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Abstract:

 In this paper, we deduce a condition for a strategy [image: there is no content] to be more abundant on average at equilibrium under weak selection than another strategy [image: there is no content] in a population structured into a finite number of colonies of fixed proportions as the population size tends to infinity. It is assumed that one individual reproduces at a time with some probability depending on the payoff received in pairwise interactions within colonies and between colonies and that the offspring replaces one individual chosen at random in the colony into which the offspring migrates. It is shown that an expected weighted average equilibrium frequency of [image: there is no content] under weak symmetric strategy mutation between [image: there is no content] and [image: there is no content] is increased by weak selection if an expected weighted payoff of [image: there is no content] near neutrality exceeds the corresponding expected weighted payoff of [image: there is no content]. The weights are given in terms of reproductive values of individuals in the different colonies in the neutral model. This condition for [image: there is no content] to be favoured by weak selection is obtained from a strong migration limit of the genealogical process under neutrality for a sample of individuals, which is proven using a two-time scale argument. The condition is applied to games between individuals in colonies with linear or cyclic dominance and between individuals belonging to groups represented by subsets of a given set.
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1. Introduction

Population structure refers to consistent demographic differences among individuals as a function of some other attribute, such as geographic location, age, size, gender or physiological state. Over the last few years, structured population models have become a central modelling formalism in theoretical biology and game dynamics, as well as being one of the most widely used.

An important question is the effect of migration on evolution. Nagylaki [1] studied the strong migration limit in a geographically-structured population, which occurs when migration dominates all other evolutionary forces in the limit of a large population, by means of a diffusion approximation. He considers a finite number of demes represented by the integers [image: there is no content]. Deme i is composed of [image: there is no content] diploid individuals considered at a single multi-allelic locus, for [image: there is no content]. Here, N and [image: there is no content] denote the whole population size and the proportion of deme i in the whole population, for [image: there is no content], with ∑[image: there is no content]d[image: there is no content]=1. Time is discrete with non-overlapping generations, and the reproduction scheme in each deme follows the Wright–Fisher model as a result of random mating. Following the production of a very large number of offspring and selection among offspring, there is migration. The probability that an individual in deme i comes from deme j is represented by [image: there is no content], for [image: there is no content]. The backward migration matrix [image: there is no content]=[image: there is no content]1≤i,j≤d is assumed to be constant and ergodic. Following migration and mutation, there is random sampling within demes to restore the deme sizes. In the limit of a large population size ([image: there is no content]), the stochastic dynamics in this structured population is described by a Wright–Fisher diffusion as in a well-mixed population with an effective population size [image: there is no content] taken as the unit of time, where:



α=∑[image: there is no content]dπi2[image: there is no content]-1



(1)




Here, [image: there is no content] is the stationary distribution associated with the backward migration matrix [image: there is no content]. Under the same assumptions, but for a haploid population and in the absence of selection, Notohara [2] showed that the genealogical process, known in this context as the structured coalescent (Herbots [3]), is described in the limit of a large population size by the standard Kingman coalescent [4,5,6], which is such that each pair of lineages coalesces backward in time at rate one independently of all others.
Diffusion approximations and genealogical processes are very important tools to address questions related to the effect of selection on the evolution of strategies in game dynamics. Among these questions, how cooperation can emerge and persist from interactions between individuals is of prime interest. This question has attracted increasing attention from mathematical or theoretical biologists (Axelrod and Hamilton [7], Szabò and Töke [8], Traulsen et al. [9], Santos and Pacheco [10], Hauert and Szabò [11], Nowak [12,13], Nowak and Sigmund [14], Ohtsuki et al. [15], Szabò and Fáth [16]). In order to study this question, a simple game named the prisoner’s dilemma has been considered. The simplest form of this game has payoffs in additive form with the following parameters: a donor pays a cost c to a recipient to get a benefit b, where [image: there is no content].

The first studies on the evolution of cooperation in structured populations assumed symmetric interactions between all members of the population. This means that the payoffs depend only on the strategies used by the interacting individuals (Hamilton [17,18], Trivers [19], Frank [20], Nowak and Sigmund [21,22], Nowak [23], Traulsen and Nowak [24], Kroumi and Lessard [25]). Even in this case, interactions can form a complex system as in the set-structured population introduced in Tarnita et al. [26]: every individual of the population belongs to exactly K sets among M sets, and a cooperator cooperates only with individuals that belong to at least L of the K sets, and defects otherwise.

In living groups, repetitive interactions for access to limited resources or mating opportunities can lead to the creation of a social order. A hierarchy dominance that may depend on differences in resource holding power (Hammerstein [27], Wilson [28]) can be established so that individuals are dominant over those below them and submissive to those above them. This motivates the study of asymmetric interactions with a cost for not conforming to the established hierarchy in structured populations with linear or cyclic dominance (Tao et al. [29], Kroumi and Lessard [30]).

In this paper, we consider a Moran-type model for games played in a population structured into d colonies of different finite sizes. In pairwise interactions, the individuals can adopt one of two strategies, [image: there is no content] or [image: there is no content]. An individual from colony i interacts with an individual from colony j with probability [image: there is no content] for [image: there is no content], where ∑j=1d[image: there is no content]=1 for [image: there is no content]. The expected payoff that an individual receives determines the probability for this individual to produce an offspring. One offspring is produced at a time, and following migration, this offspring replaces one individual locally chosen at random. More precisely, if the offspring is produced in colony i and migrates to colony j with probability [image: there is no content], then the offspring replaces an individual chosen at random in colony j, for [image: there is no content]. Finally, there is mutation of the strategy used by each individual independently of all others with probability u from one time step to the next, and when this occurs, the mutant strategy is chosen at random among [image: there is no content] and [image: there is no content]. We will find a condition for [image: there is no content] to be more abundant on average than [image: there is no content] at equilibrium in the limit of a large population under weak selection and weak mutation. This result relies on the strong migration limit of the genealogical process in the absence of selection, which is proven using a lemma for two-time scale Markov chains due to Möhle [31]. The condition will be express in terms of expected weighted payoffs using reproductive values as weights, which is an alternative to the use of structure coefficients (Nowak et al. [32]) for games in structured populations. This will allow us to give an intuitive interpretation of this condition.

The remainder of this paper is organized as follows. We present the details of the model in Section 2. We use a two-time scale convergence result that is established in Appendix A to derive the limiting genealogical process in a neutral structured population in Section 3. The equilibrium state under weak selection is studied in Section 4. In Section 5, a condition for a weighted average equilibrium frequency of [image: there is no content] to increase as the selection intensity increases from zero is deduced. This condition is applied to situations with linear or cyclic dominance hierarchy in Section 6 and to games in set-structured populations in Section 7. The results are interpreted and discussed in Section 8.



2. Model

We assume a population subdivided into d colonies represented by the integers [image: there is no content]. Each colony is made of a finite number [image: there is no content] of haploid individuals, for [image: there is no content]. Each individual in the population adopts one of two strategies, [image: there is no content] or [image: there is no content]. We assume pairwise interactions between individuals within each colony and between individuals from different colonies. More precisely, an individual from colony i interacts with an individual chosen at random from colony j with probability [image: there is no content], for [image: there is no content], with ∑j=1d[image: there is no content]=1, for [image: there is no content]. Then, the payoff that the individual from i receives is given by the entries of the matrix:



[image: there is no content]ij=[image: there is no content][image: there is no content][image: there is no content][image: there is no content](aijbijcijdij)



(2)




according to the strategy adopted by the individual from i, corresponding to row [image: there is no content] or [image: there is no content], and the strategy used by the individual from j, corresponding to column [image: there is no content] or [image: there is no content]. The expected payoffs of strategies [image: there is no content] and [image: there is no content] played by individuals in colony i are denoted by [image: there is no content] and [image: there is no content], respectively. It is assumed that these expected payoffs translate into fertilities, or reproductive successes, in the form:


[image: there is no content]=1+s×[image: there is no content]



(3)




and:


[image: there is no content]=1+s×[image: there is no content]



(4)




respectively, where [image: there is no content] represents the intensity of selection. It is assumed throughout the paper that selection is weak, actually that the intensity of selection s is small compared to the inverse of the population size [image: there is no content], where:


[image: there is no content]



(5)




The case [image: there is no content] corresponds to neutrality.
Time is discrete. At each time step, an individual is chosen in the whole population with probability proportional to its fertility to produce an offspring. This offspring inherits the strategy used by its parent. If the parent is from colony i, then the offspring stays in colony i with probability [image: there is no content] or migrates to colony [image: there is no content] with probability [image: there is no content], with ∑j=1d[image: there is no content]=1, for [image: there is no content]. In both cases, the offspring replaces an individual chosen at random in the same colony. It is assumed throughout that the forward migration matrix M=([image: there is no content])1≤i,j≤d is irreducible and aperiodic, that is ergodic. In other words, there exists some power of this migration matrix, [image: there is no content] for some integer [image: there is no content], with all positive entries. Finally, strategy mutation occurs with probability u for each individual independently of all others, so that the strategy used by the individual at the next time step is chosen at random among [image: there is no content] and [image: there is no content] with probability u and remains the same with the complementary probability [image: there is no content].



