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Abstract: We consider the design of a contest in which the prize may motivate not only productive
efforts, but also some damaging aggressive behavior by contestants. The organizer must choose
prizes and an enforcement regime defined as a limit on how much aggressiveness will be tolerated
and the probability of inspection. When the value of contestants’ output is low, it may be optimal to
motivate much less effort than first best because the prize spread necessary to induce higher effort
necessitates a high level of enforcement, which is not worth the cost. On the other hand, when
the output value is sufficiently high, it becomes optimal to offer a high prize spread to motivate
substantial but still below first-best effort, with costly enforcement then being employed to constrain
damaging aggressive behavior. Additionally, a less accurate inspection technology is associated with
a tighter limit on aggressive behavior, and “zero tolerance” can be optimal if the aggressive behavior
has no value.
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1. Introduction

Many organizations design contests to increase participants’ motivation, effort, and
performance. In contests, participants invest effort toward winning a prize; those efforts are
costly and irreversible. Without proper monitoring, contest participants may also engage
in undesirable aggressive behavior which can improve their chance of winning but is
damaging to contest organizers [1].

Tolerating some damaging actions creates greater deterrence power at the margin and
therefore, can effectively reduce such actions [2]. However, the analysis of the optimal
contest design when damaging actions can occur is limited and has not incorporated
modeling of the level of damaging actions that is optimally prohibited, i.e., where to “draw
the line.” We term this dimension of potentially damaging behavior “aggressiveness.”

This paper explores the optimal design of a contest when contestants’ aggressiveness
can improve contestants’ performance while harming the organizer. Examples of aggres-
siveness that can be damaging include division managers competing for a promotion and
treating workers in an abusive manner that extracts greater short-run output at a long-term
cost. Sales staff in an organization may raise sales with aggressive tactics that damage
their employer’s brand. Scientists manipulate research results to obtain more research
funding and a better position. In sports, aggressive behavior may include doping, which
damages the perception of the sport and possibly harms the athlete’s health. We assume
that aggression in management, sales, research, or sport is difficult to observe and thus
subject to a measurement error. Therefore, an enforcement regime to deter damaging
aggressiveness creates a dynamic where a contestant’s choice does not fully determine the
finding of a violation and the resulting disqualification. Similar to aggressive driving, as
contestants engage in more aggressive behavior, they become more likely to be cited for a
breach and, in our context, disqualified from winning.
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The organizer chooses a contest design that maximizes the profit of holding the contest.
The contest design consists of three instruments. First, the organizer sets a prize for the
best-performing contestant and a common payoff to each of the rest. The prizes motivate
contestants and guarantee their participation. Second, the organizer decides an inspection
probability. An inspection yields an unbiased but noisy estimated level of aggressiveness
for each contestant. Third, the organizer places a limit on aggressiveness, which results in
disqualification if found to have been exceeded by a contestant.

The game proceeds as follows. The organizer moves first and commits to prizes, an
inspection rate, and the limit on aggressiveness. Then contestants observe those parameters
and simultaneously choose their effort and aggressiveness. The contestants’ final output
determines relative rankings, which are impacted by random shocks in addition to chosen
effort and aggressiveness. Note that we model the output generated by aggressiveness as
valuable to the organizer (but also consider the particular case when this is not true). If no
inspection occurs or at least one contestant is qualified after an inspection, the qualified
contestant with the highest ranking wins. If all contestants are disqualified, no one receives
the winning prize. Violations result in no sanction beyond disqualification.

Our framework enables us to characterize optimal contest design in the presence of
damaging actions beyond previous studies. We identify a unique symmetric pure strategy
equilibrium characterizing behavior by contestants and then show how the three contest
design instruments jointly influence behavior.

The major findings are the following. First, increasing prize spread motivates both
effort and aggressive actions. Although expanding the prize spread can discourage contes-
tants’ effort when the incentive1 for more aggressive actions is high, the optimal contest
design rules out such a condition. In contrast, raising the inspection rate always reduces
aggressive actions but discourages contestants’ efforts when the incentive for aggressive
actions is low.

Regarding the limit on aggressiveness, increasing the limit always motivates contes-
tants’ effort and can effectively reduce aggressive actions until reaching a certain level. The
results demonstrate that although the organizer can choose a limit on aggressiveness to
minimize the aggressive behavior, it is optimal to tolerate more aggressiveness than that
level. The reason is that tolerating aggressiveness reduces the probability of disqualification,
thereby improving the marginal benefit of effort. Thus, the organizer will keep raising
the limit until the cost of increased aggressiveness equals the benefit from the increased
output. A zero-tolerance policy is not optimal when aggressive behavior contributes to the
valuable output. However, when those behaviors are valueless, the zero-tolerance policy
becomes a corner solution because the first-best outcome is to have no aggressive behavior;
the limit on aggressiveness must be minimized to make the optimal aggressiveness close to
the first best.

Second, when the measurement of aggressiveness becomes noisier (the inspection
measure is less precise), it becomes optimal to inspect contestants only at a higher output
value and, to do so, with a higher inspection probability.2 At each output value, the
organizer also tolerates less aggressive behavior under a less accurate inspection measure.

Third, as to the optimal contest design, we find that the optimal prize spread, inspec-
tion rate, and limit on aggressiveness do not increase smoothly with the output value.
When the output value is low relative to the inspection cost, it is not optimal to engage in
enforcement. This situation can be characterized as an “amateur” contest, where the prize
is set low to obviate the need for enforcement, but the effort is thus highly suboptimal. We
observe that in simulations, as the value of output increases, it reaches a threshold at which
the optimal inspection rate and prize spread increase rapidly.

Intuitively, the costly and imperfect enforcement prevents reaching the first-best out-
come: the contestants’ behavior under optimal contest design yields sub-optimal effort and
a supra-optimal level of damaging aggressive behavior. Interestingly, simulations show that
when enforcement is employed, the welfare loss comes almost entirely from the enforce-
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ment cost; the enforcement mechanism brings the equilibrium effort and aggressiveness
very close to the first-best level.

The paper proceeds as follows. In Section 2, we offer a short review of the literature.
Section 3 builds the contestants’ model and analyzes contestants’ behavior. Section 4
describes the organizer’s contest design problem and identifies the optimal contest design.
In this section, simulations are used to help depict the model. Section 5 considers the case
when aggressive behavior does not generate valuable output and simply damages the
organizer. Section 6 concludes.

2. Literature Review

At least since Lazear’s [1] work on sabotage, contest theory has considered how com-
petition may motivate undesirable actions. Cheating and sabotage are typical undesirable
behaviors. The significant difference is that cheating improves a contestant’s own perfor-
mance, while sabotage, on the contrary, deteriorates the competitors’. We model aggressive
actions as improving a contestant’s own performance, as is typical in the cheating literature.

Several papers have analyzed the deterrence of cheating in contests in various frame-
works. A group of papers model cheating as a dichotomous choice. For example, contes-
tants in Berentsen [3] decide whether to use performance-enhancing drugs before compe-
tition. Cheating leads to a chance of being caught and disqualified. He finds the favorite
player is more likely to take drugs than the underdog but does not always have a higher
chance of winning. Haugen [4] assumes homogeneous players and finds the Nash equi-
libria forcing players to use drugs is comparable to the prisoner’s dilemma. Konrad [5]
adopts a tournament model and allows homogeneous players to choose both doping and
effort. He finds that at the optimal prize, doping is always welfare-enhancing. Curry
and Mongrain [6] alter the prize structure in tournaments to deter cheating and reduce
monitoring costs.

In many circumstances, cheating is not just a dichotomous choice; contestants also
decide the extent of cheating. Kräkel [7] identifies three effects of doping decisions and
supports the idea that mutual doping enhances welfare. Gilpatric [8] treats cheating
as a continuous variable and finds that greater enforcement—a higher probability or
randomness of detection and a penalty for cheating behavior—reduces cheating but may
also reduce effort. Similarly, Mohan and Hazari [9] find that when doping and effort are
substitutes, a higher detection probability incentivizes players to dope because the marginal
benefit of doping rises as legal effort drops. Music [10] also finds that in a Tullock contest,
stricter doping regulations can increase the payoff for a doped player making doping
sustainable in the long run.

Tolerating damaging actions such as cheating can make that enforcement and regu-
lations more effective. Ours is not the first paper to incorporate the tolerance level in a
contest. Gilpatric and Reiser [2] extend studies of cheating in contests by embracing the
idea of marginal deterrence. In their study, “misconduct” is a continuous choice variable
with higher levels of damaging actions constituting different/more severe behavior. In that
model, if low-level damaging actions are tolerated, contestants can engage in them while
not facing any risk of disqualification. Our framework in this paper differs in a key respect.
We assume that increased aggressiveness is not qualitatively different but rather “more of
the same.” As such, the probability of disqualification does not change discretely from zero
when a contestant “crosses the line.” Instead, the probability of being caught exceeding
a tolerated level increases continuously with aggressiveness. We find that this has quite
different implications for the optimal design of deterrence mechanisms. One of our findings
shows that the organizer tolerates some aggressive actions when they have value to the
organizer; otherwise, the organizer optimally does not tolerate any aggressive actions.

