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Abstract: The black box method was developed as an “asocial control” to allow for payoff-based
learning while eliminating social responses in repeated public goods games. Players are told they
must decide how many virtual coins they want to input into a virtual black box that will provide
uncertain returns. However, in truth, they are playing with each other in a repeated social game. By
“black boxing” the game’s social aspects and payoff structure, the method creates a population of
self-interested but ignorant or confused individuals that must learn the game’s payoffs. This low-
information environment, stripped of social concerns, provides an alternative, empirically derived
null hypothesis for testing social behaviours, as opposed to the theoretical predictions of rational
self-interested agents (Homo economicus). However, a potential problem is that participants can
unwittingly affect the learning of other participants. Here, we test a solution to this problem in a
range of public goods games by making participants interact, unknowingly, with simulated players
(“computerised black box”). We find no significant differences in rates of learning between the
original and the computerised black box, therefore either method can be used to investigate learning
in games. These results, along with the fact that simulated agents can be programmed to behave in
different ways, mean that the computerised black box has great potential for complementing studies
of how individuals and groups learn under different environments in social dilemmas.

Keywords: altruism; asocial control; behavioural economics; conditional cooperation; confusion;
directional learning; reinforcement learning; social preferences

1. Introduction

Understanding human behaviour in social dilemmas is of crucial importance to solv-
ing many global issues [1–7]. Experiments using economic games provide a useful tool
for investigating social behaviours [8]. By making participants pay for their decisions,
experimenters hope to measure social preferences on the assumption that participants pay
for preferred outcomes [9]. By using games with repeated decisions (repeated games),
experimenters hope to measure how individuals respond to the behaviours of others (social
responses) [10–18]. However, in repeated games, social responses can be confounded
by individuals responding to their payoffs and learning how to play the game (payoff-
based learning) [19–23]. This problem is particularly acute if many participants start the
experiment without fully understanding the game’s payoffs [24–28]. Consequently, experi-
mental control treatments are required to control for potentially confounding factors such
as payoff-based learning.

One solution to this problem of confounding is to make individuals face the same
decision but in a low-information environment stripped of all social concerns (“asocial
controls”) [19,25,27,29–33]. For example, Burton-Chellew et al. introduced the black box
method as an “asocial control” to decouple social responses from payoff-based learning
in repeated public-goods games [19–21,34]. Specifically, individuals interacted with a
virtual black box, with which they could make voluntary inputs of “virtual coins” to
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obtain uncertain returns over several rounds1. However, in reality, the experiment actually
involved groups of real participants playing a typical public goods game, with all the
usual payoffs and social connections, just unknowingly2. By repeating the black box game
for multiple rounds, one could measure how inputs evolved in populations of ignorant
individuals with no social concerns [19–21]. The black box thus aimed to capture the
psychology of self-interested but ignorant/confused individuals that use trial and error
learning to improve their earnings. In this way, it was consistent with a rich history of prior
studies that investigated how individuals learn in low-information environments and how
reinforcement learning can affect cooperation [35–42].

The black box as an asocial control provided an alternative null hypothesis, empirically
derived from behavioural observations, to the usual theoretical null hypotheses of a popu-
lation of perfectly rational and selfish agents (Homo economicus). This “baseline” measure
could then be compared to behaviour in versions of the normal, “revealed” public goods
game to test if the addition of social information affected aggregate behaviour. Burton-
Chellew and West’s original results showed that aggregate contributions in the black box
treatment were largely indistinguishable from those in the standard “revealed” public
goods game, where individuals can observe their groupmates’ decisions, consistent with
models of payoff-based learning [19]. In both cases, despite the income maximising decision
in the one-shot version of the game being to contribute 0%, initial levels of contributions
averaged around 40–50%, before gradually declining to approximately 15% by round 16,
the final round. In both cases, most individuals contributed 0% in the final round, but
approximately four percent of individuals still contributed fully. While these similarities
did not confirm that individuals were using payoff-based learning, they did mean that one
could not reject the null hypothesis of self-interest unless one assumed the participants
perfectly understood the revealed game and that the similar levels of cooperation were
mere coincidence.

