe−λsds
}
· (p0 + p1) + · · ·+{ ∫ t

zn
[π(x(s))− πN ]λe−λsds

}
· (p0 + p1 + · · ·+ pn)

This summation depicts, if the deadline arrives at time −zn, the one who deviates can
only be punished in time period (−t,−zn] with probability p0 + p1 + · · ·+ pn = 1. But,
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if the deadline arrives at time 0, the deviator has to suffer from the punishment all the way
to time 0. The first item in Equation (10) represents the expectation of punishment in time
period (−z1, 0], the second item represents the expectation of punishment in time period
(−z2,−z1], · · · , the last item represents the expectation of punishment in period (−t,−zn].

For plan x to constitute an equilibrium, it is required that

G(t) ≤ P(t). (11)

Equalizing G(t) and P(t) gives us the binding constraint for plan x together with them
grim trigger mechanism to be an equilibrium strategy. According to the binding constraint,
we easily get the following proposition.

Proposition 1. When t→ 0, the value of P(t) in Equation (10) is extremely small, by the binding
constraint G(t) = P(t), it should be that d(x(t))→ 0, which further requires that x(t) at time 0
is the Nash action aN .

5.2. Equilibrium Plan as Differential Equation Set

To formally represent the equilibrium plan for any time, we do the following reason-
ing. Assume −t ∈ (−T, 0] is the current time and let −y ∈ z denote an arbitrary possible
deadline. Let −z′ be the nearest possible deadline after time −t. That is, z′ = max y
among all y < t. On the one hand, for each −y, denote a cumulative distribution function
(CDF) of the time distance t− y by F(t− y) = e−λ(t−y), which is the cumulative proba-
bility that no revision opportunity arrives during period [−t,−y]. Therefore, the vector
[e−λt, e−λ(t−z1), · · · , e−λ(t−zn)] is a vector of CDFs. On the other hand, let g(−y) denote the
probability density function (PDF) of deadline at time −y.

We differentiate Equation (9) and the last term of Equation (10) which is correlated
with variable t, and let the two result be equal, then we obtain the equilibrium plan for
multiple possible deadline situation. The result is given as follows.

Theorem 2. The equilibrium plan for revision games with multiple possible deadlines in the whole
game period (−T, 0] is characterized by a differential equation:

dx
dt

=
λ · d(x) + λ ·

[
π(x)− πN] · RA(t)
d′(x)

. (12)

The value RA(t) is the time-sensitive risk aversion rate and

RA(t) =
F(t)∫ y=z′

y=0 F(t− y) · g(−y)dy
, (13)

where t ∈ (−T, 0], y ∈ z, z′ = max y among all y < t.

The corresponding discrete form of RA(t) in Equation (13) is:

RA(t) =
e−λt

[e−λt, · · · , e−λ(t−zn)] · p
. (14)

Comparing the two risk aversion rates in Equation (8) and in Equation (14), we can find
that in the multiple possible deadline case, only the value of RA is different. Note that
when p1 = p2 = · · · = pn = 0 or time points −z1,−z2 . . . ,−zn are close enough to time
point 0, Equation (12) degenerates to Equation (3), i.e., the multiple possible deadline case
degenerates to the fixed deadline case where the monotonicity of x(t) remains the same.
As time −t approaches time 0, x(t) approaches aN .

Now we discuss about how to implement Theorem 2 and output the equilibrium plan
x. Proposition 1 tells us that the final action at deadline should be the Nash action aN .
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Taking this fact as an terminal condition, we can apply Equation (12) recursively to get x for
all t ∈ (−T, 0]. In the first loop of the recursion, we can obtain the first part of x(t) where
t ∈ (z1, 0] by using x(0) = aN and by introducing z′ = 0 into Equation (13). Then we can
know the agents’ action at time −z1, which is a new seed for us to generate the second part
of x(t) for t ∈ (z2, z1]. Repeat this operation for all t ∈ (−T, 0], we can generate every part
of the equilibrium plan x.