Since Becker [11], Ehrlich [12], and Polinsky and Shavell [13], two instruments are
widely considered for deterrence: a sanction and a monitoring technology that generates a
probability of detection. Ours is the first to consider the joint influences of prize spreads,
inspection rate, and tolerance level on contestants’ aggressive actions and efforts.
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3. A Contest with Limited Aggressiveness

This section models contestants’ behavior in a two-player tournament. Here the
contest design parameters are exogenous: the prize spread S, an inspection rate η, and a
limit on aggressiveness L. Contestants choose effort, µ, and aggressiveness, γ. Section 3.1
provides a basic setting for modeling the contestants’ game. Section 3.2 identifies the impact
of a contest’s design instruments on contestants’ strategies.

3.1. Environment

In this tournament, two risk-neutral contestants (indexed as i ∈ {j, k}) compete
to generate the highest outputs qi. The organizer observes output but cannot perfectly
ascertain how the output is generated. A contestant produces output according to

qi = µi + γi + εi

where µi represents effort. γi represents the extent of aggressiveness that improves output,
and εi is an error term drawn from a known distribution with zero mean and variance σ2

1 .
As is standard in tournament models, εi can be viewed as luck (i.e., unobserved and un-
controllable production forces). We denote e as the difference between two players’ output
error terms, e = εk − εj. e follows a joint distribution G(.), and g(.) is the density function.

With probability η, the organizer inspects both contestants. If an inspection occurs, the
organizer observes an estimate of aggressiveness γi + δi, where δi represents a measurement
error. The measurement error is drawn from a known distribution H(.) with zero mean
and variance σ2

2 . For example, the use of a performance-enhancing drug may be monitored
by a marker of its impact, such as red-blood-cell count. A test of this marker may be used
for enforcement but is an imprecise measure of the level of drug use. To simplify the model,
we assume that the amount of effort and the extent of aggressiveness do not influence
the distributions.

Before the contest starts, contestants observe the prize for the winner and the loser,
denoted as W1 and W2, respectively. S, the prize spread, represents the difference between
W1 and W2. Contestants are also informed about the possibility of being inspected for
aggressiveness and the organizer’s limit on those actions, denoted as η and L. These con-
testants simultaneously choose effort µ ∈ R+ and aggressiveness γ ∈ R+. Aggressiveness
may hurt the reputation of contestants and ethically/morally burden them. Therefore, we
assume that effort and aggressiveness are costly to contestants and are produced at cost
c(µ) and z(γ), which are common to both, with c′ > 0, c′′ > 0, limµ→0 c′(µ) = 0 and with
z′ > 0, z′′ > 0, limγ→0 z′(γ) = 0. Contestant j’s expected payoff for participating in the
contest is given by

πj =(1− η)G(µj + γj − µk − γk)S

+ ηH(L− γj)[(1− H(L− γk)) + H(L− γk)G(µj + γj − µk − γk)]S + W2 − c(µj)− z(γj)
(1)

The payoff function, reflecting the expected benefit from winning the contest, contains
the expected benefit from winning without and with an inspection occurring. If the
organizer does not inspect the contestants, contestant j wins by outperforming contestant k;
the output of the contestants determines their rank. If the organizer inspects the contestants,
contestant j is disqualified and receives W2

3 if the test result shows j participates in more
aggressiveness than the organizer has agreed to tolerate, γj + δj > L. The probability
of disqualification is 1− H(L− γj). If contestant j is still qualified after the inspection,
j automatically wins if contestant k is disqualified; otherwise, contestant j must outperform
contestant k to win. FOCs for maximization of the objective function yield contestant j’s
best response functions as follows

FOC with regard to γj
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(1− η)g(µj + γj − µk − γk)S

+ η[−h(L− γj)(1− H(L− γk))− h(L− γj)H(L− γk)G(µj + γj − µk − γk)

+ H(L− γj)H(L− γk)g(µj + γj − µk − γk)]S = z′(γj)

On the left side of the equation, the marginal benefit of aggressiveness comes from
winning under the chance of not being inspected and the possibility of being inspected but
still qualified. The aggressiveness strictly increases the player’s marginal benefit without
inspection. However, the contestant faces a trade-off when an inspection is executed.
Although aggressiveness improves the contestant’s performance, it also increases the
probability of being disqualified. Therefore, the marginal benefit of aggressiveness to the
contestant largely depends on the winning prize, inspection rate, limit on aggressiveness,
and the accuracy of the inspection measure. All four factors simultaneously influence the
contestants’ decision on aggressiveness. Holding the effort level constant, the winning prize,
and the limit on aggressiveness can increase the marginal benefit of aggressiveness. The
impact of the inspection rate on the marginal benefit is more nuanced and discussed below

FOC with regard to µj

(1− η)g(µj + γj − µk − γk)S

+ ηH(L− γj)H(L− γk)g(µj + γj − µk − γk)S = c′(µj)

From the FOC above, the probability of qualification is independent of effort, and
the effort only affects the likelihood of winning. Holding the aggressiveness constant, the
marginal benefit of effort increases with the winning prize, inspection rate, and limit on
aggressiveness.

Utilizing the symmetry of the game,4 we impose symmetry on the first-order condi-
tions to identify the contestant’s unique symmetric equilibrium with regard to the choice of
aggression; this is implicitly characterized by the following:

(1− η)g(0)S + [−h(L− γ∗) + (1− G(0))h(L− γ∗)H(L− γ∗) + H2(L− γ∗)g(0)]ηS = z′(γ∗) (2)

Note that equilibrium aggression is independent of equilibrium effort. For the
contest design problem we study, expression (2) must hold at a strictly positive
γ and z′′(γ) > [(1− 1

2 H(L− γ))h′(L− γ)− 1
2 h2(L− γ)− 2g(0)h(L− γ)H(L− γ)]ηS for

local maximum to exist.5 We assume throughout the paper that this condition is satisfied.
The equilibrium level of effort is implicitly characterized as follows:

(1− η)g(0)S + η(H(L− γ∗))2g(0)S = c′(µ∗) (3)

Expression (3) shows that all three contest design parameters and the equilibrium
level of aggressiveness γ∗ jointly affect the optimal effort µ∗.

3.2. Contestants’ Behavior in Equilibrium

To model contest design, we must identify how contestants’ equilibrium behavior
changes with the contest’s design parameters: S, η, and L. Comparative static analysis
of expressions (2) and (3) allow us to identify the impact of contest design parameters on
contestants’ effort and aggressiveness.

Proposition 1. A larger prize spread induces more aggressiveness while the inspection rate reduces
it, ∂γ∗

∂S > 0 and ∂γ∗
∂η < 0. Denote A = (1− 1

2 H(L− γ∗))h′(L− γ∗)− 1
2 h2(L− γ∗). When

A− 2g(0)h(L−γ∗)H(L−γ∗) > 0, increasing the limit on aggressiveness reduces the equilibrium
level of aggressive behavior ∂γ∗

∂L < 0. Otherwise, ∂γ∗
∂L ≥ 0.

Proposition 1 shows clearly how the contest design parameters S, η, and L affect the
optimal level of aggressiveness separately. The prize spread induces aggressive behavior
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while the inspection rate reduces it. A− 2g(0)h(L− γ∗)H(L− γ∗) comes from the second
order condition for γ. The value of the condition A− 2g(0)h(L− γ∗)H(L− γ∗) reflects
the impact of L on the marginal benefit of aggressiveness and determines the sign of ∂γ∗

∂L .
When lifting the limit on aggressiveness from zero up to a point, the marginal net benefit of
aggressiveness decreases because of the marginal deterrence effect.6 In a contest, the limit
on aggressiveness establishes a line for the punishment of aggressive behavior: crossing the
line results in disqualification, while not crossing the line yields no punishment. Therefore,
contestants reduce aggressive behavior as the net benefit of “crossing the line” decreases.

Naturally, when the measurement error follows a different distribution, the contestants’
decision on aggressiveness in response to the limit L will change. We use the figure below
to visualize the condition determining the sign and the magnitude of the comparative
statics ∂γ∗

∂L and show how the inspection measures change this condition.
Figure 1 depicts the condition A− 2g(0)h(L− γ∗)H(L− γ∗) for ∂γ∗

∂L . For both figures,
when the curve is above the x-axis, ∂γ∗

∂L < 0, meaning the limit on aggressiveness can
reduce the aggressive behavior. When the curve is below the x-axis, ∂γ∗

∂L > 0, meaning the
limit on aggressiveness can induce more aggressive behavior. We find that the accuracy
of the inspection measure changes the value of the condition and the shape of the curve.
Figure 1a assumes that the measurement error follows the standard normal distribution,
and Figure 1b doubles the standard deviation making the inspection measure less accurate.

(a) G(.), H(.)∼normal(0, 1), the curve crosses the x-axis when L− γ∗ =
−0.499.

(b) G(.)∼normal(0, 1) and H(.)∼normal(0, 4), the curve crosses the x-
axis when L− γ∗ = −1.308.

Figure 1: The Change in the Value of A − 2g(0)h(L − γ∗)H(L − γ∗) where A = (1 − 1
2
H(L −

γ∗))h
′
(L− γ∗) − 1

2
h2(L− γ∗) with Different Measurement Errors

Figure 1 depicts the condition A−2g(0)h(L−γ∗)H(L−γ∗) for ∂γ∗

∂L
. For both figures, when the
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∂L
< 0, meaning the limit on aggressiveness can reduce the aggressive

behavior. When the curve is below the x-axis, ∂γ∗

∂L
> 0, meaning the limit on aggressiveness can

induce more aggressive behavior. We find that the accuracy of the inspection measure changes the

value of the condition and the shape of the curve. Figure 1a assumes that the measurement error

follows the standard normal distribution, and Figure 1b doubles the standard deviation making

the inspection measure less accurate.