3. Genealogical Process in the Neutral Model

In this section, we derive the genealogical process of a sample taken from the population structured into d colonies under the neutral model in the limit of a large population size. Every individual of the population has the same fertility, which is given by one.

Consider a sample of size [image: there is no content] at a given time step. Looking backward in time at the genealogy of this sample, the distribution of the ancestors in the d colonies at any previous time step can be described by a vector:



[image: there is no content]



(6)




where [image: there is no content] denotes the number of ancestors in colony i, for [image: there is no content]. Then:


[image: there is no content]



(7)




is the total number of ancestors.
Let [image: there is no content] be the distribution of the ancestors [image: there is no content] time steps back. Given an initial sample of n individuals, this is a discrete-time Markov chain with state space:



[image: there is no content]



(8)




Let [image: there is no content] be the transition probability from state [image: there is no content] to state [image: there is no content]′. A possible transition is from [image: there is no content] to [image: there is no content]-[image: there is no content], for [image: there is no content], such that [image: there is no content]≥1. Here, [image: there is no content] is a d-dimensional unit vector with the i-th component equal to one and all other components equal to zero. This transition is obtained if one of the [image: there is no content] ancestors in colony i produced an offspring who stayed in colony i and is one of the [image: there is no content]-1 other ancestors in this colony, or if one of the [image: there is no content] ancestors in colony [image: there is no content] produced an offspring who migrated to colony i and is one of the [image: there is no content] ancestors in this colony. All this occurs with probability:



Π[image: there is no content],[image: there is no content]-[image: there is no content]=[image: there is no content]N[image: there is no content]([image: there is no content]-1)[image: there is no content]+∑[image: there is no content][image: there is no content]N[image: there is no content][image: there is no content][image: there is no content]=[image: there is no content]([image: there is no content]-1)[image: there is no content][image: there is no content]+∑[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]×1N2



(9)




Here, [image: there is no content]=[image: there is no content]/N is the proportion of colony i in the whole population, for [image: there is no content]. Another possible transition is from [image: there is no content] to [image: there is no content]-[image: there is no content]+ej, for [image: there is no content], such that [image: there is no content]≥1 and [image: there is no content]. This occurs if an individual in colony j other than the [image: there is no content] ancestors in this colony produced an offspring who migrated to colony i and is one of the [image: there is no content] ancestors in this colony. The probability of this event is:


Π[image: there is no content],[image: there is no content]-[image: there is no content]+ej=(Nj-[image: there is no content])N[image: there is no content][image: there is no content][image: there is no content]=[image: there is no content][image: there is no content][image: there is no content][image: there is no content]×1N-[image: there is no content][image: there is no content][image: there is no content][image: there is no content]×1N2



(10)




The last transition with positive probability is to stay in the same state, for which we have:


Π[image: there is no content],[image: there is no content]=1-∑i:[image: there is no content]≥1Π[image: there is no content],[image: there is no content]-[image: there is no content]-∑[image: there is no content]≥1[image: there is no content]Π[image: there is no content],[image: there is no content]-[image: there is no content]+ej










=1-∑[image: there is no content]≥1i≠j:[image: there is no content][image: there is no content][image: there is no content][image: there is no content]×1N-∑i:[image: there is no content]≥1[image: there is no content]([image: there is no content]-1)[image: there is no content][image: there is no content]×1N2



(11)




From Equations (9)–(11), the transition matrix ΠN=[image: there is no content][image: there is no content],[image: there is no content]′∈[image: there is no content] can be decomposed into the form:



[image: there is no content]



(12)




Here, [image: there is no content] is an identity matrix of a size given by the number of elements in the state space [image: there is no content], and [image: there is no content]=(a[image: there is no content],[image: there is no content]′)[image: there is no content],[image: there is no content]′∈[image: there is no content] is an infinitesimal generator whose non-null entries are given by:


a[image: there is no content],[image: there is no content]′=[image: there is no content][image: there is no content][image: there is no content][image: there is no content]if[image: there is no content]′=[image: there is no content]-[image: there is no content]+ej,fori≠jand[image: there is no content]≥1-∑[image: there is no content]≥1i≠j:[image: there is no content][image: there is no content][image: there is no content][image: there is no content]if[image: there is no content]′=[image: there is no content]



(13)




Moreover, the non-null entries of [image: there is no content]=(b[image: there is no content],[image: there is no content]′)[image: there is no content],[image: there is no content]′∈[image: there is no content] are given by:


b[image: there is no content],[image: there is no content]′=[image: there is no content]([image: there is no content]-1)[image: there is no content][image: there is no content]+∑[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]if[image: there is no content]′=[image: there is no content]-[image: there is no content],forisuchthat[image: there is no content]≥1-[image: there is no content][image: there is no content][image: there is no content][image: there is no content]if[image: there is no content]′=[image: there is no content]-[image: there is no content]+ej,fori≠jand[image: there is no content]≥1-∑i:[image: there is no content]≥1[image: there is no content]([image: there is no content]-1)[image: there is no content][image: there is no content]if[image: there is no content]′=[image: there is no content]



(14)




Now, let [image: there is no content] be the subset of all possible states with k ancestors, namely:



[image: there is no content]={[image: there is no content]=(n1,…,nd):|[image: there is no content]|=n1+⋯+nd=k}



(15)




for [image: there is no content]. Note that the set [image: there is no content] is the disjoint union of the subsets [image: there is no content], [image: there is no content], [image: there is no content]. With respect to these subsets in this order, the matrices [image: there is no content] and [image: there is no content] whose non-null entries a[image: there is no content],[image: there is no content]′ and b[image: there is no content],[image: there is no content]′ are given by Equations (13) and (14), respectively, can be expressed in the block forms:


[image: there is no content]=[image: there is no content]1[image: there is no content]…[image: there is no content][image: there is no content][image: there is no content]2…[image: there is no content]⋮⋮⋱⋮[image: there is no content][image: there is no content]…[image: there is no content]n



(16)




and:


[image: there is no content]=[image: there is no content][image: there is no content][image: there is no content]…[image: there is no content][image: there is no content][image: there is no content]2,1[image: there is no content]2,2[image: there is no content]…[image: there is no content][image: there is no content][image: there is no content][image: there is no content]3,2[image: there is no content]3,3…[image: there is no content][image: there is no content]⋮⋮⋮⋱⋮⋮[image: there is no content][image: there is no content][image: there is no content]…[image: there is no content]n,n-1[image: there is no content]n,n



(17)




Here, [image: there is no content] denotes a zero matrix of any dimension.
The exponential matrix exp{m[image: there is no content]} for every integer [image: there is no content] takes the block form:



exp{m[image: there is no content]}=exp{m[image: there is no content]1}[image: there is no content]…[image: there is no content][image: there is no content]exp{m[image: there is no content]2}…[image: there is no content]⋮⋮⋱⋮[image: there is no content][image: there is no content]…exp{m[image: there is no content]n}



(18)




Note that [image: there is no content]k is the infinitesimal generator of an irreducible Markov chain on a finite state space, which is [image: there is no content], for [image: there is no content]. Consequently, the limit matrix:


[image: there is no content]:=limm→∞exp{m[image: there is no content]k}



(19)




exists for [image: there is no content], and so does:


[image: there is no content]:=limm→∞exp{m[image: there is no content]}=[image: there is no content]1[image: there is no content]…[image: there is no content][image: there is no content][image: there is no content]2…[image: there is no content]⋮⋮⋱⋮[image: there is no content][image: there is no content]…[image: there is no content]n



(20)




Note also that [image: there is no content] is actually a rank one matrix with the stationary distribution associated with [image: there is no content]k in every row, for [image: there is no content]. It remains to find this distribution.
Let [image: there is no content] be the stationary distribution associated with [image: there is no content]1. By definition, this distribution satisfies the equation:



[image: there is no content][image: there is no content]1=(0,…,0)



(21)




with:


[image: there is no content]



(22)




Note that [image: there is no content]1=N([image: there is no content]-[image: there is no content]), where [image: there is no content]=([image: there is no content])1≤i,j≤d is the backward migration matrix, whose entries are given by:


[image: there is no content]=[image: there is no content]NjN[image: there is no content]ifi≠j1-∑l≠imliNlN[image: there is no content]ifi=j



(23)




This is obtained from Equation (13) in the case where [image: there is no content]=[image: there is no content] for [image: there is no content]. The entry [image: there is no content] is the probability that an individual chosen at random in colony i comes from colony j one time step back. Moreover,


[image: there is no content][image: there is no content]=[image: there is no content]



(24)




which means that [image: there is no content] is the stationary distribution associated with the backward migration matrix [image: there is no content]. The stationary distribution associated with [image: there is no content]k, for [image: there is no content], can be expressed with respect to this distribution. For [image: there is no content]=(n1,…,nd)∈[image: there is no content], we have:


π[image: there is no content]=|[image: there is no content]|n1,n2,…,ndπ1n1×⋯×πdnd



(25)




where:


|[image: there is no content]|n1,n2,…,nd=|[image: there is no content]|!n1!×n2!×⋯×nd!