Although there were large similarities between the black box results and the typical
results, it is important to keep in mind that the black box was providing a simplified model
of behaviour based on the extreme assumption that all players are ignorant/confused and
respond only to their own payoffs [19]. However, the black box also allows for examina-
tions of how individuals learn and for estimating parameters within explicit hypothesised
learning rules [20,21]. For example, subsequent collaborations with H. Nax and H. Pey-
ton Young analysed individual-level data to estimate how much individuals value the
earnings of their groupmates [20] and how individuals use payoff-based learning in the
non-social and two social settings [21]. Not surprisingly, some differences in behaviour
were found across the three treatments (the black box is, after all, like Homo economicus,
a rather extreme hypothesis/model). When individuals could observe their groupmates’
decisions, they showed some conditional responses, but only if they could not also observe
their groupmates’ payoffs (which is technically redundant information if individuals fully
understand the game). However, payoff-based learning was significant in all three treat-
ments [20], including even the manner of such learning [21], suggesting participants were
motivated to try and increase their own income in all game forms. Together, these results
suggested that conditional cooperation was more a function of social learning rather than a
social preference for equal outcomes, although learning and social preferences may also
interact [43].

The black box can also be easily modified and adapted to test different hypotheses.
For example, Burton-Chellew and West [32] also subsequently used the black box to show
that payoff-based learning is impeded when either group size (N) or the marginal per
capita return from contributing is large (MPCR). By testing behaviour in three different
black boxes that varied in either group size (N = 3 or 12) or the marginal per capita return
from contributing (MPCR = 0.4 or 0.8), they showed that a large group size and/or a
high MPCR and thus reduces the correlation between personal contributions and personal
payoffs, thereby impeding payoff-based learning and potentially explaining why the rate
of decline in cooperation varies across studies. They confirmed this hypothesis with a
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comparative analysis that compared the rates of decline in 237 published public goods
games. They found that rates of decline in contributions were slower when either group
size or MPCR was large, and more specifically, when the estimated correlation between
personal contributions and personal payoffs was weaker, a principle proved in their black
box experiment [32].

However, one potential issue with the black box is that because participants are
interacting, albeit unknowingly, the learning of one participant changes the learning en-
vironment for other participants. While this is also true for revealed social games, it may
complicate efforts to discern individual learning from collective learning [44]. Another
possible issue is that individuals do not know they can provide benefits to other partici-
pants, which may raise ethical concerns for some reviewers (however we do not think this
omission of externalities constitutes deception).

Here, we present a modified black box method that solves these two potential issues.
Our solution is to make individuals still interact with a black box but change the set-
up so that individuals are grouped not with each other but with computerised players
(computerised black box) (Figure 1). Otherwise, the set-up remains the same for the
participants. There are several advantages to this approach: (1) individuals do not affect
other participants, and thus can be treated as independent data points, providing more
statistical power for given costs; (2) the learning environment can be maintained constant;
(3) individuals are not affecting each other’s payoffs, thereby removing any potential ethical
concerns; (4) computerized players receive no earnings making the study of behaviour in
large groups more affordable; and (5) computerised players can be programmed to play in
different, interesting ways, allowing one to test various hypotheses that would otherwise
be unfeasible without using deception.

We replicate the experimental design from Burton-Chellew and West, 2021, which
used three different black boxes that varied in either group size or the cost of contributing
to create one “easy” learning condition with a small group size and low MPCR (N = 3
and MPCR = 0.4) and two “difficult” learning conditions with either a large MPCR (N = 3
and MPCR = 0.8) or a large group size (N = 12 and MPCR = 0.4) [32]. Individuals could
input 0–20 virtual coins in each round. However, instead of connecting human participants
together, here we use computerised groupmates (programmed to input a random integer
drawn from a uniform distribution of 0–20 coins). The payoff formula remained identical for
all rounds and was the same for the human and computerised black boxes. This allowed us
to compare rates of learning in the two methods, depending on both group size and MPCR.
If behaviour with computerised black boxes qualitatively replicates behaviour with human
black boxes, then the computerised black box method can be used as a complementary
method to test hypotheses without any concerns about participants affecting each other’s
behaviour and/or earnings.