The curve in each figure crosses the x-axis (the point where the sign of ∂γ∗

∂L
changes) at a different
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(a)
(a) G(.), H(.)∼normal(0, 1), the curve crosses the x-axis when L− γ∗ =
−0.499.

(b) G(.)∼normal(0, 1) and H(.)∼normal(0, 4), the curve crosses the x-
axis when L− γ∗ = −1.308.

Figure 1: The Change in the Value of A − 2g(0)h(L − γ∗)H(L − γ∗) where A = (1 − 1
2
H(L −

γ∗))h
′
(L− γ∗) − 1

2
h2(L− γ∗) with Different Measurement Errors

Figure 1 depicts the condition A−2g(0)h(L−γ∗)H(L−γ∗) for ∂γ∗

∂L
. For both figures, when the

curve is above the x-axis, ∂γ∗

∂L
< 0, meaning the limit on aggressiveness can reduce the aggressive

behavior. When the curve is below the x-axis, ∂γ∗

∂L
> 0, meaning the limit on aggressiveness can

induce more aggressive behavior. We find that the accuracy of the inspection measure changes the

value of the condition and the shape of the curve. Figure 1a assumes that the measurement error

follows the standard normal distribution, and Figure 1b doubles the standard deviation making

the inspection measure less accurate.

The curve in each figure crosses the x-axis (the point where the sign of ∂γ∗

∂L
changes) at a different

11

(b)

Figure 1. The change in the value of A − 2g(0)h(L − γ∗)H(L − γ∗) where A = (1 − 1
2 H(L −

γ∗))h′(L− γ∗)− 1
2 h2(L− γ∗) with different measurement errors. (a) G(.), H(.)∼normal(0, 1), the

curve crosses the x-axis when L− γ∗ = −0.499; (b) G(.)∼normal(0, 1) and H(.)∼normal(0, 4), the
curve crosses the x-axis when L− γ∗ = −1.308.

The curve in each figure crosses the x-axis (the point where the sign of ∂γ∗
∂L changes) at a

different point. The crossing point is closer to zero as the inspection measure becomes more
accurate. The crossing point is −0.499 when the measurement error follows the standard
normal distribution and −1.308 with the standard deviation σ equals 2. If L− γ∗ < −0.499
(L − γ∗ < −1.308 for Figure 1b), the condition (1 − 1

2 H)h′ − 1
2 h2 − 2g(0)hH > 0 and

∂γ∗
∂L < 0. Moving from the left side of each figure, tolerating more aggressive behavior
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reduces such behavior until the crossing point. Given the same aggressiveness level, the
limit on aggressiveness must be lower when the inspection measure is less precise (larger σ).
We verify this finding with simulations in Section 4.2.

The optimal effort µ∗ is jointly determined by γ∗ as expression (3) shows. The effort
µ∗ decreases as the probability of qualification, H, decreases. By applying Cramer’s Rule,
we identify the sign of the comparative statics for µ∗.

Proposition 2. Recall A = (1− 1
2 H(L− γ∗))h′(L− γ∗)− 1

2 h2(L− γ∗). Suppose

(a) z′′(γ∗) > (A + 2H−H2

1−H2 h2)ηS, contestants exert more effort when the organizer sets a higher

prize spread or tolerates more aggressiveness, ∂µ∗
∂S > 0 and ∂µ∗

∂L > 0. However, a higher

inspection rate reduces effort, ∂µ∗
∂η < 0.

(b) (A + 2H−H2

1−H2 h2)ηS ≥ z′′(γ∗) > max{(A− 2H−H2
1
η−1+H2 h2)ηS, (A− 2g(0)hH)ηS}, all con-

test instruments motivate contestants’ effort, ∂µ∗
∂S > 0, ∂µ∗

∂L > 0, and ∂µ∗
∂η ≥ 0.

(c) z′′(γ∗) ≤ (A − 2H−H2
1
η−1+H2 h2)ηS, a higher inspection rate or limit on aggressiveness increases

contestants’ effort, ∂µ∗
∂L > 0 and ∂µ∗

∂η > 0. However, a higher prize spread reduces effort, ∂µ∗
∂S ≤ 0

Proposition 2 identifies three cases for comparative statics of contestants’ effort µ∗.
Similar to the condition for ∂γ∗

∂L , those conditions reflect the change of the marginal benefit
of aggressiveness. Unlike the effect on aggressiveness, in all three conditions, a higher limit
on aggressiveness increases contestants’ effort, ∂µ∗

∂L > 0. Raising the limit on aggressiveness
always encourages contestants’ effort because tolerating more aggressive behavior reduces
the probability of disqualification, increasing the marginal benefit of effort at any given γ.

The impacts of the prize spread and the inspection rate on the effort are not monotonic.
For example, the condition z′′(γ∗) ≤ (A− 2H−H2

1
η−1+H2 h2)ηS in case (c) indicates that when the

marginal cost of aggressiveness increases slower than the marginal benefit of it, raising the
prize spread reduces contestants’ effort because contestants find substituting costly effort
with aggressive behavior more attractive; raising the inspection rate reduces the marginal
benefit of aggressiveness, and therefore, motivates effort. However, this result from case (c)
sounds counterintuitive because one indeed expects that the prize spread always inspires
contestants’ effort.

In contrast, when the change in the marginal cost of aggressiveness is relatively high,
as cases (a) and (b) show, raising the prize spread does motivate contestants’ effort because
replacing effort with aggressive behavior increases too much of the marginal cost. Thus,
contestants will only substitute effort with aggressive behavior. For the same reason, raising
the inspection rate does not offer contestants strong incentives to replace aggressive actions
with effort. Instead, it reduces contestants’ effort because the increased probability of
disqualification raises the cost of effort.

Combining Propositions 1 with 2, we find that tolerating some aggressiveness al-
ways motivates the desired effort and can effectively restrain more aggressiveness when
A− 2g(0)hH > 0. Moreover, the inspection rate always reduces aggressiveness. On the
other hand, it induces effort when the marginal cost of aggressiveness increases slower
than the marginal benefit, z′′ ≤ (A + 2H−H2

1−H2 h2)ηS, the substitution rate between effort
and aggressive actions is high. On the other hand, the prize spread S always motivates
aggressiveness and effort except for under case (c).

4. Optimal Contest Design

In this section, we identify the optimal contest design that maximizes the organizer’s
expected payoff given an output value α and inspection cost r. Then, we endogenize
the organizer’s choice of three contest design instruments: the prize spread, the inspec-
tion rate, and the limit on aggressiveness. The organizer’s choices will determine con-
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testants’ effort and aggressiveness according to the symmetric equilibrium identified in
expressions (2) and (3). We begin the analysis by modeling the organizer’s contest design
problem and then solve for the optimal choice of the contest design instruments, given the
outside condition the organization faces (α, r).

4.1. Organizer’s Problem

From the organizer’s perspective, aggressiveness benefits the organization through
increased output. However, those actions are also detrimental to the organizer: damage
may result in the organizer’s reputation declining; the organizer may face penalties and
government sanctions or regulations afterward. The damages to the organizer caused by
aggressiveness are denoted by D : R+ → R+, which is strictly increasing, strictly convex,
and twice differentiable. To deter contestants from committing excessive aggressiveness,
the organizer announces a limit on aggressiveness, L, and an inspection rate η ∈ [0, 1] at the
beginning of the contest. The cost of inspection per contestant is represented by a constant
rate r ∈ R+. If the contestant with the highest output is disqualified, the second-ranked
qualified contestant wins by default.

The organizer holding the competition maximizes the expected payoff by modifying
the contest design through the following instruments: the prizes for the winner and the
loser, the inspection rate, and the limit on aggressiveness.

V(S, η, L) = αE(qj + qk)− 2rη − 2W2 − E(S)−
j,k

∑
i

D(γi) (4)

The organizer’s expected benefit comes from the total output value. The expected loss
comes from the enforcement (inspection), contest awards, and contestants’ aggressiveness.
With a probability η, the organizer conducts an inspection costing r for each player. The
organizer also expects to award the loser a prize of W2 and W2 + S to the winner. When
both contestants are disqualified, the organizer reserves the winner’s prize and awards
W2 to both players. Contestants’ aggressiveness causes the expected damage, D(γi), to
the organizer.

The payoff function is subject to the following constraints:

γj = γk = γ∗

µj = µk = µ∗
(5)

Expression (5) is the incentive compatibility constraint. In equilibrium, the identical
contestants choose the effort and aggressiveness according to the equilibrium identified
in Section 3.1.

The expected prize spread excludes the probability in which both contestants are
disqualified. If at least one of the contestants is qualified, the organizer must provide
S + W2 to the contestant who produces the highest output and W2 to the other contestant.
Otherwise, both contestants are disqualified, and each receives W2. Therefore, the expected
total prize awarded in the contest sums to 2W2 + E(S), where we have

E(S) = [1− η(1− H(L− γj))(1− H(L− γk))]S (6)

Inequality (7) is the participation constraint.