(26)




The proof of Equation (25) is given in Appendix B.
By definition of the stationary distribution (π[image: there is no content])[image: there is no content]∈[image: there is no content], we have:



[image: there is no content][image: there is no content]k=[image: there is no content]



(27)




for [image: there is no content], from which:


[image: there is no content][image: there is no content]=[image: there is no content][image: there is no content]=[image: there is no content]1[image: there is no content]1[image: there is no content]…[image: there is no content][image: there is no content][image: there is no content]2[image: there is no content]2…[image: there is no content]⋮⋮⋱⋮[image: there is no content][image: there is no content]…[image: there is no content]n[image: there is no content]n=[image: there is no content]



(28)




Owing to Proposition 1 in Appendix A, we conclude that:


lim[image: there is no content](ΠN)[image: there is no content]=lim[image: there is no content][image: there is no content]+[image: there is no content]N+[image: there is no content]N2[image: there is no content]=[image: there is no content]exp{t[image: there is no content]}



(29)




where [image: there is no content]=[image: there is no content][image: there is no content][image: there is no content] and [image: there is no content] denotes the floor value of [image: there is no content], which is defined as the greatest integer less or equal to the real number [image: there is no content]. Using the block forms of [image: there is no content] and [image: there is no content] given in Equations (17) and (20), respectively, we have:


[image: there is no content]=[image: there is no content][image: there is no content][image: there is no content]…[image: there is no content][image: there is no content][image: there is no content]2[image: there is no content]2,1[image: there is no content]1[image: there is no content]2[image: there is no content]2,2[image: there is no content]2[image: there is no content]…[image: there is no content][image: there is no content][image: there is no content][image: there is no content]3[image: there is no content]3,2[image: there is no content]2[image: there is no content]3[image: there is no content]3,3[image: there is no content]3…[image: there is no content][image: there is no content]⋮⋮⋮⋱⋮⋮[image: there is no content][image: there is no content][image: there is no content]…[image: there is no content]n[image: there is no content]n,n-1[image: there is no content]n-1[image: there is no content]n[image: there is no content]n,n[image: there is no content]n



(30)




The non-null entries of [image: there is no content]=G[image: there is no content],[image: there is no content]′[image: there is no content],[image: there is no content]′∈[image: there is no content] are given by:



G[image: there is no content],[image: there is no content]′=π[image: there is no content]′∑[image: there is no content],[image: there is no content]∈[image: there is no content]π[image: there is no content]b[image: there is no content],[image: there is no content]if[image: there is no content]′∈[image: there is no content]π[image: there is no content]′∑[image: there is no content]∈[image: there is no content],[image: there is no content]∈Γ[image: there is no content]π[image: there is no content]b[image: there is no content],[image: there is no content]if[image: there is no content]′∈Γ[image: there is no content]



(31)




for [image: there is no content]∈[image: there is no content] for [image: there is no content]. We have:



∑[image: there is no content]∈[image: there is no content],[image: there is no content]∈Γ[image: there is no content]π[image: there is no content]b[image: there is no content],[image: there is no content]=∑x1+⋯+xd=k∑[image: there is no content]dkx1,…,xdπ1x1⋯πdxd×xi(xi-1)[image: there is no content][image: there is no content]+∑x1+⋯+xd=k∑[image: there is no content]kx1,…,xdπ1x1⋯πdxd×xixj[image: there is no content][image: there is no content]



(32)




The first term on the right-hand side of Equation (32) is:


∑[image: there is no content]dk(k-1)[image: there is no content][image: there is no content]πi2∑xi≥2x1+⋯+xd=kk-2x1,…,xi-2.…,xdπ1x1⋯πixi-2⋯πdxd=∑[image: there is no content]dk(k-1)[image: there is no content][image: there is no content]πi2(π1+⋯+πd)k-2=∑[image: there is no content]dk(k-1)[image: there is no content][image: there is no content]πi2



(33)




while the second term is:


∑[image: there is no content]k(k-1)[image: there is no content][image: there is no content][image: there is no content]πj∑xi≥1,xj≥1x1+⋯+xd=kk-2x1,…,xi-1,…,xj-1,…,xdπ1x1⋯πixi-1⋯πjxj-1⋯πdxd=∑[image: there is no content]k(k-1)[image: there is no content][image: there is no content][image: there is no content]πj(π1+⋯+πd)k-2=∑[image: there is no content]k(k-1)[image: there is no content][image: there is no content][image: there is no content]πj



(34)




These expressions into Equation (32) give:


∑[image: there is no content]∈[image: there is no content],[image: there is no content]∈Γ[image: there is no content]π[image: there is no content]b[image: there is no content],[image: there is no content]=k(k-1)λ



(35)




where:


λ=∑[image: there is no content]d[image: there is no content][image: there is no content]πi2+∑[image: there is no content][image: there is no content][image: there is no content][image: there is no content]πj



(36)




Finally, using the fact that:



∑[image: there is no content]∈Γ[image: there is no content]b[image: there is no content],[image: there is no content]+∑[image: there is no content]∈[image: there is no content]b[image: there is no content],[image: there is no content]=0



(37)




the non-null entries of [image: there is no content] given in Equation (32) take the form:


G[image: there is no content],[image: there is no content]′=-k(k-1)π[image: there is no content]′λif[image: there is no content]′∈[image: there is no content]k(k-1)π[image: there is no content]′λif[image: there is no content]′∈Γ[image: there is no content]



(38)




for [image: there is no content]∈[image: there is no content] for [image: there is no content]. Note that G[image: there is no content],[image: there is no content]′=0 for [image: there is no content]∈[image: there is no content] and [image: there is no content]′∈[image: there is no content]. In summary, we have the following result in the limit of a large population size.

Theorem 1.
The strong migration limit of the genealogical process in a structured population, taking [image: there is no content] time steps as the unit of time as the population size [image: there is no content], is given by:



lim[image: there is no content](ΠN)⌊(2λ)-1tN2⌋=[image: there is no content]exp{tH}:=Π(t)



(39)




for [image: there is no content], where H=(2λ)-1[image: there is no content]=(h[image: there is no content],[image: there is no content]′)[image: there is no content],[image: there is no content]′∈[image: there is no content] has non-null entries given by:


h[image: there is no content],[image: there is no content]′=-k(k-1)2π[image: there is no content]′if[image: there is no content]′∈[image: there is no content]k(k-1)2π[image: there is no content]′if[image: there is no content]′∈Γ[image: there is no content]



(40)




for [image: there is no content]∈[image: there is no content], for [image: there is no content].


Remark 1 Equation (39) means that, in the limit as [image: there is no content] for [image: there is no content], the ancestors are in state [image: there is no content]∈Γk with probability π[image: there is no content] as long as their number is k, while this number decreases by one at rate [image: there is no content] per [image: there is no content] time steps, for [image: there is no content]. In other words, after a scaled time of exponential distribution with parameter [image: there is no content], the number of ancestors jumps from k to [image: there is no content], and these ancestors are found in state [image: there is no content]′, with probability π[image: there is no content]′ for [image: there is no content]′∈Γ[image: there is no content]. Note that the number of ancestors is described by the standard Kingman coalescent in a well-mixed population (see Kingman [4,5,6]).

Remark 2 The limiting process for the number of ancestors in the structured population of size N corresponds to the limiting process for the Moran model (see Moran [33,34]) in a well-mixed population of size [image: there is no content] with [image: there is no content] time steps as the unit of time as [image: there is no content], where λ is given in Equation (36). The parameter λ is a measure of mixing, and [image: there is no content] is an effective population size that takes into account the population structure.