When recursively implementing Equation (12), the value of function g in Equation (13)
could vary over time. This is because that as long as players pass through a possible
deadline zk, it will be certain that this deadline sample −zk didn’t materialize, meaning
that the probability distribution p (or equivalently, PDF g) over the remaining possible
deadlines [−zk−1,−zk−2, · · · ,−z1, 0] is updated. This updating is by Bayes’ law as follows,
where p′ is the new probability belief over the rest deadline points.

p′ =
[pk−1, pk−2, · · · , p0]

1− pk
. (15)

Therefore, at different time point −t, different g further results in different risk aversion
rate RA(t), which finally affects the gradient of plan x at each time point −t.

5.3. Risk Aversion Rate in Equilibrium

Theorem 2 characterizes agents’ behavior in the equilibrium of general revision games
with multiple possible deadlines. The equilibrium plan is given in a simple form as
a differential equation, where the risk aversion rate quantifies how players handle the
deadline uncertainty, and this uncertainty is time-sensitive. The risk aversion rate is
correlated to the CDF of the Poisson arrival rate, the PDF of the deadline distribution,
as well as the current time −t and the nearest possible deadline −z′. Basically, it has the
following features.

Proposition 2. The risk aversion rate RA is bounded in (0, 1].

Proof. We only need to check the range of the denominator of the first line in Equation (14).
Note that p0 + p1 + · · ·+ pn = 1 and eλzn > eλz1 > · · · > 1, so the denominator ranges in
[1,+∞) then RA ranges in (0, 1].

Proposition 3. Assume the deadline probability distribution is continuous uniform distribution
on [−γ, 0]. As γ→ 0, it will be that RA → 1, and Equation (12) degenerates to that in the fixed-
deadline situation. As γ→ ∞, it will be that RA → 0, and Equation (12) becomes dx

dt = λd(x)
d′(x) .

Proof. We can rewrite RA as

RA(γ) =
1

(eλds·0 + · · ·+ eλγ) · ds
γ

=
γ∫ γ

0 eλsds
=

γ · λ
eλγ − 1

.

When γ→ 0, RA is close to 1, which means that Equation (12) degenerates to Equation (3).
As γ approaches infinity, which means that the deadline distribution coverage reaches
infinity, RA becomes zero. This means that the item π(x) − πN does not exist and the
differential equation becomes dx

dt = λd(x)
d′(x) .

According to the Poisson process with arrival rate λ, on the one hand, we can find
that in Equation (13) the numerator is F(t) = e−λt is simply “the probability of no revision
opportunity comes from −t to deadline 0 for the revision games with a fixed deadline”.
On the other hand, in the denominator, each term e−λ(t−zk) is the probability that no revision
opportunity arrives from time −t to the k-th possible deadline −zk, while each term pk
in the second vector p is the probability density of the k-th possible deadline. Therefore,
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the denominator as a whole denotes the “the probability of no revision opportunity comes
from −t to the uncertain deadline for the revision games with multiple possible deadline”.

Theorem 3. (a). The risk aversion rate RA is monotonically non-decreasing in time−t. (b). For a
given time −t and a fixed density g(·) of possible deadline, RA is monotonically decreasing as the
deadline range (zn, 0] expands.

Proof. Assuming that players at [−zk+1,−zk), the time points ahead are −zk,−zk−1, · · · , 0
and the corresponding deadline distribution is p = [pk, pk−1, · · · , p0]. After they pass
through time point −zk, they will update the belief of deadline probability on −tk−1,−tk−2,
· · · , 0 from p to p′ by Equation (15). Let A = p0 + eλz1 p1 + · · ·+ eλzk−1 pk−1, and multiply
RA by eλt, then the denominator of new RA changes from A + eλzk pk to A

1−pk
. Consider

the difference: A + eλzk pk − A
1−pk

=
(
eλzk (1− pk)− A

)
· pk

1−pk
. If pk = 0, when means that

the possibility of the deadline arrives at time −tk is zero, then the difference becomes zero
and denominator doesn’t change as well as RA. If pk 6= 0, we only need to check the sign
of eλzk (1− pk)− A, which is eλtk − (p0 + eλz1 p1 + · · ·+ eλzk pk) > 0. This means that the
denominator of RA becomes smaller and RA becomes larger as players pass through the
deadline point. Thus, we can get two conclusions. Firstly, as players progress with time,
RA is monotonically non-decreasing; Secondly, the wider range the distribution spans,
the smaller RA becomes.