1
2
(1− η)S + ηH(L− γ∗)[1− 1

2
H(L− γ∗)]S + W2 − c(µ∗)− z(γ∗) ≥ u (7)

A contestant’s expected payoff must be higher than the reservation utility to ensure
that joining the competition is better than any outside options. The inequality is binding
at the optimum. The organizer bears the cost of the contestants’ effort and aggressiveness
because contestants anticipate the equilibrium of the game and participate only if these are
compensated in expectation.
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Combining (6) with the binding (7), we find

E(S)
2

+ W2 = u + c(µ∗) + z(γ∗) (8)

Substituting constraints (5) and (8) into expression (4), the organizer’s objective func-
tion can be restated as

V(S, η, L) = 2α(µ∗ + γ∗)− 2rη − 2u− 2c(µ∗)− 2z(γ∗)− 2D(γ∗) (9)

The first-order conditions of the organizer’s expected payoff function are

with regard to S

(α− c′(µ∗))
∂µ∗

∂S
− (z′(γ∗) + D′(γ∗)− α)

∂γ∗

∂S
= 0 (10)

with regard to η

(α− c′(µ∗))
∂µ∗

∂η
− (z′(γ∗) + D′(γ∗)− α)

∂γ∗

∂η
= r (11)

with regard to L

(α− c′(µ∗))
∂µ∗

∂L
− (z′(γ∗) + D′(γ∗)− α)

∂γ∗

∂L
= 0 (12)

First best. Since it is optimal to elicit effort to the point where the marginal cost equals
the effort’s marginal benefit, the first-best effort can be derived from expression (9):

µFB := (c′(α))−1

The same idea applies to the first-best aggressiveness,

γFB := f−1(α) where f = z′ + D′

Second best. Expression (11) shows that the first best outcome is not achievable
because inspection to limit aggressiveness is costly. We denote the optimal prize spread,
inspection rate, and tolerance level as Ŝ, η̂, and L̂ and obtain the following propositions
from expressions (10)–(12).

Recall that Proposition 2 in Section 3.2 defines three cases for the comparative statics
of µ, which are

(a) z′′ > (A + 2H−H2

1−H2 h2)ηS,

(b) (A + 2H−H2

1−H2 h2)ηS ≥ z′′ > max{(A− (2−H)ηh2 H
1−η+ηH2 )ηS, (A− 2g(0)hH)ηS}, and

(c) z′′ ≤ (A− (2−H)ηh2 H
1−η+ηH2 )ηS.

where A = (1− 1
2 H(L− γ∗))h′(L− γ∗)− 1

2 h2(L− γ∗).
Under case (c), α− c′ and z′ + D′ − α must have the opposite sign, and according to

expression (12), ∂γ∗
∂L must be negative for an interior solution of L. However, the conditions

α − c′ < 0 and z′ + D′ − α > 0 cannot occur. Suppose some S, η, and L were chosen,
resulting in case (c). In this case, both µ and γ are greater than their first-best outcome. By
reducing S, the organizer would be strictly better off due to higher effort µ, less aggres-
siveness γ, and lower prize payouts. Therefore such a design cannot be optimal. Likewise,
if the enforcement is presented, the case that α− c′ > 0 and z′ + D′ − α < 0 can neither
occur. Because when both µ and γ are less than the first-best outcome, the organizer could
effortlessly tolerate more aggressiveness to increase µ closer to the first-best outcome.

Next, we continue our analysis with cases (a) and (b) in Table 1. α− c′ and z′ + D′ − α

must have the same sign under both conditions to guarantee interior solutions.7
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Table 1. (Organizer’s payoff) first-order conditions under three cases.

Case (a)
∂V∗

∂S (α− c′(µ∗))(+)− (z′(γ∗) + D′(γ∗)− α)(+) = 0 (10)

∂V∗

∂η
(α− c′(µ∗))(−)− (z′(γ∗) + D′(γ∗)− α)(−) = r (11)

∂V∗

∂L (α− c′(µ∗))(+)− (z′(γ∗) + D′(γ∗)− α) ∂γ∗

∂L = 0 (12)

Case (b)
∂V∗

∂S (α− c′(µ∗))(+)− (z′(γ∗) + D′(γ∗)− α)(+) = 0 (10)

∂V∗

∂η
(α− c′(µ∗))(+)− (z′(γ∗) + D′(γ∗)− α)(−) = r (11)

∂V∗

∂L (α− c′(µ∗))(+)− (z′(γ∗) + D′(γ∗)− α) ∂γ∗

∂L = 0 (12)

Case (c)
∂V∗

∂S (α− c′(µ∗))(−)− (z′(γ∗) + D′(γ∗)− α)(+) = 0 (10)

∂V∗

∂η
(α− c′(µ∗))(+)− (z′(γ∗) + D′(γ∗)− α)(−) = r (11)

∂V∗

∂L (α− c′(µ∗))(+)− (z′(γ∗) + D′(γ∗)− α) ∂γ∗

∂L = 0 (12)

Proposition 3. α− c′(µ) > 0 and z′(γ) + D′(γ)− α > 0 at Ŝ, η̂, and L̂. The contestants’ behavior
under optimal design yields sub-optimal effort and a supra-optimal level of damaging behavior.

Proposition 3 is intuitive. Imperfect and costly inspection measurement prevents the
contest from reaching the first-best outcome. Aggressive behavior displaces effort due to the
trade-offs faced in contest design. As a result, the equilibrium effort is lower than the first-
best outcome, and the equilibrium aggressiveness is greater than the first-best outcome.

Lemma 1. Under cases (a) and (b), it is optimal to raise the prize spread Ŝ as the output value
α increases. A higher α can induce a higher inspection rate η̂ under case (b) but may reduce the
inspection rate η̂ under case (a).

When the output is valued more, the organizer aims to induce more of it from contes-
tants. Lemma 1 identifies conditions where the organizer can motivate the output by raising
the prize spread. Increasing the inspection rate with the output value is also profitable
under case (b) because a higher inspection rate can induce more effort while reducing
aggressive behavior. However, in case (a), a higher inspection rate reduces effort and
aggressive behavior. Therefore, the organizer may eventually reduce the inspection rate.

Figure 2 visualizes three cases specified in Proposition 2. As Figure 2a shows, case
(b) covers the area between the top and the middle curves, and case (c) covers the space
between the middle and the bottom curves. The middle curve drops to the bottom in
Figure 2b as the inspection rate η rises, expanding the case space (b). As a result, case
(b) is more likely, and case (c) is less likely to occur when η increases. This is because the
higher inspection rate reduces the marginal benefit of aggressiveness, which diminishes the
substituting effects between effort and aggressive actions. Contestants receive that signal
and decide to put more effort rather than conduct more aggressive behavior.
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Figure 2 visualizes three cases specified in Proposition 2. As Figure 2a shows, case (b) covers

the area between the top and the middle curves, and case (c) covers the space between the middle
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α increases. A higher α can induce a higher inspection rate η̂ under case (b) but may reduce the

inspection rate η̂ under case (a).

When the output is valued more, the organizer aims to induce more of it from contestants.

Lemma 1 identifies conditions where the organizer can motivate the output by raising the prize

spread. Increasing the inspection rate with the output value is also profitable under case (b)

because a higher inspection rate can induce more effort while reducing aggressive behavior. How-

ever, in case (a), a higher inspection rate reduces effort and aggressive behavior. Therefore, the

organizer may eventually reduce the inspection rate.

As η goes up, case (b) is more likely to occur.

(a) η = 0.1 (b) η = 0.9

Figure 2: Three Conditions for Comparative Statics of Effort, G(.), H(.)∼normal(0, 1)

Curves from top to bottom on both figures are A+ 2H−H2

1−H2 h2, A− 2H−H2

1
η
−1+H2h

2, A− 2g(0)hH. We denote

A = (1− 1
2H(L− γ∗))h′(L− γ∗)− 1

2h
2(L− γ∗). In figure 2b, the right side of the middle curve drops

below the bottom curve as the inspection rate η rises.

Figure 2 visualizes three cases specified in Proposition 2. As Figure 2a shows, case (b) covers

the area between the top and the middle curves, and case (c) covers the space between the middle

18

(a) (b)

Figure 2. Three conditions for comparative statics of effort, G(.), H(.)∼normal(0, 1). Curves from
top to bottom on both figures are A + 2H−H2

1−H2 h2, A − 2H−H2

1
η−1+H2 h2, A − 2g(0)hH. We denote A =

(1− 1
2 H(L− γ∗))h′(L− γ∗)− 1

2 h2(L− γ∗). In Figure 2b, the right side of the middle curve drops
below the bottom curve as the inspection rate η rises. (a) η = 0.1; (b) η = 0.9.

Lemma 2. The optimal limit on aggressiveness L̂ must be such that ∂γ∗
∂L > 0. L̂ is higher than the

limit on the aggressiveness that minimizes it.

Although the organizer can impose a limit on aggressiveness to minimize it, the goal of
the optimal contest design is not to minimize the aggressive behavior but to maximize the
organizer’s expected profit. Tolerating aggressive behavior can induce more contestants’
effort and the final output. Thus, the organizer will raise the limit on aggressiveness
until the cost from increased aggressive behavior equals the benefit from increased effort
and output.

The crossing effects among the three optimal contest design variables are complicated
and cannot be proved explicitly. Therefore, we use simulations to examine the optimal
contest design.

4.2. Simulation

Simulations can further illustrate how the organizer’s decisions regarding the prize
spread S, inspection rate η, and limit on aggressiveness L optimally respond to changes in
output value α or inspection cost r. These simulations are conducted assuming the cost of
aggressiveness to the organizer is D = (2γ∗)2, the cost of an inspection is r = 5 or r = 10,
and the output value increases from 1 to 10.

Observation 1. When the cost of an inspection is sufficiently large, there exists an output value
α̂ such that for α < α̂, η̂ = 0, for α ≥ α̂, η̂ > 0. Both Ŝ and η̂ increase with α, and both increase
rapidly in the neighborhood of α̂.