We also address a related research question on payoff-based learning. As mentioned
above, Burton-Chellew and West, 2021, previously showed that payoff-based learning is
impeded when groups are large or MPCR is high [32]. In such conditions, participants
still contributed around 50% at the end of 16 rounds, despite the Nash equilibrium being
0%, indicative of zero learning. Nevertheless, it may be that individuals just need more
time to learn in these challenging conditions and will eventually learn not to contribute. To
test this, we repeated the black boxes with the difficult learning conditions, but under two
conditions, a short game and a long game (16 versus 40 rounds).

In all cases, we measured learning in two ways; (1) how quickly incentivised contri-
butions converged towards the Nash equilibrium of 0 contributions, and (2) by asking
participants at the end of the experiment to report their belief about what was the best
number to contribute (“input”) into the black box (this was unincentivised).
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Figure 1. Black box methodologies. In the original black box, participants are connected online and
interact in the usual experimental manner for economic games. However, by “black-boxing” the
social aspect of the game or the game’s rules and payoffs, one can investigate how participants learn
under certain conditions. If one is concerned about individuals affecting either the learning or the
payoffs of other participants, one can replace the focal player’s interaction partners with programmed
computerised/virtual players (computerised black box). This also allows for more control over the
learning environment, as partners can be programmed to be more/less cooperative, etc.

2. Results
2.1. Learning with Hidden Humans or Hidden Computers

We found that there was no significant difference in contributions (“inputs”) depend-
ing upon whether individuals were grouped with humans or computers. The rate of decline
in contributions across all 16 rounds of the short games did not significantly differ between
the original black box with humans and the computerised black box in any of the three
black boxes (Figure 2; Table 1). Specifically, the game round x groupmates interaction was
non-significant in all three black boxes (generalised linear mixed models controlling for
autocorrelation among groups/individuals: when N = 3 and MPCR = 0.4, Z = 0.2, p = 0.821;
when N = 3 and MPCR = 0.8, Z = −1.2, p = 0.222; and when N = 12 and MPCR = 0.4,
Z = −0.3, p = 0.760, Table 1).

As an additional check, we also compared final round contributions (“inputs”), which
could be argued to be the best measure of learning. Again, we found no significant
differences between playing with humans or with computers in any of the three black boxes
(Table 2). Specifically, when learning was easy (N = 3 and MPCR = 0.4), mean ± SE final
round inputs (0–20 virtual coins) were 3.0 ± 0.57 coins with humans and 4.7 ± 0.90 coins
with computers (Wilcoxon rank-sum test: W = 537, p = 0.797). When learning was difficult,
mean final round inputs were typically around 50% (10 virtual coins) with both humans
and computerised groupmates (N = 3 and MPCR = 0.8, with humans = 10.1 ± 0.91 coins,
with computers = 9.4 ± 1.12 coins, W = 573.5, p = 0.563; N = 12 and MPCR = 0.4, with
humans = 10.3 ± 0.89 coins, with computers = 9.7 ± 1.12 coins, W = 128, p = 0.806).
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Figure 2. Learning in a black box, either with hidden human or computerised groupmates. We varied
both the group size (N) and the benefit of contributing (MPCR) across three black boxes. Participants
played all three black boxes, in counter-balanced order, but here we only show naïve behaviour (their
first black box). Data show the mean contribution per round, with 95% confidence intervals based
on the group means (in games with computers, the independent group is just one individual). The
rate of learning was broadly similar regardless of playing with humans or computers. The linear
regressions do not account for random effects/repeated measures and are therefore for illustration
purposes only. The figures are annotated with the sample sizes of independent replicates (groups of
humans or individuals grouped with computers).

Table 1. Contributions over time. Analysis of how contributions (“inputs”) change during the game
for each black box depending on if groupmates were humans or computers. Generalised linear mixed
model with a binomial logit link, and random intercepts for both groups and individuals and random
slopes for individuals.