The pattern of RA revealed in Theorem 3 is important. By point (a), now we can know
and explain the underlying mechanism that, as time goes by, players decay to mutual
betrayal (i.e., action profile (aN , aN)) faster and faster. By point (b), it can be seen that as the
deadline uncertainty increases, players’ plan becomes more conservative, in the sense that
they do not prefer to change actions much. Thus Equation (13) and Theorem 3 significantly
quantify agents’ risk aversion and their behaviors regarding different levels of uncertainty
of the games’ deadlines. Figure 2 shows example equilibrium plans which are computed
by Theorem 2 and have features in Theorem 3. We have the following observations from
Figure 2. (i) By introducing deadline uncertainty, players deviate from full cooperation
earlier and become less cooperative in the rest time. Thus, setting an uncertain deadline
can reduce collusion among players. (ii) As the coverage of possible deadlines increases,
RA monotonically decreases. Thus, with a larger deadline coverage, players not only stay
shorter in the full cooperation state, they also adjust their actions more slowly.

Figure 2. Plans for Cournot game with various deadline distribution.
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In a word, on the one hand, by utilizing Theorems 2 directly, we can derive the
equilibrium plans. The solution of Equation (12) is essentially a generalized version of
plans for players engaging in games with uncertain deadlines, and the existing plan derived
in [1] is an extreme case of our result. On the other hand, by utilizing these results reversely,
a mechanism designer can introduce the uncertain deadline into markets or auctions to
reduce agents’ collusion and make the system better.

6. Experiments

We implement our theoretical results into the conventional Cournot duopoly game
and public goods game.

6.1. Cournot Duopoly Game

There are two firms i = 1, 2, whose production is denoted by xi. The payoff function
for firm i is given by πi = (a− (x1 + x2)− c)xi. Two firms can prepare an initial action at
−T and revise their production amount according to a Poisson process until the unknown
deadline. We set a = 4, c = 1. In the one-shot Cournot game, the full cooperation action
is 0.75 and the Nash action is 1, the corresponding payoffs are 1.125 and 1, respectively.
The revision Cournot game starts at time T = −10.

We introduce normal deadline distribution to our Cournot duopoly game. We change
µ, σ of normal deadline distribution and Poisson process λ to check how these parameters
affect the players’ behavior and payoff. We investigate the effects from four perspectives,
the first is full cooperation duration as the red line depicted in Figure 2, the second is
players’ average returns which represent producers’ payoff, the third is the Price of Anarchy
(POA) [16] measuring the efficiency of this system, the fourth is consumers’ surplus [17]
representing how much profits consumers can obtain from producers’ game. Red, blue and
green colors in Figure 3 represent the coverage of deadline distribution, which are [−5, 0],
[−7, 0] and [−10, 0], respectively, and the corresponding µ is 2.5, 3.5, 5.

(i) In the first column of Figure 3, we set σ = 1, λ = 0.2 and change µ of normal
distribution. We find that as µ approaches the starting time −T, the cooperation time
and expected return decrease. We think that the movement of µ towards −T increases
the chance that deadline arrives in a short time, thus producers choose to deviate full
cooperation earlier and then obtain lower payoff, then the POA of this system becomes
lower. As µ approaches the starting time −T, consumers can get more surplus because
producers become less cooperative.

(ii) In the second column, we set µ = 2.5, 3.5, 5, respectively, λ = 0.2 and check what
σ’s impact is. It shows that, when we increase σ of the normal distribution, cooperation
time increases but the average payoff goes down. When given the plan, players’ payoff
only depends on the last revision time. With bigger σ, probability that the deadline arrives
at a position where is far away from µ increases, as well as the probability that the last
revision opportunity arrives near time 0. When this happens, producers’ last action is
approaching the Nash action, therefore the payoff decreases and the POA becomes higher.
As producers’ profit decreases, the consumers’ surplus increases.