Table 2 shows that when the output value is below the threshold, α̂ ≈ 4, the organizer
optimally sets the prize spread low so that contestants have little incentive to engage in
damaging activity, but also little effort incentive. In this parameter range, inspecting with
any positive probability is not worth doing. As the output value rises, the output becomes
more profitable, and the organizer is willing to provide a high S to motivate more effort. At
the equilibrium, the effort is less than the first-best outcome, and the level of aggressiveness
is higher than the first-best outcome. The optimal prize spread increasing from 2.2 to 18 is
observed to be discontinuous at α̂. The optimal inspection rate in this simulation discretely
increases from 0 to 0.53. For α ≥ α̂, welfare loss comes almost entirely from the inspection
cost. The second-best effort and aggressiveness become very close to the first-best outcome.
For α < α̂, welfare loss is due to sub-optimal effort resulting from lack of incentive. When
enforcement is in use, the optimal limit on aggressiveness is always set below the level of
aggressiveness in equilibrium.
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Table 2. The optimal prize spread, inspection rate, limit on aggressiveness, and organizer’s payoff as
the output value rises (r = 5, δ∼normal(0, 1)).

α 1 2 3 4 5 6 7 8 9 10

Ŝ 0.7 1.5 2.2 18 23.9 29 34 38.4 42.4 48.8
η̂ 0 0 0 0.53 0.54 0.54 0.54 0.54 0.54 0.544
L̂ any any any 0.5 0.6 0.8 1 1.2 1.3 1.44
V∗ 0.4889 1.9602 4.4116 8.4794 16.2553 25.7818 37.0398 50.0381 64.6665 81.1578
V FB 0.8667 3.4667 7.8000 13.8667 21.6667 31.2000 42.4667 55.4667 70.2000 86.6667
µ∗ 0.1862 0.3989 0.5851 2.5428 3.2953 3.9822 4.6538 5.2652 5.7122 6.4603
µFB 0.6667 1.3333 2.0000 2.6667 3.3333 4.0000 4.6667 5.3333 6.0000 6.6667
γ∗ 0.2793 0.5984 0.8777 0.9134 1.0429 1.2596 1.473 1.6657 1.843 2.0317
γFB 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

L̂ − γ∗ −0.4134 −0.4429 −0.4596 −0.473 −0.4657 −0.5438 −0.5817

In Table 3, the cost of inspection r is increased from 5 to 10. Comparing the simulation
results with Table 2, the threshold for the organizer to inspect contestants lies at a higher
output value, α̂ ≈ 6. Because the cost of an inspection is higher, the organizer chooses not
to inspect contestants until the prizes motivate a high level of aggressiveness. Surprisingly,
the optimal inspection rate in this simulation still increases suddenly from 0 to around
0.53 when α rises from 5 to 6, passing its critical value. In contrast, the optimal limit on
aggressiveness is higher at α̂ this time due to the marginal benefit of an inspection.

Table 3. The optimal prize spread, inspection rate, limit on aggressiveness, and organizer’s payoff as
the output value rises (r = 10, δ∼normal(0, 1)).

α 1 2 3 4 5 6 7 8 9 10

Ŝ 0.7 1.5 2.2 2.9 3.7 27.2 33.5 38.4 42.4 46.7
η̂ 0 0 0 0 0 0.53 0.54 0.54 0.54 0.54
L̂ any any any any any 0.9 1 1.2 1.4 1.8
V∗ 0.4889 1.9602 4.4116 7.8410 12.2547 20.4111 31.6450 44.6381 59.2665 75.7454
V FB 0.8667 3.4667 7.8000 13.8667 21.6667 31.2000 42.4667 55.4667 70.2000 86.6667
µ∗ 0.1862 0.3989 0.5851 0.7713 0.9841 3.7992 4.6039 5.2652 5.7122 6.5964
µFB 0.6667 1.3333 2.0000 2.6667 3.3333 4.0000 4.6667 5.3333 6.0000 6.6667
γ∗ 0.2793 0.5984 0.8777 1.1569 1.4761 1.3603 1.4562 1.6657 1.8430 2.1509
γFB 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

L̂ − γ∗ −0.4603 −0.4562 −0.4657 −0.443 −0.3509

From the organizer’s perspective, aggressiveness can increase the output but poten-
tially damage the organization. When the output value is not sufficiently high, the organizer
weighs the negative impact more and wants to eliminate the most aggressiveness with
the least cost. Therefore, the marginal deterrence power of an inspection must be high.
Otherwise, the marginal benefit of an inspection cannot surpass its marginal cost.

The marginal deterrence power of an inspection is affected by the measurement error
distribution. When the measurement error follows a normal distribution and the cheating
level is high, the organizer has the incentive to raise the inspection rate because as the
gap between γ∗ and L shrinks, the unconditional probability of qualification, H, increases
at an increasing speeduntil it reaches 0.5. On the other side, the deterrence power of an
inspection can be significantly reinforced by limiting aggressiveness at a high H′′ or h′.
Under a normal distribution, the unconditional qualification probability must be less than
0.5 and more significant than the γ∗ − L that yields the highest h′.

Observation 2. When the distribution of inspection has a larger variability, the optimal inspection
rate η̂ rises, and the optimal limit on aggressiveness L̂ decreases.
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To examine how the inspection rate and limit on aggressiveness depend on the mea-
surement error distribution, we double the standard normal distribution’s standard devia-
tion. Hence, the measured extent of aggressiveness becomes noisier. Table 4 shows that
the optimal inspection rate jumps to 0.72 when the organizer inspects contestants. The
organizer also tolerates less aggressiveness at each output value. Mathematically, when
the measurement for aggressiveness is noisy, the inspection rate must be able to keep the
unconditional probability of qualification H at the point where the marginal deterrence
power for aggressiveness is sufficiently large; L− γ∗ must be more negative in this case.

Table 4. The optimal prize spread, inspection rate, limit on aggressiveness, and organizer’s payoff as
the output value rises (r = 5, δ∼normal(0, 4)).

α 1 2 3 4 5 6 7 8 9 10

Ŝ 0.7 1.5 2.2 2.9 35.7 43.7 51.1 60.3 68.29 75.92
η̂ 0 0 0 0 0.72 0.72 0.72 0.725 0.726 0.726
L̂ any any any any 0 0.1 0.3 0.45 0.63 0.83
V̂ 0.4889 1.9602 4.4116 7.841 14.4104 23.9275 35.1668 48.2043 62.9355 79.4011
V FB 0.8667 3.4667 7.8000 13.8667 21.6667 31.2000 42.4667 55.4667 70.2000 86.6667
µ∗ 0.1862 0.3989 0.5851 0.7713 3.2424 3.8824 4.5252 5.2911 5.9729 6.6364
µFB 0.6667 1.3333 2.0000 2.6667 3.3333 4.0000 4.6667 5.3333 6.0000 6.6667
γ∗ 0.2793 0.5984 0.8777 1.1569 1.0936 1.3018 1.5182 1.6441 1.8262 2.0291
γFB 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

L̂ − γ∗ −1.0936 −1.2018 −1.2182 −1.1941 −1.1962 −1.1991

Table 5 shows that α̂ increases with the cost of inspection; however, the optimal
inspection rate remains at 0.72 when the organizer engages in enforcement.

Table 5. The optimal prize spread, inspection rate, limit on aggressiveness, and organizer’s payoff as
the output value rises (r = 10, δ∼normal(0, 4)).

α 1 2 3 4 5 6 7 8 9 10

Ŝ 0.7 1.5 2.2 2.9 3.7 4.4 51.1 57.7 65.1 75.3
η̂ 0 0 0 0 0 0 0.72 0.72 0.72 0.725
L̂ any any any any any any 0.3 0.6 0.8 0.86
V∗ 0.4889 1.9602 4.4116 7.841 12.2547 17.6466 27.9668 40.9348 55.6357 72.1473
V FB 0.8667 3.4667 7.8000 13.8667 21.6667 31.2000 42.4667 55.4667 70.2000 86.6667
µ∗ 0.1862 0.3989 0.5851 0.7713 0.9841 1.1702 4.5252 5.1884 5.8353 6.6083
µFB 0.6667 1.3333 2.0000 2.6667 3.3333 4.0000 4.6667 5.3333 6.0000 6.6667
γ∗ 0.2793 0.5984 0.8777 1.1569 1.4761 1.7553 1.5182 1.7417 1.9572 2.0534
γFB 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

L̂ − γ∗ −1.2182 −1.1417 −1.1572 −1.1934

5. Valueless Aggressiveness

Now we assume that aggressiveness has no market value, although such actions
can improve contestants’ apparent relative performance. For example, in a promotion
contest, firm managers have incentives to exaggerate their performance by manipulating
their balance sheet, to make a division appear more profitable. However, such improved
performance has no value to their firms in the long run and causes damages. We can rewrite
the expression (9) as,

V(S, η, L) = 2αµ∗ − 2rη − 2u− 2c(µ∗)− 2z(γ∗)− 2D(γ∗) (13)

The first-best effort yields α− c′(µ∗) = 0, and the first-best aggressiveness is 0 because
such actions create no value to the organizer. The first-order conditions of the organizer’s
expected payoff function become
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with regard to S

(α− c′(µ∗))
∂µ∗

∂S
− (z′(γ∗) + D′(γ∗))

∂γ∗

∂S
= 0 (14)

with regard to η

(α− c′(µ∗))
∂µ∗

∂η
− (z′(γ∗) + D′(γ∗))

∂γ∗

∂η
= r (15)

with regard to L

(α− c′(µ∗))
∂µ∗

∂L
− (z′(γ∗) + D′(γ∗))

∂γ∗

∂L
= 0 (16)

We obtain the following propositions under cases (a) and (b) in Proposition 2.