N = 3, MPCR = 0.4 N = 3, MPCR = 0.8 N = 12, MPCR = 0.4
Fixed Effects Z p Z p Z p

Intercept (humans) 0.7 0.476 −1.4 0.159 3.6 <0.001
Round −8.0 <0.001 2.0 0.046 −1.0 0.298
Groupmates
(computers) 0.3 0.795 2.2 0.030 −0.1 0.896

Round x Groupmates 0.2 0.821 −1.2 0.222 −0.3 0.760
N. obs. 1888 1856 1792
N. individuals 118 116 112
N. groups 70 68 46
Random effects Variance St. dev. Variance St. dev. Variance St. dev.
Individual intercept 1.12 1.059 1.36 1.168 3.00 1.733
Individual slope 0.03 0.167 0.07 0.255 0.02 0.170
Group intercept 0.60 0.777 1.08 1.038 0.00 0.00
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Table 2. Final contributions. Comparison of mean final round contributions (“inputs”) of virtual
coins into the black box (0–20 coins). Comparisons made with Wilcoxon rank-sum test.

Black Box Input:
Humans

Input: Computers
(Short)

Input: Computers
(Long)

W 1 P 1 W 2 P 2

N = 3, MPCR = 0.4 3.0 ± 0.57 4.7 ± 0.90 / 573 0.797 / /
N = 3, MPCR = 0.8 10.1 ± 0.91 9.4 ± 1.12 6.2 ± 0.97 573.5 0.563 1287.5 0.025
N = 12, MPCR = 0.4 10.3 ± 0.89 9.7 ± 1.12 5.4 ± 0.98 128 0.806 1238.5 0.006

1 Comparing final inputs with human or computerised groupmates. 2 Comparing final inputs in short or
long games.

We also asked the participants at the end of the 16 rounds if they thought there was a
best number to input and if so, what it was (methods). Again, there were no significant dif-
ferences depending on whether playing with humans or with computers (Figure 3; Table 3).
Specifically, the mean ± SE stated beliefs (0–20 coins) for when N = 3 and MPCR = 0.4 were
1.5 ± 0.79 coins with humans and 3.0 ± 0.80 coins with computers (Wilcoxon rank-sum
test, W = 348, p = 0.072); for when N = 3 and MPCR = 0.8, they were 8.8 ± 1.32 coins with
humans and 8.9 ± 1.59 coins with computers (W = 469.5, p = 0.888); and for when N = 12
and MPCR = 0.4, were 9.8 ±1.38 coins with humans and 8.0 ± 1.37 coins with computers
(W = 387, p = 0.349).
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Figure 3. Groupmates and beliefs. Histograms show the frequency of each stated belief about what
was the best number to input into the black box. Dashed vertical lines show the mean response. All
responses are from naïve participants after finishing their first black box. The figures are annotated
with the number of individuals.
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Table 3. Beliefs about the best number. The mean ± SE value participants stated as the best number
to input at the end of the game. Comparisons made with Wilcoxon rank-sum test.

Black Box Humans (N) * Computers—
Short (N)

Computers—
Long (N)

W 1 P 1 W 2 P 2

N = 3,
MPCR = 0.4

1.5 ± 0.79 (27) * 3.0 ± 0.80 (34) / 348 0.072 / /

N = 3,
MPCR = 0.8

8.8 ± 1.32 (40) 8.9 ± 1.59 (24) 3.5 ± 1.10 (24) 469.5 0.888 410.5 0.010

N = 12,
MPCR = 0.4

9.8 ± 1.38 (28) * 8.0 ± 1.37 (24) 4.0 ± 0.93 (30) 387 0.349 496.5 0.016

* An error prevented data collection from some participants in the first seven sessions with human groupmates.
1 Comparing beliefs after play with human or computerised groupmates. 2 Comparing beliefs after short or
long games.