4. Equilibrium State

Suppose without loss of generality that the individuals in the population occupy ordered sites, such that the sites of colony 1 come first, then the sites of colony 2 come second, and so on, up to the sites of colony d. The state of the population at a given time step is represented by the N-dimensional vector [image: there is no content], where:



δl=1if[image: there is no content]atsitel0if[image: there is no content]atsitel



(41)




for [image: there is no content]. With [image: there is no content] being the probability for an individual from colony i to interact with an individual chosen at random from colony j, for [image: there is no content], and assuming that an individual can interact with itself, the expected payoffs of strategies [image: there is no content] and [image: there is no content] in colony i for [image: there is no content] are given by:


[image: there is no content]=∑j=1d[image: there is no content](aijxj+bij(1-xj))



(42)




and:


[image: there is no content]=∑j=1d[image: there is no content](cijxj+dij(1-xj))



(43)




respectively, where:


[image: there is no content]



(44)




is the frequency of [image: there is no content] in colony j, for [image: there is no content] (with the convention that [image: there is no content]).
An offspring is produced according to the corresponding fertilities [image: there is no content] and [image: there is no content] given in Equations (3) and (4). This offspring migrates from colony i to colony j with probability [image: there is no content] and replaces an individual chosen at random in colony j, for [image: there is no content]. Moreover, the strategy of each individual mutates into a strategy chosen at random among [image: there is no content] and [image: there is no content] with probability u, and this occurs independently for all individuals. Then, the conditional expected value of the new state of the population takes the form:



[image: there is no content]



(45)




where [image: there is no content] is an all-ones N-dimensional vector, while:


R(s)=(rij(s)[image: there is no content])1≤i,j≤d+[image: there is no content]-D(r(s))



(46)




where [image: there is no content] is a diagonal matrix with the vector:


r(s)=(ri(s)[image: there is no content]i)1≤i≤d



(47)




on the main diagonal. Here, [image: there is no content] denotes an all-ones [image: there is no content]×Nj-matrix and [image: there is no content]i an all-ones [image: there is no content]-dimensional vector. Moreover,


rij(s)=f1,j[image: there is no content]Nf¯[image: there is no content]



(48)




is the probability for a given individual in colony i to be replaced by an offspring produced by an individual playing [image: there is no content] in colony j, if there is any, while:


ri(s)=∑j=1dNjf¯j[image: there is no content]Nf¯[image: there is no content]



(49)




is the total probability for a given individual in colony i to be replaced by an offspring.
Note that:



[image: there is no content]



(50)




and:


[image: there is no content]



(51)




are the average fertilities in colony j and in the whole population, respectively, where:


[image: there is no content]



(52)




and:


[image: there is no content]



(53)




are the corresponding average expected payoffs. Therefore,


[image: there is no content]



(54)




and:


ri(s)=ri(0)+s∑j=1dNj[image: there is no content]N[image: there is no content]([image: there is no content]j-[image: there is no content])+o(s)



(55)




with:


rij(0)=[image: there is no content]N[image: there is no content]



(56)




and:


ri(0)=∑j=1dNj[image: there is no content]N[image: there is no content]



(57)




Note that the stochastic matrix:



R(0)=(rij(0)[image: there is no content])1≤i,j≤d+[image: there is no content]-D(r(0))



(58)




has a stationary distribution given by:


v(0)T=π1N1[image: there is no content]1T,…,πdNd[image: there is no content]dT



(59)




with T for transpose, where [image: there is no content] is the stationary distribution of the backward migration matrix [image: there is no content] defined in Equation (23). Moreover,


[image: there is no content]



(60)




and:


[image: there is no content]



(61)




where [image: there is no content] stands here for a matrix or a vector whose entries or components are functions little-o with respect to s as [image: there is no content].
At equilibrium, we have:



E[δ′]=E[E[δ′|δ]]=(1-u)E[R(s)δ]+u2[image: there is no content]=E[δ]



(62)




The scalar product with [image: there is no content] yields:


[image: there is no content]



(63)




Note that this equilibrium equation in the neutral case ([image: there is no content] with [image: there is no content] denoting expectation under this condition) gives:



⟨v(0),[image: there is no content][δ]⟩=(1-u)⟨v(0),R(0)[image: there is no content][δ]⟩+u2=(1-u)⟨v(0)R(0),[image: there is no content][δ]⟩+u2=(1-u)⟨v(0),[image: there is no content][δ]⟩+u2



(64)




from which:


⟨v(0),[image: there is no content][δ]⟩=12



(65)




Under weak selection, it follows from Equations (60) and (63) that:



⟨v(0),E[δ]⟩=(1-u)⟨v(0),R(0)E[δ]⟩+s⟨v(0),E[dRds(0)δ]⟩+u2+o(s)=(1-u)⟨v(0)R(0),E[δ]⟩+s⟨v(0),E[dRds(0)δ]⟩+u2+o(s)=(1-u)⟨v(0),E[δ]⟩+s⟨v(0),E[dRds(0)δ]⟩+u2+o(s)



(66)




This equation gives an approximation in the case of weak selection, that is for [image: there is no content] small enough.


5. Condition for Weak Selection to Favour a Strategy over Another

In this section, we will prove the main result below.


Theorem 2.
 Strategy [image: there is no content] is favoured by weak selection in the strong migration limit of a structured population with payoff matrices given by (2) for strategies [image: there is no content] and [image: there is no content] under weak mutation, in the sense that [image: there is no content] is more abundant than [image: there is no content] in expected weighted average equilibrium frequency for a weak enough intensity of selection, if:



∑i,j,k=1d[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]ajk+bjk-cjk-djk>0



(67)




with [image: there is no content] being the proportion of individuals in colony i, [image: there is no content] the probability that an offspring migrates from colony j to colony i, [image: there is no content] the stationary proportion of ancestors of an individual that are in colony i in the neutral model and [image: there is no content] the probability for an individual in colony j to interact with an individual in colony k.



Proof.
The equilibrium Equation (66) implies that:



⟨v(0),E[δ]⟩=12+s(1-u)u⟨v(0),E[dRds(0)δ]⟩+[image: there is no content]u=12+s(1-u)u⟨v(0),[image: there is no content][dRds(0)δ]⟩+[image: there is no content]u



(68)






Note that:



⟨v(0),E[δ]⟩=∑[image: there is no content]d[image: there is no content]Exi



(69)




is a weighted expected frequency of strategy [image: there is no content] at equilibrium. If the intensity of selection [image: there is no content] is small enough, then:


⟨v(0),E[δ]⟩>⟨v(0),[image: there is no content][δ]⟩=12



(70)




if:


⟨v(0),[image: there is no content][dRds(0)δ]⟩>0



(71)




This is a condition for weak selection to favour [image: there is no content] in the sense that strategy [image: there is no content] is more abundant in weighted average frequency at equilibrium than strategy [image: there is no content]. If the inequality is reversed, then weak selection favours [image: there is no content] in the same sense.
With the assumptions of the model, the vector [image: there is no content] takes the expression given in Equation (59) and:



dRds(0)=[image: there is no content]N[image: there is no content](φ1,j-[image: there is no content])[image: there is no content]1≤i,j≤d-[image: there is no content][image: there is no content]i∑j=1dNj[image: there is no content]N[image: there is no content]([image: there is no content]-[image: there is no content])1≤i≤d



(72)




where [image: there is no content] and [image: there is no content] are given in Equations (52) and (53), respectively. Therefore, we have:


⟨v(0),[image: there is no content][dRds(0)δ]⟩=∑i,j=1d[image: there is no content]Nj[image: there is no content]N[image: there is no content][image: there is no content]φ1,jxj(1-xi)-φ2,jxi(1-xj)+∑i,j=1d[image: there is no content]Nj[image: there is no content]N[image: there is no content][image: there is no content]xi[image: there is no content]-∑i,j=1d[image: there is no content]Nj[image: there is no content]N[image: there is no content][image: there is no content]xj[image: there is no content]



(73)




Moreover, Equation (24) entails that:


∑i,j=1d[image: there is no content]Nj[image: there is no content]N[image: there is no content][image: there is no content]xj[image: there is no content]=∑j=1d∑[image: there is no content]d[image: there is no content]Nj[image: there is no content]N[image: there is no content][image: there is no content]xj[image: there is no content]=∑j=1d∑[image: there is no content]dπj[image: there is no content][image: there is no content]NNj[image: there is no content]xj[image: there is no content]=∑i,j=1d[image: there is no content]Nj[image: there is no content]N[image: there is no content][image: there is no content]xi[image: there is no content]



(74)




with the last equality obtained by permuting the indices i and j. Therefore, the condition for weak selection to favour [image: there is no content] becomes:


∑i,j=1d[image: there is no content]Nj[image: there is no content]N[image: there is no content][image: there is no content]φ1,jxj(1-xi)-φ2,jxi(1-xj)>0



(75)




Using the expressions given in Equations (42) and (43) for the expected payoffs of [image: there is no content] and [image: there is no content] in colony j, we find that:



[image: there is no content]φ1,jxj(1-xi)-φ2,j(1-xj)xi=∑k=1d[image: there is no content]×aj,k[image: there is no content][xkxj(1-xi)]+bj,k[image: there is no content][(1-xk)xj(1-xi)]-cj,k[image: there is no content][xk(1-xj)xi]-dj,k[image: there is no content][(1-xk)(1-xj)xi]



(76)




In the neutral model, a permutation of strategies [image: there is no content] and [image: there is no content] does not change the expected value of a product of their equilibrium frequencies. Consequently, we have:


[image: there is no content][xkxj(1-xi)]=[image: there is no content][(1-xk)(1-xj)xi]



(77)




and:


[image: there is no content][(1-xk)xj(1-xi)]=[image: there is no content][xk(1-xj)xi]



(78)




Moreover, in the strong migration limit with [image: there is no content] time steps as the unit of time as [image: there is no content] and under weak mutation, so that [image: there is no content] remains constant, the above expected values are all equal to the probability that exactly two given individuals out of three, irrespective of the colonies that they are in, use the same strategy (see Appendix C). Ignoring common positive factors and writing Nj/[image: there is no content] as [image: there is no content]/[image: there is no content], we get the condition given in Equation (67) for weak selection to favour [image: there is no content], which completes the proof.  □


6. Application to Cooperation with Dominance Hierarchy

Dominance hierarchy in animals is a form of social structure in which a linear or nearly linear ranking exists, with each animal dominant over those below it and submissive to those above it in the hierarchy. In this section, we study the evolution of cooperation in two cases of dominance hierarchy. The first case is linear dominance, which involves global interactions. Colonies form a complete graph. An individual from any colony i can interact with an individual from any colony j ([image: there is no content]>0 for [image: there is no content]). The second case is cyclic dominance, which assumes only local interactions. Colonies are distributed over a one-dimensional cycle with each colony connected to the two nearest-neighbour colonies. An individual from colony i can interact only with an individual from the same colony or from the two nearest-neighbour colonies ([image: there is no content]>0 only if [image: there is no content] or [image: there is no content] for [image: there is no content] with the convention that 0 stands for d and [image: there is no content] for 1). In both cases, the condition for weak selection to favour cooperation is deduced from Theorem 2 for any irreducible and aperiodic migration matrix. This condition is developed further under the assumptions of random interactions and uniform migration in the case of linear dominance and under the assumptions of random interactions and local symmetric migration in the case of cyclic dominance.


6.1. Linear Dominance

Assume that individuals from colony i are better competitors than individuals from colony j, for [image: there is no content], such that [image: there is no content]. Under this assumption, there are two types of interactions: symmetric interactions, which occur between individuals in the same colony, and asymmetric interactions, which occur between individuals in different colonies (see, e.g., Krebs and Davies [35] and Walters and Seyfarth [36]). In the context of the repeated prisoner’s dilemma, two strategies are available: tit-for-tat (TFT) and always defect (AllD) (see, e.g., Axelrod [37] and Axelrod and Hamilton [7]). Let [image: there is no content] be the number of rounds of the game, [image: there is no content] be the benefit of an individual if its opponent cooperates and [image: there is no content] be the cost that a cooperator incurs, with [image: there is no content].

The payoff matrix for symmetric interactions within colony i is:



[image: there is no content]ii=[image: there is no content][image: there is no content][image: there is no content][image: there is no content](R(b-c)-cb0)



(79)




for [image: there is no content]. In asymmetric interactions, a defector from colony i incurs a defection cost β when in interaction with a defector from colony [image: there is no content] (Tao et al. [29]; Kroumi and Lessard [30]). Therefore, the payoff matrix is [image: there is no content]ij=[image: there is no content]ii for [image: there is no content], but:


[image: there is no content]ij=[image: there is no content][image: there is no content][image: there is no content][image: there is no content](R(b-c)-c-(R-1)βb-(R-1)β-Rβ)



(80)




for [image: there is no content]. Note that the case [image: there is no content] corresponds to the standard additive prisoner’s dilemma for symmetric, as well as asymmetric interactions. The payoffs as defined in Equation (2) satisfy:


ajk+bjk-cjk-djk=R(b-c)-b-cif1≤j≤k≤dR(b+β-c)-b-cif1≤k<j≤d



(81)




Then, the condition given in Equation (67) for TFT to be favoured under weak selection and mutation becomes:



(R(b-c)-b-c)∑i,j=1d[image: there is no content][image: there is no content][image: there is no content][image: there is no content]+Rβd∑i,j=1d∑k=1j-1[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]>0



(82)




This condition can be written into the equivalent form:


[image: there is no content]



(83)




where:


aL=∑i,j=1d∑k=1j-1[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]∑i,j=1d[image: there is no content][image: there is no content][image: there is no content][image: there is no content]



(84)




In the case of random interactions ([image: there is no content]=1/d) and colonies of the same size ([image: there is no content]=1/d) with uniform migration ([image: there is no content]=1-m if [image: there is no content] and [image: there is no content] otherwise), so that [image: there is no content]=1/d for [image: there is no content], we have [image: there is no content]. Figure 1 shows the migration and interaction graphs in this case. Moreover, the above condition takes the form:

Figure 1. Examples with linear dominance. The individuals of the population are distributed over d colonies. From left to right: [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content]. Colonies are represented by full circles. Interactions and migration are possible between colonies connected by dashed edges. The interaction and migration graphs are both complete graphs.



[image: Games 06 00318 g001 1024]







[image: there is no content]



(85)




This extends a result found in Kroumi and Lessard [30] in the particular case where [image: there is no content].




6.2. Cyclic Dominance

Cyclic dominance is inspired from the rock-paper-scissors game (Linhart [38]). Rock is wrapped by paper; paper is cut by scissors; and scissors are crushed by rock. This simple game is popular among children and adults to decide on trivial disputes that have no obvious winner. In the case of cyclic dominance with [image: there is no content] colonies, we assume interactions only between individuals in adjacent colonies contrary to the case of linear dominance where there were interactions between individuals in all colonies. More precisely, we assume that an individual from colony i can interact only with an individual from colony [image: there is no content], i or i+1, for [image: there is no content]. An individual from colony 1 can interact only with an individual from the same colony or from colony 2 or d, while an individual from colony d can interact only with an individual from colony 1, [image: there is no content] or d. We assume also that individuals from colony i dominate individuals from colony [image: there is no content], for [image: there is no content], and individuals from colony d dominate individuals from colony 1. As in the case of linear dominance, there are symmetric interactions and asymmetric interactions. Symmetric interactions within colony [image: there is no content] result in the payoff matrix:



[image: there is no content]ii=[image: there is no content][image: there is no content][image: there is no content][image: there is no content](R(b-c)-cb0)



(86)




The payoffs of individuals in colony i in asymmetric interaction with dominated individuals from colony [image: there is no content] (or 1 if [image: there is no content]) are given by the same matrix as for symmetric interactions, that is:


[image: there is no content]i,i+1=[image: there is no content]d,1=[image: there is no content]i,i



(87)




for [image: there is no content]. However, if an individual in colony i is in asymmetric interaction with a dominant individual in colony [image: there is no content] (or d of [image: there is no content]), then the payoff matrix is:


[image: there is no content]i,i-1=[image: there is no content]1,d=[image: there is no content][image: there is no content][image: there is no content][image: there is no content](R(b-c)-c-(R-1)βb-(R-1)β-Rβ)



(88)




for [image: there is no content].
In this case, the condition given in Equation (67) for TFT to be favoured under weak selection and mutation takes the form:



(R(b-c)-b-c)∑i,j=1d[image: there is no content][image: there is no content][image: there is no content][image: there is no content]+Rβ∑i,j=1d[image: there is no content][image: there is no content][image: there is no content][image: there is no content]qj,j-1>0



(89)




This can be written as:


[image: there is no content]



(90)




where:


aC=∑i,j=1d[image: there is no content][image: there is no content][image: there is no content][image: there is no content]qj,j-1∑i,j=1d[image: there is no content][image: there is no content][image: there is no content][image: there is no content]



(91)




In the case of random interactions between individuals belonging to the same colony and the two adjacent colonies ([image: there is no content] for [image: there is no content] with the convention that 0 stands for d and [image: there is no content] for 1) with colonies of the same size ([image: there is no content]=1/d) and symmetric local migration ([image: there is no content]=1-m if [image: there is no content], [image: there is no content] if [image: there is no content] or [image: there is no content], and zero otherwise), so that [image: there is no content]=1/d for [image: there is no content], we have [image: there is no content]. The migration and interaction graphs in this case are illustrated in Figure 2. In this case, the above condition takes the form:

Figure 2. Examples with cyclic dominance. The individuals of the population are distributed over d colonies on a circle. From left to right: [image: there is no content]; [image: there is no content]; [image: there is no content]; [image: there is no content]. Colonies are represented by full circles. Interactions and migration are possible only between colonies connected by dashed edges. The interaction and migration graphs are regular cycles.