Proposition 4. At Ŝ, η̂, and L̂, the contestants’ behavior under optimal design yields sub-optimal
effort and a supra-optimal level of damaging behavior.

Using the same simulation setting as in the previous section, we find that the optimal
inspection rate is higher in the valueless case than in the original case when aggressiveness
contributes to the output. In Table 6, the critical value of output α̂ is still 4, but the optimal
inspection rate under α ≥ α̂ increases from around 0.5 in the original case to above 0.6. γ∗

is significantly lower in this case.

Table 6. The optimal prize spread, inspection rate, limit on aggressiveness, and organizer’s payoff as
the output value rises (r = 5, δ∼normal(0, 1)).

α 1 2 3 4 5 6 7 8 9 10

Ŝ 0.3 0.6 0.9 20 25.2 30.4 35.6 40.8 45.9 51.16
η̂ 0 0 0 0.608 0.612 0.617 0.619 0.620 0.622 0.623
L̂ any any any 0 0 0 0 0 0 0
V̂ 0.0784 0.3136 0.7057 4.3622 10.329 17.6414 26.2936 36.2829 47.6083 60.2687
V FB 0.6667 2.6667 6.0000 10.6667 16.6667 24.0000 32.6667 42.6667 54.0000 66.6667
µ∗ 0.0798 0.1596 0.2394 2.6454 3.3174 3.9894 4.6617 5.3328 5.9957 6.6642
µFB 0.6667 1.3333 2.0000 2.6667 3.3333 4.0000 4.6667 5.3333 6.0000 6.6667
γ∗ 0.1197 0.2394 0.3590 0.2116 0.1987 0.1941 0.1913 0.1917 0.1853 0.1833
γFB 0 0 0 0 0 0 0 0 0 0

L̂ − γ∗ −0.2116 −0.1987 −0.1941 −0.1913 −0.1917 −0.1853 −0.1833

Proposition 5. L̂ = 0 is a corner solution for the valueless aggressiveness case.

In the valueless case, the organizer does not tolerate any aggressiveness. Positive
aggression will occur in the equilibrium, but a zero-tolerance policy is optimal. When
enforcement is presented, the marginal benefit of increased effort is small because µ∗ is
close to µFB. The marginal cost from increased aggressiveness outweighs the marginal
benefit from the increased effort at any L. L fails to reduce γ∗ close enough to γFB = 0
because it requires L̂− γ∗ to be more negative, but L̂ is bounded by zero. Thus, we obtain
a corner solution for L̂ — the organizer does not tolerate any aggressiveness under the
optimal contest design.

This result explains why we observe that under some circumstances, the organizer set
the limit on aggressiveness to 0. In the valueless case, the optimal limit must be set lower
than the first-best outcome, 0. Since the limit is bounded by 0, it is optimal for the organizer
not to tolerate aggressive behavior. This may explain some tendency toward zero tolerance
in athletic competition. If the entertainment value of the competition is not tied to absolute
performance, doping or other aggressive behavior generates no value.
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6. Conclusions

When aggressive behavior by competitors in a contest causes harm to the contest
organizer, an essential aspect of contest design is the mechanism to constrain this behavior
to mitigate the damages. We model this by assuming the contest organizer sets a limit
on measured aggressiveness, which is subject to measurement error. A player will be
disqualified, combined with a probability of inspection. In addition, of course, the prize
at stake in a contest motivates aggressiveness along with effort, and contest design then
entails choosing these three design parameters.

One exciting aspect of contestant behavior in this environment is that, under some
circumstances, aggressiveness may decrease as the qualification limit increases. It is never
optimal to set the limit such that this holds. In general, we find it optimal to limit ag-
gressiveness (weakly) below the first-best level of such behavior. This is positive when
aggressiveness does generate output, but zero tolerance is optimal when aggressive be-
havior is purely damaging. The equilibrium behavior involves contestants engaging in
supra-optimal aggressiveness while exerting suboptimal effort. This is because of the trade-
off between motivating effort with a higher prize spread against the cost of inspections
needed to constrain aggressive behavior. Broadly, we find that optimal design entails either
very under-powered incentives—a minimal prize—and far-below-optimal effort, which
is optimal when the value of output is low relative to the cost of inspections and damage
from aggressiveness, or strong incentives and a very costly inspection regime. Interestingly,
optimal contest design entails a higher inspection rate and a lower qualification limit on
the level of aggressiveness, as the inspection process is subject to more significant errors.

Our model formalizes how enforcement must respond to constrain aggressive behavior
as competitive incentives are strengthened to elicit greater effort. For example, we identify
the optimal contest design under three scenarios: the output value is low, the output value is
high, and the aggressive behavior has no output value. Consider a setting such as a school,
where it is becoming more common to financially reward top-performing teachers based on
results from high-stakes tests of students. Possibly damaging aggressive behavior in such a
context may range from spending excessive time drilling students on test-specific topics (to
the detriment of learning and student or family satisfaction with school) to unwarranted
disciplinary measures to remove students from a class when the teacher expects a student
will perform poorly. In the absence of high-powered incentives, such as when strong class
performance is rewarded with verbal recognition but not monetary compensation, it may
not be optimal to engage in enforcement against such aggressiveness because the teachers’
disutility of aggressive behavior adequately constrains it. However, systematic enforcement
resulting in a significant probability of disqualification becomes optimal if the value of
the effort motivated by competition (which would not be present in the absence of high
prizes) is sufficient to warrant the shift. As the value of the output generated by teachers’
performance increases, it becomes optimal to raise the qualification limit and increase the
enforcement. If the improved test grades through damaging aggressive behavior have
no value to the school, then the school does best to adopt the “zero-tolerance” policy for
such behavior.

Consider commercial banks such as Wells Fargo. The more products a customer has
with the bank, the more information it has on that customer, allowing for better credit,
products, and pricing decisions. Convincing consumers to use more bank products is a
priority of sales teams. After the 2008 financial crisis, the U.S. market was reviving for
several years, which means the employees’ output value is higher. Wells Fargo highly
incentivizes its sales team to meet cross-sell and customer-service targets. Unfortunately,
the bank’s managers tolerated some damaging aggressive behavior—illegal sales practices,
such as creating a fake address using the customer’s cell phone number and carrier. How-
ever, when a high prize is set to motivate sales, a high inspection rate must be adopted.
Otherwise, the extent of aggressiveness will grow. For example, Wells Fargo did not inspect
sales more intensively and 200 million accounts were opened without customers’ consent.
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We must acknowledge that this paper has its limitations. First, contests have different
purposes. Our optimal design is not for player selection but for inducing the optimal
output for the organizer, so we do not assume heterogeneous players. Secondly, this
model can be extended to an N-player game. We use a simulation to show how optimal
aggressiveness and effort respond to the change of limit on aggressiveness (See Figure A1
in Appendix C: The N-Player Game). Future research can further identify the comparative
statics for contestants’ game and the optimal contest design. A researcher may adopt a
different modeling method for this extension.
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Appendix A. Proofs

Proof. We first consider the impact on aggressiveness. Note that as Equation (2) shows,
in equilibrium, aggressiveness γ is independent of the effort µ. To find the impact of
exogenous variables (S, η, L) on γ∗ we apply the implicit theorem.

∂γ∗

∂S
= − (1− η)g(0) + η[−(1− 1

2 H(L− γ∗))h(L− γ∗) + g(0)H2(L− γ∗)]
[A− 2g(0)h(L− γ∗)H(L− γ∗)]ηS− z′′(γ)

> 0 (A1)

The denominator must be negative to guarantee an interior solution. The numerator
represents the marginal benefit of participating in the contest normalizing the prize spread
to 1, which must be positive to guarantee an interior solution of γ. Otherwise, contestants
do not cheat—the optimal damaging action is 0.

∂γ∗

∂η
=

S[(1− H2(L− γ∗))g(0) + (1− 1
2 H(L− γ∗))h(L− γ∗)]

[A− 2g(0)h(L− γ∗)H(L− γ∗)]ηS− z′′(γ)
< 0 (A2)

H ∈ (0, 1) is the probability of qualification given the contestant is inspected. The
whole numerator is negative, and thus, the sign of ∂γ∗

∂η is negative. Contestants commit less
aggressiveness as the inspection rate rises, which is intuitive because a higher inspection
rate elevates the marginal cost of aggressiveness (or the marginal benefit of qualification).

∂γ∗

∂L
=

[A− 2g(0)h(L− γ∗)H(L− γ∗)]ηS
[A− 2g(0)h(L− γ∗)H(L− γ∗)]ηS− z′′(γ)

< 1 (A3)

The sign of ∂γ∗
∂L depends on A, in particular, the slope of the measurement error’s

probability density function, h′. The measurement error follows a symmetric unimodal
distribution with density monotonically decreasing as distance from the mean increases,
thus, h′ will be positive and then negative as L rises. At low L, ∂γ∗

∂L can be negative, because
the probability of qualification, H, will be small and h′ will be large. As the organizer
extends the limit on aggressiveness further, the probability of qualification increases, but the
impact of aggressiveness on the probability of qualification diminishes (h′ becomes smaller
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and even negative). Eventually, ∂γ∗
∂L becomes positive. Since the sign of ∂γ∗

∂L changes from
negative to positive as the organizer raises L, a L̃ yielding the minimum γ∗ must exist.