Overall, we found no significant differences between either inputs or beliefs, depend-
ing on if individuals were grouped with humans or computers. Our experiments with
computerised groupmates replicated the results from the prior study with human group-
mates [32]. Rates of learning were qualitatively similar regardless of groupmates being
humans or computers in all three black box settings (Figure 2). These results mean that
the original black box with humans can be used without having to worry too much about
collective learning, or alternatively that the new, computerized, black box method can be
used in certain contexts to obtain qualitatively similar results. However, we caution that
for the “easy” black box (N = 3 and MPCR = 0.4), the final round inputs and the post-game
beliefs about the value of the best input were lower, but not significantly, in the human
black box. Looking at Figure 2, it may be that the learning rates for the “easy” black box
(N = 3 and MPCR = 0.4) would have diverged if the experiment had continued for longer
than 16 rounds, but we find no statistical support for this prediction within our data.

2.2. Learning in Longer Games

We found clear evidence of payoff-based learning in the long-run games (Figure 4).
Overall, the estimated rate of decline was significantly negative in both black boxes (Table 4,
generalised linear mixed model controlling for individual: when N = 3 and MPCR = 0.8,
Z = −2.8, p = 0.005; when N = 12 and MPCR = 0.4, Z = −3.3, p < 0.001, depending on
black box). However, for both black boxes, the rate of decline was not significantly differ-
ent between the short and long games, suggesting that the rate of learning is relatively
constant within these time frames despite being undetectable in the short games (Table 4,
round x game length interaction: N = 3 and MPCR = 0.8, Z = 1.0, p = 0.308; N = 12 and
MPCR = 0.4, Z = 0.5, p = 0.643).

Table 4. The effect of game length. Analysis of how inputs change during the game for each black
box depending on game length (16 or 40 rounds). Generalised linear mixed model with a binomial
logit link and random intercepts and slopes for individuals.

N = 3, MPCR = 0.8 N = 12, MPCR = 0.4
Fixed Effects Z p Z p

Intercept 1.1 0.257 1.7 0.080
Round −2.8 0.005 −3.3 <0.001
Game length (short) 0.6 0.575 0.4 0.666
Round x Game length 1.0 0.308 0.5 0.643
N. obs. 2544 2480
N. individuals 90 86
N. groups 90 86
Random effects Variance St. dev. Variance St. dev.
Individual intercept 3.00 1.731 5.67 2.381
Individual slope 0.01 0.116 0.01 0.122
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Figure 4. Learning and game length. The green data are the same as in Figure 2. Data show mean
contributions with 95% confidence intervals, depending on game length, for two different black
box parameter settings. The rate of learning was broadly similar in both black boxes regardless
of game length, but because learning is slow in these parameter settings (large groups or high
MPCR), the learning is only evident in long games. The linear regressions do not account for random
effects/repeated measures and are therefore for illustration purposes only. The figures are annotated
with the number of independent replicates (individuals grouped with computers).

Again, we compared the mean final contributions (“inputs”). These were significantly
smaller, and thus closer to the income-maximising input of 0 coins, after the long game
than after the short game in both black boxes (Table 2). Specifically, for the black box, where
N = 3 and MPCR = 0.8, mean ± SE final inputs were 9.4 ± 1.12 coins in the short game
and 6.2 ± 0.97 coins in the long game (Wilcoxon rank-sum test, W = 1287.5, p = 0.025). For
the black box where N = 12 and MPCR = 0.4, final inputs were 9.7 ±1.12 coins in the short
game and 5.4 ± 0.98 coins in the long game (W = 1238.5, p = 0.006).

Moreover, when asked about their beliefs about a possible best number, stated beliefs
were significantly lower on average at the end of the long games compared to the short
games (Figure 5, Table 3). Specifically, the mean ± SE stated beliefs (0–20 coins) for when
N = 3 and MPCR = 0.8, were 8.9 ± 1.59 coins in the short game and 3.5 ± 1.10 coins in the
long game (Wilcoxon rank-sum test, W = 410.5, p = 0.010); for when N = 12 and MPCR = 0.4,
were 8.0 ± 1.37 coins in the short game and 4.0 ± 0.93 coins in the long game (W = 496.5,
p = 0.016).
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Figure 5. Game length and beliefs. Histograms show the frequency of each stated belief about what
was the best number to input into the black box. Dashed vertical lines show the mean response.
Beliefs were more accurate after a longer game. All responses are from naïve participants after
finishing their first black box. The figures are annotated with the number of individuals.