[image: Games 06 00318 g002 1024]







[image: there is no content]



(92)




This condition in the case of cyclic dominance is the same as the condition given in Equation (85) in the case of linear dominance for [image: there is no content], in agreement with Kroumi and Lessard [30]. This result conforms nicely with intuition, because for [image: there is no content], the regular cycle is identical to the complete graph. However, it is more stringent than the condition given in Equation (85) as soon as [image: there is no content] (see Figure 3).






Figure 3. Exact threshold value that R must exceed for cooperation to be favoured by weak selection under linear dominance and cyclic dominance in the [image: there is no content] limit as a function of the number d of colonies, for [image: there is no content], [image: there is no content] and [image: there is no content]. The threshold value is the same for [image: there is no content], since the complete graph coincides with the cyclic graph in this case. However, while this value remains constant in the case of cyclic dominance as d increases, it decreases in the case of linear dominance, making cooperation more favourable.



[image: Games 06 00318 g003 1024]






7. Application to Games in Set-Structured Populations

Tarnita et al. [26] consider a population composed of N individuals and M sets. They assume that each individual belongs exactly to K sets, which corresponds to a phenotype. Interactions occur only between individuals within the same sets (individuals interact as many times as the number of sets to which they both belong). With M sets numbered [image: there is no content], every individual l is represented by a M-dimensional vector [image: there is no content]. Here, [image: there is no content] if individual l belongs to set i and zero otherwise, for [image: there is no content], with exactly K components equal to one and [image: there is no content] components equal to zero. The individuals represented by the same vector [image: there is no content] belong to the same colony represented by this vector. Here, there are [image: there is no content] colonies. We assume that an offspring inherits the K sets of his parent represented by [image: there is no content] with probability m[image: there is no content],[image: there is no content] and chooses K sets represented by [image: there is no content] with probability m[image: there is no content],[image: there is no content]. These are phenotype mutation probabilities. The number of interactions between two individuals represented by [image: there is no content]=(yi)1≤i≤M and [image: there is no content], respectively, is given by:



⟨[image: there is no content],[image: there is no content]⟩=∑[image: there is no content]Myizi



(93)




Therefore,


q[image: there is no content],[image: there is no content]=⟨[image: there is no content],[image: there is no content]⟩α[image: there is no content]∑[image: there is no content]⟨[image: there is no content],[image: there is no content]⟩α[image: there is no content]



(94)




where α[image: there is no content] is the proportion of colony [image: there is no content]. Two strategies are in use, represented by [image: there is no content] and [image: there is no content]. The payoff matrix for i in [image: there is no content] against j in [image: there is no content] is denoted by [image: there is no content][image: there is no content],[image: there is no content].
Suppose that phenotype mutation occurs at random, so that m[image: there is no content],[image: there is no content]=1/d for every couple of phenotypes ([image: there is no content],[image: there is no content]). Then, the backward matrix takes the form:



m[image: there is no content],[image: there is no content]*=α[image: there is no content]dNα[image: there is no content]if[image: there is no content]≠[image: there is no content]1-1-α[image: there is no content]dNα[image: there is no content]if[image: there is no content]=[image: there is no content]



(95)




The stationary distribution of this matrix is given by:


π[image: there is no content]=α[image: there is no content]2∑[image: there is no content]α[image: there is no content]2



(96)




Therefore, the condition given in Equation (67) for [image: there is no content] to be favoured by weak selection becomes:


∑[image: there is no content],[image: there is no content]α[image: there is no content]q[image: there is no content],[image: there is no content](a[image: there is no content],[image: there is no content]+b[image: there is no content],[image: there is no content]-c[image: there is no content],[image: there is no content]-d[image: there is no content],[image: there is no content])>0



(97)




Written in the form:


∑[image: there is no content],[image: there is no content]α[image: there is no content]q[image: there is no content],[image: there is no content](a[image: there is no content],[image: there is no content]+b[image: there is no content],[image: there is no content])>∑[image: there is no content],[image: there is no content]α[image: there is no content]q[image: there is no content],[image: there is no content](c[image: there is no content],[image: there is no content]+d[image: there is no content],[image: there is no content])



(98)




the condition means that the expected payoff of [image: there is no content] exceeds the expected payoff of [image: there is no content] when the expected frequencies of [image: there is no content] and [image: there is no content] are equal among the individuals of the same phenotype for every phenotype.
Suppose now that an [image: there is no content]-individual uses strategy [image: there is no content] with an opponent only if the two individuals belong to at least L common sets, where [image: there is no content] is a fixed constant, and uses [image: there is no content] otherwise. On the other hand, an [image: there is no content]-individual always uses strategy [image: there is no content]. In this case, the payoff matrix for an individual in colony [image: there is no content] against an individual in colony [image: there is no content] takes the form:



[image: there is no content][image: there is no content],[image: there is no content]=[image: there is no content][image: there is no content][image: there is no content][image: there is no content](RSTP)



(99)




if ⟨[image: there is no content],[image: there is no content]⟩≥L, and:


[image: there is no content][image: there is no content],[image: there is no content]=[image: there is no content][image: there is no content][image: there is no content][image: there is no content](PPPP)



(100)




if 1≤⟨[image: there is no content],[image: there is no content]⟩≤L-1 (note that the meaning of R is different here from the previous section). Moreover, we have:


a[image: there is no content],[image: there is no content]+b[image: there is no content],[image: there is no content]-c[image: there is no content],[image: there is no content]-d[image: there is no content],[image: there is no content]=R+S-T-Pif⟨[image: there is no content],[image: there is no content]⟩≥L0otherwise



(101)




In this case, the condition given in Equation (67) for [image: there is no content] to be favoured by weak selection reduces to:



(R+S-T-P)∑[image: there is no content],[image: there is no content]∑[image: there is no content]:⟨[image: there is no content],[image: there is no content]⟩≥Lπ[image: there is no content]α[image: there is no content]α[image: there is no content]m[image: there is no content],[image: there is no content]q[image: there is no content],[image: there is no content]>0



(102)




which is the same as:


[image: there is no content]



(103)




This condition, known as risk dominance in a coordination game (Harsanyi and Selten [39]), does not depend on the population structure.


8. Discussion

Our main result (Theorem 2) for [image: there is no content] to be favoured by weak selection over [image: there is no content] in a structured population under weak strategy mutation in the limit of a large population with payoffs in pairwise interactions depending on the locations of the players is given by Equation (67), which can be written in the form:



∑i,j,k=1d[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]aj,k+bj,k2>∑i,j,k=1d[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]cj,k+dj,k2



(104)




Here, [image: there is no content] is the limiting proportion of time back that a single lineage spends in colony i in the absence of selection, for [image: there is no content]. It represents the expected contribution of colony i to the whole population in the long run forward in time, called its reproductive value, under the neutral model. With [image: there is no content] representing the proportion of colony i and [image: there is no content] the probability for an offspring from colony i to migrate to colony j for [image: there is no content], the quantity [image: there is no content][image: there is no content]/[image: there is no content] represents an expected relative reproductive value of an offspring produced by an individual in colony i. On the other hand, every individual interacts with an [image: there is no content]-individual and with an [image: there is no content]-individual with the same probability [image: there is no content] in a neutral population at equilibrium, since then, the probability that any given individual uses strategy [image: there is no content] or [image: there is no content] is equal to the probability that the most recent mutant ancestor of this individual used strategy [image: there is no content] or [image: there is no content], which is [image: there is no content] in each case from the assumptions on strategy mutation. We have the same approximate probability 1/2 in an equilibrium population under weak selection. With [image: there is no content] being the probability that an individual chosen at random in the whole population belongs to colony j and [image: there is no content], the probability for an individual from colony j to interact with an individual from colony k, for [image: there is no content], the left-hand side of Equation (104) can be interpreted as the expected payoff of [image: there is no content] weighted by relative reproductive values of offspring in an equilibrium population near neutrality. The right-hand side of Equation (104) has a similar interpretation for [image: there is no content], and the inequality guarantees that [image: there is no content] is more abundant on average than [image: there is no content] at equilibrium near neutrality if individuals are weighted by their relative reproductive values.
This interpretation is very intuitive. It is an alternative to the use of structure coefficients (Nowak et al. [32]) for games in structured populations. Moreover, this interpretation suggests an effective payoff matrix (Lessard [40]):



[image: there is no content]˜=∑i,j,k=1d[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]jk



(105)




where [image: there is no content]jk is the payoff matrix for an individual from colony j in interaction with an individual from colony k. This means that the game in the structured population is equivalent to a game in a well-mixed population with this matrix as the payoff matrix.
This result has been obtained for a structured population reproducing according to a Moran model with one individual replaced at a time in the strong migration limit as the population size N tends to infinity. We have shown (Theorem 1) that the genealogical process in the neutral model, which is described by the transition matrix in Equation (12) from one time step to the previous one, where [image: there is no content] and [image: there is no content] are given in Section 3, tends to the standard Kingman coalescent (Kingman [6]) for the number of ancestors if [image: there is no content] time steps are taken as the unit of time where λ is given by Equation (36), while the ancestors are distributed independently among the colonies according to the stationary distribution [image: there is no content]. The proof (Appendix A) relies on a two-time scale argument and uses a lemma due to Möhle [31]. A similar result was proven in a different way in Notohara [2] in the case of a subdivided population that reproduces according to a Wright–Fisher model.