Proof. Hessian Matrix

Hess
(
πj
)
=

[
[(1− 1

2 H)h′ − 1
2 h2 − 2g(0)hH]ηS− z′′(γ) 0
−2g(0)ηhHS −c′′(µ)

]
(A4)

To guarantee a maximum of πj, it must have |Hess(πj)| > 0 and f11 < 0. Because
f22 = −c′′(µ) < 0, we find |Hess(πj)| = f11 f22 − f12 f21 > 0.

The direct impact of exogenous variables on aggressiveness γ are given by

f S
13 = g(0)(1− η) + η(−h +

1
2

hH + g(0)H2) > 0

f η
13 = −g(0)(1− H2)S− h(1− 1

2
H)S < 0

f L
13 = [−(1− 1

2
H)h′ +

1
2

h2 + 2g(0)hH]ηS = − f11 − z′′

The direct impact of exogenous variables on effort µ are given by

f L
23 = 2g(0)h(L− γ)HηS > 0

f η
23 = −g(0)(1− H2)S < 0

f S
23 = g(0)(1− η) + g(0)ηH2 > 0

Compare the equations above, we find

f L
13 = f L

23 − [(1− 1
2

H)h′ − 1
2

h2]ηS

f η
13 = f η

23 − (1− 1
2

H)hS < 0→ f η
13 < f η

23 < 0

f S
13 = f S

23 − η(1− 1
2

H)h > 0

f21 = − f L
23 < 0

Mathematically solving the comparative statics for µ.

∂µ∗

∂Ł
=

∣∣∣∣
f11 − f L

13
f21 − f L

23

∣∣∣∣
∣∣∣∣
f11 f12
f21 f22

∣∣∣∣
=
− f11 f L

23 + f L
13 f21

f11 f22 − f12 f21
=

(+)

(+)
> 0 (A5)

− f11 f L
23 + f L

13 f21 = z′′ f L
23 > 0.

∂µ∗

∂η
=

∣∣∣∣
f11 − f η

13
f21 − f η

23

∣∣∣∣
∣∣∣∣
f11 f12
f21 f22

∣∣∣∣
=
− f11 f η

23 + f η
13 f21

f11 f22 − f12 f21
=

(−) + (+)

(+)
< 0 (A6)
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− f11 f η
23 + f η

13 f21 = −{[(1− 1
2 H)h′− 1

2 h2− 2g(0)hH]ηS− z′′} f η
23 + [ f η

23− (1− 1
2 H)hS]

(−2g(0)ηhHS) < 0 when z′′ > [(1− 1
2 H)h′ − 1

2 h2 + 2H−H2

1−H2 h2]ηS > 0; otherwise, ∂µ∗
∂η ≥ 0.

∂µ∗

∂S
=

∣∣∣∣
f11 − f S

13
f21 − f S

23

∣∣∣∣
∣∣∣∣
f11 f12
f21 f22

∣∣∣∣
=
− f11 f S

23 + f S
13 f21

f11 f22 − f12 f21
=

(+) + (−)
(+)

> 0 (A7)

− f11 f S
23 + f S

13 f21 = −{[(1 − 1
2 H)h′ − 1

2 h2]ηS − z′′} f S
23 − η(1 − 1

2 H)h f21 > 0 when

z′′ > [(1− 1
2 H)h′ − 1

2 h2 − (2−H)ηh2 H
1−η+ηH2 ]ηS. Otherwise, ∂µ∗

∂S ≤ 0.

Proof. Suppose the organizer sets the S such that µ∗ = µFB when η = 0. Contestants’
symmetric equilibrium (expressions (2) and (3)) becomes

γ : g(0)S = z′(γ∗)

µ : g(0)S = c′(µ∗) = α

The γFB is obtained if z′(γFB) + D′(γFB) = α. Since z′(γ∗) = α > α−D′(γFB), z′(γ∗)
must be greater than z′(γFB), and γ∗ > γFB.

Note that we have proved when η = 0 the S that induces µFB is such that γ∗ > γFB.
Further, when enforcement is presented, µ∗ is lower than µFB under condition (a), holding
other things constant. Therefore, in order for α − c′(µ) < 0, i.e., effort above the first
best, would require S be set above the level that would induce µFB in the absence of
enforcement or L be raised to a certain level. So it cannot be the case that α− c′(µ) < 0
and z′(γ) + D′(γ)− α < 0 (i.e., supra-optimal µ and sub-optimal γ), because the organizer
could increase γ toward the optimal at a negative cost by reducing enforcement.

Both ∂µ∗
∂S and ∂γ∗

∂S are positive under condition (a). Thus, according to Equation (10),
α− c′(µ∗) and z′(γ∗) + D′(γ∗)− α must have the same sign. Therefore, it must be the case
that α− c′(µ) > 0 and z′(γ) + D′(γ)− α > 0. The optimal Ŝ, η̂, and L̂ induce µ∗ < µFB

and γ∗ > γFB.
In condition (b), both α− c′ and z′+ D′− α must be positive due to expression (11).

Proof. From expression (11) we can see that η̂ = 0 if r is sufficiently large such that
(α0 − c′(µ∗)) ∂µ∗

∂η − (z′(γ∗) + D′(γ∗)− α0)
∂γ∗
∂η − r < 0. Holding everything constant but

increasing α to α1, α1 − c′(µ∗) increases while z′(γ∗) + D′(γ∗) − α1 decreases. (α −
c′(µ∗)) ∂µ∗

∂η − (z′(γ∗) + D′(γ∗) − α) ∂γ∗
∂η − r becomes more negative under condition (a).

The organizer does not have direct incentives to inspect contestants and does not need to
consider setting L.

Meanwhile, as expression (10) shows, a larger output value makes (α1 − c′(µ∗)) ∂µ∗
∂S −

(z′(γ∗) + D′(γ∗)− α1)
∂γ∗
∂S > 0. It is optimal for the organizer to raise Ŝ, which creates an

indirect incentive for inspection because the increased Ŝ motivates more µ∗ and γ∗. When
η = 0, increasing Ŝ motivates more aggressiveness than effort because the marginal cost
of effort is higher. Thus, the marginal benefit of inspection increases with Ŝ, and once the
marginal benefit reaches r, we obtain an interior solution of η̂. To reduce the expected cost
of inspection, L must be set at the value that yields the largest ∂γ∗

∂η .
Unlike in condition (a), a higher output value α has both direct and indirect incentives

for the organizer to raise the inspection rate under condition (b). Holding everything
constant but increasing α , (α1− c′(µ∗)) ∂µ∗

∂η − (z′(γ∗) + D′(γ∗)− α1)
∂γ∗
∂η − r becomes more

positive under condition (a) since ∂µ∗
∂η ≥ 0. The organizer has direct incentives to inspect

contestants. Since Ŝ increases with α, the marginal benefit of inspection increases with α.
The organizer also has indirect incentives to inspect contestants.

Proof. This follows directly from the fact that α− c′(µ∗) and z′(γ∗) + D′(γ∗)− α are positive.



Games 2023, 14, 48 19 of 22

Based on expression (12), the sign of ∂γ∗
∂L must be the same as ∂µ∗

∂L at the optimum.
∂γ∗
∂L > 0 means the extent of aggressiveness exceeds the minimum. Since ∂γ∗

∂L decreases and
then increases with the limit on aggressiveness, the optimal limit L̂ is higher than the limit
L̃ that yields ∂γ∗

∂L = 0.
If ∂γ∗

∂L ≤ 0, expression (12) is greater than zero. The organizer will raise L̂ until ∂γ∗
∂L > 0.

Again, L̂ is greater than L̃ that produces the minimal γ∗.

Proof. By expression (14), α− c′(µ∗) and z′(γ∗) + D′(γ∗) must have the same sign. There-
fore, it must be the case that α− c′(µ∗) > 0 and z′(γ∗) + D′(γ∗) > 0. The optimal η̂, Ŝ and
L̂ induce µ∗ < µFB and γ∗ > γFB.

Appendix B. Comparative Statics When δ Follows a Uniform Dist.

Suppose δ follows a uniform distribution that is symmetrical at 0. The contest design
instruments have the following impact on player j’s optimal effort and misconduct level.

∂γ∗

∂S
= − (1− η)g(0) + η[−(1− 1

2 H(L− γ∗))h(L− γ∗) + g(0)H2(L− γ∗)]
SOC

> 0

∂γ∗

∂η
= −−S[(1− H2(L− γ∗))g(0) + (1− 1

2 H(L− γ∗))h(L− γ∗)]
SOC

< 0

∂γ∗

∂L
= −ηS[ 1

2 h2(L− γ∗) + 2g(0)h(L− γ∗)H(L− γ∗)]
SOC

> 0

Hessian Matrix

Hess
(
πj
)
=

[−ηS[ 1
2 h2 + 2g(0)hH]− z′′(γ) 0
−2ηhHg(0)S −c′′(µ)

]
(A8)

|Hess(πj)| > 0, because f22 = −c′′(µ) < 0 and f11 = −ηS[ 1
2 h2 + 2g(0)hH]− z′′(γ) <

0 so that f11 f22 > f12 f21.
The direct impact of exogenous variables on aggressiveness γ are given by

f L
13 = [

1
2

h2(L− γ) + 2h(L− γ)H(L− γ)g(0)]ηS > 0

f η
13 = −g(0)[1− H2(L− γ)]S− h(L− γ)(1− 1

2
H(L− γ))S < 0

f S
13 = (1− η)g(0) + η[−h(L− γ) +

1
2

h(L− γ)H(L− γ) + H2(L− γ)g(0)] > 0

The direct impact of exogenous variables on effort µ is given by

f L
23 = 2h(L− γ)H(L− γ)g(0)ηS > 0

f η
23 = −[1− H2(L− γ)]g(0)S < 0

f S
23 = (1− η)g(0) + ηH2(L− γ)g(0) > 0

Compare the equations above, we find

f L
13 = f L

23 +
1
2

h2ηS > 0

f η
13 = f η

23 − (1− 1
2

H)hS < 0→ f η
13 < f η

23 < 0

f S
13 = f S

23 − (1− 1
2

H)ηh > 0
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f11 = f21 −
1
2

h2ηS− z′′ < 0

f21 = − f L
23 < 0

f11 < f21, and f L
13 > f L

23 > 0.
Mathematically solving the comparative statics for µ.