3. Discussion
3.1. Payoff-Based Learning in Public-Goods Games

Our results show clear evidence that participants are capable of payoff-based learning
in public goods games (Figures 2 and 4). Such learning does not require being “collective”,
because we found strong evidence of learning even when we grouped individuals with
computerised players that just played randomly and did not learn (Figure 2). Overall, we
found clear evidence for payoff-based learning towards the income-maximising decision in
both our short and long form games, suggesting that even when the learning environment
is difficult, e.g., when group sizes are large (N = 12), or when the costs of “wrong” decisions
are relatively small, e.g., when MPCR = 0.8, individuals can still learn to improve their
income (Figure 4).

It has long been appreciated that participants will likely need time to learn in economic
experiments [18,45–49]. While the role of learning has been clear in non-social dilemma
studies as an explanation for initial non-income-maximising behaviour, it has often been
disputed in social games [50]. Instead, many researchers have assumed that their partic-
ipants understood the game from the beginning and were instead responding to other
participants rather than their payoffs [16,51]. However, it is interesting to note that the
standard procedure in repeated games is to show participants their payoffs after each
round, which begs the question of why this was assumed necessary.



Games 2022, 13, 76 10 of 15

3.2. The Value of Control Treatments in Economic Experiments

One reason for this difference in approach between non-social and social experiments
could be because deviations from income-maximising behaviour can always be rationalised
in social games as behaviour motivated by the social consequences [9,52]. However, an
approach of simply “measuring” social behaviours and preferences is problematic because
it does not control for other behavioural processes, such as payoff-based learning.

Instead, when attempting to measure social behaviours, especially in artificial settings,
one needs adequate behavioural controls to test whether the social factors are motivating
behaviour. For instance, one can enhance how information is presented or framed to see
if this affects social behaviours. This can be a particularly powerful approach when the
information is technically redundant and thus provides no new information to participants
yet still affects social behaviours [19,23].

Structurally, one can change the game’s payoffs so that failures to maximise income
harm rather than benefit social partners. Such a reversal of social consequences should
largely eliminate failures to maximise income among truly prosocial participants, a hy-
pothesis falsified by studies that converted public-goods games into “public-delight”
games [19,26,53,54]. In public-delight games, the return from contributing is set to be
greater than 1, meaning that both selfish and prosocial individuals should contribute
fully [19,26,53,54]. However, results show that many individuals still initially fail to max-
imise income before learning to moderately increase (rather than decrease) their contribu-
tions as the game is repeated, a result not easily explained by any rational social prefer-
ences [19,26,53,54]. Two reasons the increase may only be moderate when the MPCR > 1
are that in the public-delight game (1) the personal benefit of contributing is easily dwarfed
by the benefits obtained from groupmates’ contributions, meaning that individuals have
relatively less influence over their own payoff, impeding payoff-based learning [32]; and
(2) contributions always produce profits, meaning individuals never suffer losses, which
perhaps are more salient mistakes than failures to maximise profits.

Alternatively, one can remove social factors to create “asocial controls”, either by
presenting the game differently, as is done by the black box, or structurally, by using
revealed games played with computerised partners, which eliminate social concerns. There
is a long history of using games with computerised partners, and such experiments have
been useful to show that apparently social behaviours are not unique to games with human
partners [25,27,29,30,33]. However, the interpretation of games with computers can be
disputed, because although they clearly show that individuals often fail to maximise
income even when there are no social consequences, they cannot rule out that individuals
are psychologically motivated to help even computers.