(iii) In the last column, we set µ = 2.5, 3.5, 5, respectively, σ = 3 and increase Poisson
λ from 0.2 to 0.5. Doing so decreases the expectation of deviation gain in Equation (9) and
increases the expectation of future punishment in Equation (10), thus makes cooperation
time longer and return higher and reduces POA. This also decreases the consumers’ surplus
due to the enforced cooperation between producers.
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Figure 3. Performances of equilibrium plan in revision Cournot game with various deadline uncer-
tainty settings. For each column, we change µ, σ of normal deadline distribution and Poisson process
λ, to check how these parameters affect the players’ behavior and payoff in each row.

6.2. Public Goods Game

There are N players in our public goods game, where every player has money amount
M = 5. We set the multiplication factor δ = 2, which means that the money output is
two times of the money input in the public pool. Then the total output is divided equally
among each player no matter they donate or not. The Nash equilibrium of this game is
that everyone donates nothing while the group’s total payoff is maximized when everyone
donates everything(full cooperation). Players prepare an initial donation amount at time
−T and revise the amount according to the Poisson process until the uncertain deadline
arrives. The revision public goods game starts at time T = −10.

We introduce normal deadline distribution to our public goods game. We change
player number N, µ, σ of normal deadline distribution and Poisson process λ to check
how these parameters cause effects on the players’ behavior and payoff. Almost like in the
Cournot duopoly game, we choose players’ full cooperation time, players’ average return
and Price of Anarchy of the game as our observation indicators. Red, blue and green colors
in Figure 4 represent the coverage of deadline distribution, which are [−5, 0], [−7, 0] and
[−10, 0], respectively, and the corresponding µ is 2.5, 3.5, 5.
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Figure 4. Performances of equilibrium plan in revision public goods game with various player
number and deadline uncertainty settings. For each column, we change player number N, µ, σ of
normal deadline distribution and Poisson process λ, to check how these parameters cause effects on
the players’ behavior and payoff in each row.

(i) In the first column of Figure 4, we set µ = 5, σ = 3 and λ = 0.5, and range player
number from 3 to 12. We can see that as the player number increases, players will be less
cooperative and lower payoffs will be obtained. Meanwhile, POA increases along with
player number’s increasing.

(ii) In the second column, we set σ = 3, λ = 0.5 and player number N = 6. As µ
ranges from time 0 to time −10, full cooperation time and players’ average return decreases
and POA increases.

(iii) In the third column, we set µ = 2.5, 3.5, 5, λ = 0.5, N = 6, and range σ from 1
to 5. We find that as σ increases, full cooperation time increases as well as average return
of [−10, 0] distribution coverage, while average return of [−7, 0] and [−5, 0] distribution
coverage basically remains the same.

(iv) In the last column, we set µ = 5, σ = 3, N = 6 and range Poisson process λ
from 0.5 to 0.8. We can see that as λ increases, cooperation time and average return both
increases and POA decreases correspondingly.

7. Conclusions and Future Works

This work is the first to identify the subgame perfect equilibrium in revision games
with uncertain deadline. Our derived equilibrium plan consists of a set of differential
equations, each of which contains a risk averse rate. We find some properties about the risk
averse rate RA, such as when players move with time, RA is monotonically non-decreasing;
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when deadline distribution expands, RA is monotonically decreasing. By introducing
deadline uncertainty, players become less cooperative thus collusion can be controlled.

We must point out that, although many scenarios like pre-opening and online auction
can be modeled as revision game, the equilibrium strategy proposed by [1] or this paper
can only provide one possibility of the reality. Thus, there are more work to do in the future
to make our strategy more robust and practical. We plan to set players’ payoff function
differently [18] and characterize their behaviors in uncertain deadline situation. Moreover,
when players can not fully observe other people’s action [19], how to maintain cooperation
in revision game is a realistic problem.
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