Our main result has been applied to the situation of dominance hierarchy with d colonies in decreasing order of dominance in the case of linear dominance and in counter-clockwise order of dominance in the case of cyclic dominance. Individuals in a given colony can interact with individuals in all other colonies in the case of linear dominance, but only with individuals in the same colony or in the two adjacent colonies in the case of cyclic dominance. Considering the strategies TFT and AllD in a repeated additive prisoner’s dilemma and a cost for defection against a dominant defector, it has been shown that linear dominance is more favourable than cyclic dominance for increasing the expected frequency of TFT at equilibrium as soon as [image: there is no content]. This has been obtained under the assumptions of colonies of the same size with uniform or symmetric migration and random interactions.

Another application concerns the set-structured population as introduced in Tarnita et al. [26], but with colonies of fixed relative sizes and reproduction according to a Moran model instead of a Wright–Fisher model. With uniform mutation from one subset of sets to another of the same size, which defines the phenotype of an individual, the condition for [image: there is no content] to be favoured by weak selection is that, for an individual chosen at random in the whole population, the expected payoff of [image: there is no content] exceeds the expected payoff of [image: there is no content] near neutrality. With strategy [image: there is no content] actually used only if the number of common sets to which the two players belong exceeds some threshold, it has been shown that the condition for [image: there is no content] to be favoured by weak selection reduces to a condition known as risk dominance (Harsanyi and Selten [39]) as in a well-mixed population. Note that the same result was obtained in Tarnita et al. [26] in the case of a high rate of phenotype mutation, which corresponds to strong migration from one phenotype to another.



9. Conclusions

Conditions for a strategy to be more abundant on average at equilibrium than another strategy in a structured population under weak selection and weak strategy mutation but strong migration can be expressed in terms of reproductive values in the neutral model on the basis of a two-time scale argument. This can be applied, for instance, to two-player games in populations with set structure or dominance hierarchy. In the case of dominance hierarchy, it has been shown that the condition for [image: there is no content] to be more abundant on average than [image: there is no content] in a repeated additive prisoner’s dilemma with a given cost for defection against a dominant defector is generally less stringent with linear dominance than with cyclic dominance. In the case of set structure with strong migration from one set to another, it has been shown that the condition for a strategy to be more abundant on average than another corresponds to risk dominance.
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Appendix


A. Convergence Result

For every square [image: there is no content] matrix [image: there is no content]=(aij)1≤i,j≤n, define:



∥[image: there is no content]∥:=max1≤i≤n∑j=1n|aij|



(A1)




and:


exp[image: there is no content]:=∑k=0∞[image: there is no content]kk!



(A2)




Note that, for any square [image: there is no content] matrices [image: there is no content] and [image: there is no content],


∥[image: there is no content][image: there is no content]∥≤∥[image: there is no content]∥∥[image: there is no content]∥



(A3)




Moreover,


exp[image: there is no content]+[image: there is no content]=exp[image: there is no content]exp[image: there is no content]



(A4)




if [image: there is no content][image: there is no content]=[image: there is no content][image: there is no content]. Finally, [image: there is no content] and [image: there is no content] denote the identity matrix and the zero matrix, respectively.

Proposition 1.
 Let [image: there is no content] be a sequence of positive real numbers with lim[image: there is no content]cN=0. Let [image: there is no content] and [image: there is no content] be square matrices of size n, such that ∥exp{[image: there is no content]}∥=1 and [image: there is no content]:=limm→∞exp{m[image: there is no content]} exists with [image: there is no content][image: there is no content]=[image: there is no content][image: there is no content]=[image: there is no content]. Then, we have:



lim[image: there is no content][image: there is no content]+cN[image: there is no content]+cN2[image: there is no content]⌊tcN-2⌋=[image: there is no content]exp{t[image: there is no content]}



(A5)




for every real number [image: there is no content], where [image: there is no content]=[image: there is no content][image: there is no content][image: there is no content].



Proof.
Since [image: there is no content] as [image: there is no content], there exists an integer [image: there is no content], such that [image: there is no content] and:



cN∥[image: there is no content]+cN[image: there is no content]∥<1



(A6)




for every integer [image: there is no content]. Then:


[image: there is no content]+cN[image: there is no content]+cN2[image: there is no content]⌊tcN-2⌋=exp⌊tcN-2⌋log[image: there is no content]+cN[image: there is no content]+cN2[image: there is no content]



(A7)




where:


log[image: there is no content]+cN[image: there is no content]+cN2[image: there is no content]=∑l=1∞(-1)l+1cNl[image: there is no content]+cN[image: there is no content]ll



(A8)




For more details on the logarithm of a matrix, see, e.g., Culver [41] or Higham [42]. Therefore,


[image: there is no content]+cN[image: there is no content]+cN2[image: there is no content]⌊tcN-2⌋=expcN⌊tcN-2⌋([image: there is no content]+cN[image: there is no content])×exp-cN2⌊tcN-2⌋([image: there is no content]+cN[image: there is no content])22×expcN2⌊tcN-2⌋EN



(A9)




where:


EN=∑l=3∞(-1)l+1cNl-2([image: there is no content]+cN[image: there is no content])ll



(A10)






For the third term on the right-hand side of Equation (A9), we have:



∥EN∥≤∑l=3∞cNl-2∥[image: there is no content]+cN[image: there is no content]∥ll≤∑l=1∞cNl∥[image: there is no content]+cN[image: there is no content]∥l+2≤cN∥[image: there is no content]+cN[image: there is no content]∥31-cN∥[image: there is no content]+cN[image: there is no content]∥→0



(A11)




as [image: there is no content]. Consequently,


lim[image: there is no content]EN=[image: there is no content]



(A12)




From this and the fact that [image: there is no content] as [image: there is no content], we have:


lim[image: there is no content]expcN2⌊tcN-2⌋EN=[image: there is no content]



(A13)




On the other hand,


lim[image: there is no content]exp-cN2⌊tcN-2⌋2([image: there is no content]+cN[image: there is no content])2=exp-t2[image: there is no content]2



(A14)




Finally, note that:



exp{[image: there is no content]+cN[image: there is no content]}=exp{[image: there is no content]}+cNDN



(A15)




where:


[image: there is no content]



(A16)




with:


D=∑l=1∞1l!∑m1+m2=l-1[image: there is no content]m1[image: there is no content][image: there is no content]m2



(A17)




and:


RN=∑l=2∞1l!∑k=2lcNk-2∑m1+⋯+m[image: there is no content]=l-k[image: there is no content]m1[image: there is no content][image: there is no content]m2[image: there is no content]⋯[image: there is no content]mk[image: there is no content][image: there is no content]m[image: there is no content]



(A18)




Here, the summation is over all non-negative integers [image: there is no content], which sum up to [image: there is no content]. Moreover,


RN≤∑l=2∞1l!∑k=2lcNk-2∑m1+⋯+m[image: there is no content]=l-k∥[image: there is no content]m1[image: there is no content][image: there is no content]m2[image: there is no content]⋯[image: there is no content]mk[image: there is no content][image: there is no content]m[image: there is no content]∥≤∑l=2∞1l!∑k=2lcNk-2∑m1+⋯+m[image: there is no content]=l-k∥[image: there is no content]∥m1+⋯+m[image: there is no content]∥[image: there is no content]∥k≤∑l=2∞1l!∑k=2lcNk-2[image: there is no content]∥[image: there is no content]∥[image: there is no content]∥[image: there is no content]∥k≤∑l=2∞(∥[image: there is no content]∥+∥[image: there is no content]∥)ll!≤exp{∥[image: there is no content]∥+∥[image: there is no content]∥}<∞



(A19)




Note that [image: there is no content] represents the number of ways [image: there is no content] indistinguishable balls can be put into [image: there is no content] distinguishable cells. Furthermore, a lemma proved in Möhle [31] guarantees that:


lim[image: there is no content]exp{[image: there is no content]}+cNDN⌊cN-1⌋=[image: there is no content]exp{Q}



(A20)




where:


[image: there is no content]=lim[image: there is no content]exp{[image: there is no content]}m=lim[image: there is no content]exp{m[image: there is no content]}