∂µ∗

∂Ł
=

∣∣∣∣
f11 − f L

13
f21 − f L

23

∣∣∣∣
∣∣∣∣
f11 f12
f21 f22

∣∣∣∣
=
− f11 f L

23 + f L
13 f21

f11 f22 − f12 f21
=

(+)

(+)
> 0 (A9)

− f11 f L
23 + f L

13 f21 = −( f11 + f L
13) f L

23 = z′′ f L
23 > 0. If z′′ = 0, L has no impact on µ∗.

∂µ∗

∂η
=

∣∣∣∣
f11 − f η

13
f21 − f η

23

∣∣∣∣
∣∣∣∣
f11 f12
f21 f22

∣∣∣∣
=
− f11 f η

23 + f η
13 f21

f11 f22 − f12 f21
=

(−) + (+)

(+)
(A10)

− f11 f η
23 + f η

13 f21 = ( 1
2 h2ηS + z′′) f η

23 − (1 − 1
2 H)hS f21 = (2H − 1

2 − 1
2 H2)gS2h2η +

z′′(1− H2)gS.
Replace Sh2η with B. We find − f11 f η

23 + f η
13 f21 < 0 when

BH − (
1
2

B + z′′)(1− H2) < 0

(
1
2

B + z′′)H2 + BH − (
1
2

B + z′′) < 0

We obtain 0 < H <

√
B2+(B+2z′′)2−B

B+2z′′ =
√

B2

(B+2z′′)2 + 1− B
B+2z′′ . As z′′ increases from

0 to infinity, B
B+2z′′ decreases from 1 to 0. Since dH

d( B
B+2z′′ )

< 0, H reaches the minimum when

z′′ = 0 ( B
B+2z′′ = 1). z′′ = 0 yields H =

√
2− 1. Thus, H <

√
2− 1 guarantees ∂µ∗

∂η < 0.

∂µ∗

∂S
=

∣∣∣∣
f11 − f S

13
f21 − f S

23

∣∣∣∣
∣∣∣∣
f11 f12
f21 f22

∣∣∣∣
=
− f11 f S

23 + f S
13 f21

f11 f22 − f12 f21
=

(+) + (−)
(+)

> 0 (A11)

− f11 f S
23 + f S

13 f21 = − f11 f S
23 + [ f S

23 − ηh(1− 1
2 H)]( f11 +

1
2 h2ηS + z′′) = ( 1

2 h2ηS + z′′) f S
23 +

2η2h2SgH(1− 1
2 H) > 0.

∂µ∗
∂Ł > 0 and ∂µ∗

∂S > 0 verifies that tolerating more aggressiveness and increasing the

prize spread can motivate more effort. The sign of ∂µ∗
∂η depends on H and z′′.

Appendix C. The N-Player Game

In this section, we extend the two-player contest to N players, where N ≥ 1. We
denote b(n|N − 1, H(L− γ)) as a binomial function which represents the probability of n
out of N − 1 players are qualified for the contest. The distribution of the output shock for
each player is F(ε), and we use ∆i to show the difference between two players’ effort and
aggressive actions, ∆i = µi + γi − µi − γi.

The contestant j maximizes his expected payoff over effort and hazardous actions. If
no inspection is conducted, contestant j must outperform the rest N − 1 contestants. If the
organizer conducts an inspection and contestant j is still qualified, he will compete with
the other qualified contestants on the final output.
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πj =(1− η)S
∫

F(εj + ∆i)
N−1dεj + ηH(L− γj){

N−1

∏ (1− H(L− γ−j))

+
N−1

∑
n=1

[b(n|N − 1, H(L− γj)
∫

F(εj + ∆i)
n f (εj)dεj]}S + W2 − c(µj)− z(γj)

(A12)

Assuming all contestants are identical, applying symmetry in the first-order conditions
for expression (A12).

γj :(1− η)(N − 1)S
∫

f 2(εj)FN−2(εj)dεj

− ηh{(1− H(L− γ))N−1 +
N−1

∑
n=1

[b(n|N − 1, H(L− γ))
∫

F(εj)
n f (εj)dεj]}S

+ ηH(L− γ)
N−1

∑
n=1

[b(n|N − 1, H(L− γ))(n)
∫

F(εj)
n−1 f (εj)

2dεj]S = z′(γ)

(A13)

µj :(1− η)(N − 1)S
∫

f 2(εj)FN−2(εj)dεj

+ ηH(L− γ)
N−1

∑
n=1

[b(n|N − 1, H(L− γ))(n)
∫

f 2(εj)Fn−1(εj)]S = c′(γ)
(A14)

We use one example below to illustrate that the limit on aggressiveness still reduces
aggressiveness and motivates effort when the number of contestants is more than two.

µj :(1− η)(N − 1)S

∫
f 2(εj)F

N−2(εj)dεj

+ ηH(L− γ)
N−1∑

n=1

[b(n|N − 1, H(L− γ))(n)

∫
f 2(εj)F

n−1(εj)]S = c
′
(γ)

(C.3)

We use one example below to illustrate that the limit on aggressiveness still reduces aggres-

siveness and motivates effort when the number of contestants is more than two.

Figure 3: The Optimal Aggressiveness, Effort, Each Contestant’s and Organizer’s Payoff Changes
with the Limit on Aggressiveness (the Number of Contestants is Five)

Figure 3 shows that the organizer’s payoff is maximized if the prize is set at 32 and the limit

on aggressiveness is at 0.4 given the inspection rate is 0.5, the output value is 5, and the cost of

an inspection is 1. As Lemma 2 suggests, the optimal limit on aggressiveness is higher than the

limit that minimizes it.
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Figure A1. The Optimal Aggressiveness, Effort, Each Contestant’s and Organizer’s Payoff Changes
with the Limit on Aggressiveness (the Number of Contestants is Five).

Figure A1 shows that the organizer’s payoff is maximized if the prize is set at 32 and
the limit on aggressiveness is at 0.4 given the inspection rate is 0.5, the output value is 5,
and the cost of an inspection is 1. As Lemma 2 suggests, the optimal limit on aggressiveness
is higher than the limit that minimizes it.

Notes
1 In Proposition 2, the comparisons between how fast the marginal cost of aggressive actions changes with such actions, z′′(γ∗),

and how quickly the marginal benefit changes with it, (A + 2H−H2

1−H2 h2)ηS, reflect the incentive for aggressive actions.
2 This is contrary to the notion that one should utilize a tool less often when it is less precise.
3 W2 is sufficiently large so that contestants always participate in the contest. However, the organizer will decide whether to hold

the contest.
4 A common assumption in the tournament.
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5 z′′(γ) > [(1− 1
2 H(L − γ))h′(L − γ) − 1

2 h2(L − γ) − 2g(0)h(L − γ)H(L − γ)]ηS guarantees the local maximum because the
second order condition for γ is less than 0 and the Hessian determinant for µ is greater than 0 (See the proof for Proposition 2 in
Appendix: proofs). This condition indicates that the marginal cost of aggressiveness increases faster than the marginal benefit of
such actions to contestants. We later denote (1− 1

2 H(L− γ∗))h′(L− γ∗)− 1
2 h2(L− γ∗) as A.

6 Gilpatric and Reiser [2] find that if the enforcement prohibiting misconduct cannot effectively deter such conduct, that enforcement
is not optimal. Their finding is analogous to findings about “marginal deterrence” in the enforcement literature. The notion has
been articulated by Marchese di Beccaria [14], Shackleton [15], and Bentham [16] as “to induce a man to choose always the least
mischievous of two offenses; therefore, where two offenses come in competition, the punishment for the greater offense must be
sufficient to induce a man to prefer the less”. Stigler [17] originated the term marginal deterrence, which was later developed
by Wilde [18], Mookherjee and Png [19], Shavell [20], and Friedman and Sjostrom [21]. They studied conditions under which
marginal deterrence requires gradual penalties. Mookherjee and Png [22] extend the model to a general setting in which the
activity level is a continuous variable, and individuals derive heterogeneous benefits. These researchers show that it is optimal to
establish marginal expected penalties everywhere less than the marginal harm.

7 The corner solutions such as S = 0 and non-interior solutions such as S tends to infinity do not contribute much to our contest
design, thus, we focus on the conditions that can produce interior solutions.

8 If we add more digits to Ŝ, η̂, or L̂, V∗ can be improved and L̂− γ∗ falls under −0.499. For example, when Ŝ = 44.2, η̂ = 0.5432,
and L̂ = 1.31, V∗ = 64.7647 and L̂− γ∗ = −0.4982. The same issue occurs when α = 10.
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