The black box method provides a complementary form of asocial control to games
with computers because, instead of removing social interactions, it hides them in a low
information environment [19,31]. Consequently, the game is so devoid of social factors
and framing that it is implausible to argue participants are behaving according to social
psychology. Instead, the black box provides a clean measure of how a population of self-
interested participants will collectively learn with experience, which can serve as a useful
baseline measure of what behaviour to expect: if the addition of social information does
not amplify social responses, then it may be more parsimonious to assume payoff-based
learning is responsible. Specific learning hypotheses can then be tested with individual
level data [20,21]. If one is concerned about participants in the original version of the black
box affecting the learning and earnings of other participants, one can use the computerised
black box to obtain similar results. One can even test various hypotheses by programming
how the computerised partners will behave. One could then test if and how such learning
spills over into other games or games with real humans, perhaps black box learning could
be used to improve cooperation in games where cooperation is favoured [55].
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4. Materials and Methods
4.1. Participants and Location

We analysed previously published data from Burton-Chellew and West, 2021 [32],
and compared these data with those from a new experiment with computerised black
boxes. The new experiment was conducted in February 2020 using 222 participants across
14 sessions over 3 days at the Centre for Experimental Social Sciences, Oxford (CESS).
CESS recruited the participants from their entire database with the sole restriction that
they could not have participated in a prior study by Burton-Chellew and West, 2021 [32].
CESS deployed assistants to manage participant reception, consent, and payments. MNBC
conducted the experiment in a laboratory with 25 computer stations. For each session, we
made 25 spaces available, and attendance varied from 7 to 25. The experiment was coded
and conducted in z-TREE and participants were recruited using the ORSEE software [56,57].

The total sample was 222 participants. Their age ranged from 18 to 81 years old.
The mean ± SD was 31.8 years ± 15.9 (N = 192, this does not include seven participants
that declined to answer nor all 23 participants from the first session). According to the
self-reported genders, we had 139 females, 81 males, one other and one declined to answer.

4.2. Experiment Design

A copy of the instructions is available in Appendix A and online at the Open Science
Framework, along with the consent form, data and analysis script. Our design replicated
the three “short” treatments from Burton-Chellew, 2021, which varied both the group
size (N) and the return from contributing (Marginal Per Capita Return, MPCR). We also
added two “long” treatments, played for 40 rounds instead of 16 rounds. However, instead
of connecting real individuals with each other, we connected each participant with N-1
computerised virtual players that simulated random decisions drawn from a uniform
decision. This way, the payoff was entirely consistent with a public goods game, but
players had no knowledge of the game, and there were no ethical concerns about possible
deception or a lack of informed consent.

Participants either played all three short treatments or one long treatment. When
playing all three short treatments, we counterbalanced the order across sessions (although
not perfectly, as the six permutations required a multiple of six sessions and we had eight).
However, here we only analyse the “naïve” data from participants playing their first
game. The reason we made participants play all three short black boxes was to standardise
payments across sessions (a higher MPCR leads to increased mean payoffs).

The five treatments and naïve sample sizes were: black box with N = 3 and MPCR = 0.4
first = 46 (over three sessions, 23, 11, 12); black box with N = 3 and MPCR = 0.8 first = 44
(over three sessions, 22, 12, 10); black box with N = 12 and MPCR = 0.4 first = 40 (over two
sessions, 18 and 22); black box with N = 3 and MPCR = 0.8 long version = 46 (over three
sessions, 22, 7, 17); black box with N = 12 and MPCR = 0.4 long version = 46 (over three
sessions, 25, 9, 12).

The exchange rate was 0.65 pence to 1 virtual coin, except in the first session, where it
was 0.75. The total endowment was 960 coins (GBP 6.24) in the short treatment sessions
and 800 coins (GBP 5.20) in the long treatments. Payments were rounded up to the nearest
10 pence. Earnings ranged from GBP 8.20 to GBP 16.90 (mean = GBP 12.38), to which a
GBP 5 show up fee was added.

After each black box, we asked participants two questions: (1) “Do you think there
was a best number to put in this black box? Please enter 1 for ‘Yes’ and 0 for ‘No’.”; and
then (2) “If yes, what do you think was the best number (0–20)? If no, then please enter
99.” Then after the experiment, we asked the participants to complete a brief survey on
their self-reported gender, age, and personality traits, before asking them, “In a few words,
please tell us what, if anything, you think the experiment was about?”. We did this to
check that they did not perceive the experiment as a social dilemma. As responses to this
same question have already been analysed by Burton-Chellew and West, 2021, who found
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that only 2% (N = 5/216) of participants (N = 5/216) “mentioned anything that could be
construed as social”, we do not analyse the responses here [32].