(A21)




and:


Q=lim[image: there is no content][image: there is no content]DN[image: there is no content]=[image: there is no content]D[image: there is no content]



(A22)




Therefore,


lim[image: there is no content]expcN⌊tcN-2⌋([image: there is no content]+cN[image: there is no content])=lim[image: there is no content]exp[image: there is no content]+cN[image: there is no content]cN⌊tcN-2⌋=lim[image: there is no content]exp{[image: there is no content]}+cNDN⌊cN-1⌋⌊cN-1⌋-1cN⌊tcN-2⌋=[image: there is no content]exp{Q}t=[image: there is no content]exp{tQ}



(A23)




since [image: there is no content] as [image: there is no content]. The last equality comes from the fact that:


[image: there is no content]exp{Q}=[image: there is no content]∑k=0∞Qkk!=[image: there is no content]+∑k=1∞[image: there is no content]Dk[image: there is no content]k!=∑k=0∞Qkk![image: there is no content]=exp{Q}[image: there is no content]



(A24)




This ascertains the equality for every [image: there is no content] that is an integer, then a rational number and, finally, a real number by continuity. Using Equations (A13), (A14) and (A23), the limit in Equation (A9) as [image: there is no content] gives:


lim[image: there is no content][image: there is no content]+cN[image: there is no content]+cN2[image: there is no content]⌊tcN-2⌋=[image: there is no content]exp{tQ}exp-t2[image: there is no content]2



(A25)




On the other hand, the condition [image: there is no content][image: there is no content]=[image: there is no content][image: there is no content]=[image: there is no content] ensures the equalities:



Q=[image: there is no content]D[image: there is no content]=∑l=1∞1l!∑m1+m2=l-1[image: there is no content][image: there is no content]m1[image: there is no content][image: there is no content]m2[image: there is no content]










=[image: there is no content][image: there is no content][image: there is no content]+∑l=2∞1l!∑m1+m2=l-1[image: there is no content][image: there is no content]m1[image: there is no content][image: there is no content]m2[image: there is no content]










=[image: there is no content][image: there is no content][image: there is no content]=[image: there is no content]



(A26)




and:


[image: there is no content]exp-t[image: there is no content]22=[image: there is no content]∑k=0∞(-1)k[image: there is no content]2k2kk!=[image: there is no content]+∑k=1∞(-1)k[image: there is no content][image: there is no content]2k2kk!=[image: there is no content]



(A27)




Using these equalities in Equation (A25) yields:


lim[image: there is no content][image: there is no content]+cN[image: there is no content]+cN2[image: there is no content]⌊tcN-2⌋=[image: there is no content]exp{t[image: there is no content]}exp-t[image: there is no content]22










=exp{t[image: there is no content]}[image: there is no content]exp-t[image: there is no content]22










=exp{t[image: there is no content]}[image: there is no content]










=[image: there is no content]exp{t[image: there is no content]}



(A28)




This completes the proof.  □


B. Stationary Distribution Associated with [image: there is no content]k

In order to show that:



π[image: there is no content]=|[image: there is no content]|n1,n2,…,ndπ1n1×⋯×πdnd



(B1)




for [image: there is no content]∈[image: there is no content], is the stationary distribution associated with [image: there is no content]k=(a[image: there is no content],[image: there is no content]′)[image: there is no content],[image: there is no content]′∈[image: there is no content] for [image: there is no content], we have to check that:


∑[image: there is no content]∈[image: there is no content]π[image: there is no content]a[image: there is no content],[image: there is no content]′=0with∑[image: there is no content]∈[image: there is no content]π[image: there is no content]=1



(B2)




for [image: there is no content]′∈[image: there is no content]. First note that, owing to the expression in Equation (13) for the non-null entries of [image: there is no content]k, we have a[image: there is no content],[image: there is no content]′≠0 if [image: there is no content]′=[image: there is no content]-[image: there is no content]+ej for [image: there is no content] and [image: there is no content]≥1. In this case, we have:


π[image: there is no content]′=|[image: there is no content]|n1,…,[image: there is no content]-1,…,[image: there is no content]+1,…,ndπ1n1×⋯×πi[image: there is no content]-1×⋯×πj[image: there is no content]+1×⋯×πdnd










=|[image: there is no content]|n1,…,nd×[image: there is no content][image: there is no content]+1π1n1×⋯×πdnd×πj[image: there is no content]










=π[image: there is no content]×[image: there is no content]πj([image: there is no content]+1)[image: there is no content]



(B3)




Therefore, for [image: there is no content]′∈[image: there is no content], we obtain:


∑[image: there is no content]∈[image: there is no content]π[image: there is no content]a[image: there is no content],[image: there is no content]′=∑[image: there is no content]≠[image: there is no content]′π[image: there is no content]a[image: there is no content],[image: there is no content]′+π[image: there is no content]′a[image: there is no content]′,[image: there is no content]′










=∑[image: there is no content]j:nj′≥1(ni′+1)[image: there is no content][image: there is no content][image: there is no content]×π[image: there is no content]′×nj′[image: there is no content](ni′+1)πj+π[image: there is no content]′a[image: there is no content]′,[image: there is no content]′










=∑j:nj′≥1nj′π[image: there is no content]′πj∑[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]+π[image: there is no content]′a[image: there is no content]′,[image: there is no content]′



(B4)




On the other hand, by definition of the stationary distribution [image: there is no content] associated with [image: there is no content]1, we have:



∑[image: there is no content]d[image: there is no content]a[image: there is no content],ej=0



(B5)




for [image: there is no content]. This entails that:


∑[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]=∑[image: there is no content]πj[image: there is no content][image: there is no content][image: there is no content]



(B6)




for [image: there is no content]. Plugging this into Equation (B4) yields:


∑[image: there is no content]∈[image: there is no content]π[image: there is no content]a[image: there is no content],[image: there is no content]′=∑j:nj′≥1∑[image: there is no content]nj′[image: there is no content][image: there is no content][image: there is no content]π[image: there is no content]′+π[image: there is no content]′a[image: there is no content]′,[image: there is no content]′










=-a[image: there is no content]′,[image: there is no content]′π[image: there is no content]′+π[image: there is no content]′a[image: there is no content]′,[image: there is no content]′=0



(B7)




This establishes the first equation in Equation (B2). It suffices to use the generalized binomial theorem to get:


∑[image: there is no content]∈[image: there is no content]π[image: there is no content]=∑[image: there is no content]:|[image: there is no content]|=k|[image: there is no content]|n1,…,ndπ1n1×⋯×πdnd










=(π1+⋯+πd)k=1



(B8)




which is the second equation in Equation (B2).


C. Probability of Identical Strategies

With [image: there is no content] time steps as the unit of time, let the scaled mutation rate defined by:



[image: there is no content]



(C1)




be constant as [image: there is no content]. We consider two probabilities:


ϕ2=[image: there is no content]IandJhavethesamestrategy



(C2)




and


ϕ3=[image: there is no content]I,JandKhavethesamestrategy



(C3)




where I, J and K are three individuals in the population chosen at random at the same time step and [image: there is no content] is the probability at equilibrium under neutrality ([image: there is no content]). Let [image: there is no content] be the number of time steps back before the coalescence of the lineages of two individuals, I and J, chosen at random at the same time step. Similarly, let [image: there is no content] be the number of time steps back before the first coalescence of two lineages among the lineages of three individuals, I, J and K, chosen at random at the same time step, and [image: there is no content] be the supplementary number of time steps before the coalescence of the two remaining lineages. From the limiting genealogical process described in Theorem 1, the scaled coalescence time [image: there is no content] and the vector of rescaled coalescence times [image: there is no content] converge in distribution to a continuous random variable [image: there is no content] and a continuous random vector [image: there is no content], respectively, as [image: there is no content], whose densities are given by:


[image: there is no content]



(C4)




and:


[image: there is no content]



(C5)




respectively, for [image: there is no content]. As in Kroumi and Lessard [25], by conditioning on these coalescence times, we find:


[image: there is no content]



(C6)




and:


[image: there is no content]



(C7)




Then, by symmetry, we have:


[image: there is no content][xkxjxi]=ϕ3/2,[image: there is no content][xkxj]=ϕ2/2,[image: there is no content][xk]=1/2



(C8)




for [image: there is no content]. Therefore, we obtain:


[image: there is no content][xkxj(1-xi)]=[image: there is no content][xk(1-xj)xi]=ϕ2-ϕ32=θ4(2θ+1)



(C9)




and:


[image: there is no content][(1-xk)xj(1-xi)]=[image: there is no content][(1-xk)(1-xj)xi]=1-2ϕ2+ϕ32=θ4(2θ+1)



(C10)




for [image: there is no content].
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