4.3. Analyses

All tests are two-tailed and we conducted all analyses in RStudio [58]. All our data
and analysis files are freely available online at the Open Science Framework, https://osf.
io/9uxdv/ [59].
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Appendix A

A copy of the instructions for the sessions with three short black boxes. For the long
games, the details were changed accordingly. Instructions were available on-screen and on
a paper handout.

Welcome to the Experiment!

A copy of these instructions is also available on-screen.
We are going to give you some virtual coins. Each ‘coin’ is worth real money.
You are going to make a decision regarding the investment of these ‘coins’.
This decision may increase or decrease the number of coins you have.
The more coins you have at the end of the experiment, the more money you will

receive at the end.
At the end of the experiment the total amount of ‘coins’ you have earned will be

converted to pennies at the following rate: 100 coins = 65 pennies, or = GBP 0.65.
In total, you will be given 960 coins GBP 6.24 with which to make decisions and your

final total, which may be more or less than 960 coins, will depend on these decisions.

The Decision

You will face the same decision many times. Each time we will give you 20 virtual
‘coins’. Then you must decide on how many of your 20 coins to input into a virtual
‘black box’.

This ‘black box’ performs a mathematical function that converts the number of ‘coins’
inputted into a number of ‘coins’ to be outputted.

The mathematical function contains two components, one constant, deterministic,
component which acts upon your input, and one ‘chance’ component.

You will play with this ‘black box’ for many rounds (more on this later), and the
mathematical function will not change, but the chance component means that if you put the
same amount of coins into the ‘black box’ over successive rounds, you will not necessarily
get the same output each time.

The number outputted may be more or less than you put in, but it will never be a
negative number, so the lowest outcome possible is to get 0 (zero) back.

If you chose to input 0 (zero) coins, you may still get some back from the black box.

https://osf.io/9uxdv/
https://osf.io/9uxdv/
https://osf.io/9uxdv/
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All coins not inputted into the black box will be automatically ‘banked’ into your
private account.

All coins outputted from the black box will also be ‘banked’ and go into your
private account.

You will be paid all the coins from your private account at the end of the experiment.
So, in summary, your income from each decision will be the initial 20 coins, minus any

you put into the ‘black box’, plus all the coins you get back from the ‘black box’.

Playing the Same Box Many Times

You will play this game (make this decision) 16 times. Each time we will give you a
new set of 20 coins to use.

Each Decision is Separate but the ‘Black Box’ Remains the Same

This means you cannot play with money gained from previous decisions, and the
maximum you can ever put into the ‘black box’ will be 20 coins.

And you will never run out of money to play with as we will give you a new set of
coins for each decision.

Please see the attached figure overleaf for a summary of the experiment.

Playing with Different Boxes

After you have finished your 16 decisions, you will play again with a new ‘black box’.
In total, you will play with 3 black boxes in the whole experiment.
All black boxes are the same in that they perform a mathematical function that converts

the number of coins inputted into a number of coins to be outputted.

However Each Black Box Will Have a Different Mathematical Function

But the functions will always contain two components, one constant, deterministic,
component, and one ‘chance’ component. You will play with this black box for many
rounds, and the mathematical function will never change, but the chance component
means that if you put the same amount of coins into the black box over successive rounds,
you will not necessarily get the same output each time.

You Will Be Told When the Decisions are Finished and It Is Time to Play with a New
Black Box

If you are unsure of the rules please hold up your hand and a demonstrator will
help you.

Notes
1 Participants were told that the black box contained a mathematical function which would remain constant for the experiment,

but which contained a random component each round, meaning that a given input would not guarantee the same output, but
giving the impression that the black box was in some sense solvable.

2 Note that this is not deception as no false information is giving to participants. It is merely an omission of information about the
externalities of the participant’s decisions. Crucially, participants are not going to leave the laboratory thinking that next time
they play a game with humans that the humans are actually computers or actors (which is arguably the main reason for the no
deception policy).
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