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Abstract: Individual behavioral differences in humans have been linked to measurable 

differences in their mental activities, including differences in their implicit motives.  

In humans, individual differences in the strength of motives such as power, achievement 

and affiliation have been shown to have a significant impact on behavior in social dilemma 

games and during other kinds of strategic interactions. This paper presents agent-based 

computational models of power-, achievement- and affiliation-motivated individuals 

engaged in game-play. The first model captures learning by motivated agents during 

strategic interactions. The second model captures the evolution of a society of motivated 

agents. It is demonstrated that misperception, when it is a result of motivation, causes 

agents with different motives to play a given game differently. When motivated agents 

who misperceive a game are present in a population, higher explicit payoff can result for 

the population as a whole. The implications of these results are discussed, both for 

modeling human behavior and for designing artificial agents with certain salient  

behavioral characteristics. 

Keywords: motivation; game theory; learning; evolution 

 

1. Introduction 

Enduring motive dispositions, or “implicit motives” are preferences for certain kinds of incentives 

that are acquired in early childhood [1]. Incentives are situational characteristics associated with  

possible satisfaction of a motive. Incentives can be either implicit or explicit. Examples of implicit 
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incentives include challenges to personal control in a performance situation (incentive for 

achievement), opportunities for social closeness (incentive for affiliation) or opportunities for social 

control (incentive for power). In humans, differences in implicit motives have also been linked to 

differences in preferences for explicit incentives such as money, points or “payoff” in a game [2–5] or 

during other kinds of strategic interactions [6]. Computational motivation has emerged as an area of 

interest among artificial intelligence [7,8] and robotics [9–11] researchers, as a mechanism for 

enabling autonomous mental development [12] or modelling human-like decision-making [8,13]. This 

paper falls in this latter category. 

The contribution of this paper is two agent-based approaches to modelling the behavior of power-, 

achievement- and affiliation-motivated individuals engaged in game-play: a motivated learning agent 

model for controlling the behavior of individual agents, and an evolutionary model for controlling the 

proportions of agents with different types of motives in a society of motivated agents. The motivated 

learning model is studied in the context of two well-known, 2 × 2 mixed-motive games: the prisoner’s 

dilemma (PD) game, and the snowdrift game. Analysis shows that subjectively rational agents that act 

to satisfy their implicit motives perceive games that have different Nash Equilibrium (NE) points to the 

original game. The implications of this result are demonstrated in interactions between computational 

agents with different motives. We compare the behavioral characteristics of the agents with those 

observed in humans with the corresponding motives, and discuss some of the qualitative similarities 

achieved by the computational model. 

The motivated evolutionary model is used to examine the question of whether there is an 

evolutionary benefit of motivation-based misperception in computational settings. Motivated agents 

are studied in two multiplayer games: a common pool resource (CPR) game, and the canonical  

hawk-dove game. It is demonstrated that motivated agents who misperceive a game can form stable  

sub-populations and higher explicit payoff can result for the population as a whole. The implications of 

these results are discussed, both for modelling human behavior and for designing artificial agents with 

certain salient behavioral characteristics. 

The remainder of this section is organized as follows. First, we briefly review the literature of 

incentive-based motivation theories in Section 1.1. A summary is given of the different behavioral 

characteristics that have been observed in humans with different dominant motives, and thus different 

implicit motive profiles. This is used as the basis for qualitative evaluation of the models in Section 3. 

The assumptions of this study and related work are outlined in Section 1.2. Section 2 presents the new 

agent models, which are then examined theoretically and experimentally in Section 3. 

1.1. Achievement, Affiliation and Power Motivation 

Theories of achievement, affiliation and power motivation have been considered particularly 

influential by psychologists [1]. They form the basis of theories such as the three needs theory [14] and 

three factor theory [15]. This paper is specifically concerned with modelling the influence of different 

dominant motives (specifically either achievement, affiliation or power motivation) during strategic 

decision-making. This section briefly reviews some of the salient characteristics associated with each 

motive, which are also summarized in Table 1. 
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Table 1. Characteristics that may be observed in individuals with a given dominant motive [1,14]. 

Dominant Motive Possible Behavioral Characteristics 

Achievement 

• Prefers moderately challenging goals 
• Willing to take calculated risks 
• Likes regular feedback 
• Often likes to work alone 

Affiliation 

• Wants to belong to a group 
• Wants to be liked 
• Prefers collaboration over competition 
• Does not like high risk or uncertainty 

Power 

• Wants to control and influence others 
• Likes to win 
• Likes competition 
• Likes status and recognition 

Achievement motivation drives humans to strive for excellence by improving on personal and 

societal standards of performance. A number of models exist, including Atkinson’s Risk-Taking 

Model (RTM) [16] and more recent work that has examined achievement motivation from an  

approach-avoidance perspective [17]. The aspect of achievement motivation of interest in this paper is 

the hypothesis that success-motivated individuals perceive an inverse linear relationship between 

incentive and probability of success [6,18]. They tend to favor goals or actions with moderate 

incentives, which can be interpreted as indicating a moderate probability of success, calculated risk, or 

moderate difficulty. They are often content to work alone to achieved these goals. 

Approach-avoidance motivation has also been studied into the social domain [19]. In this domain it 

is used to model the differences in goals concerned with positive social outcomes—such as affiliation 

and intimacy—and goals concerned with negative social outcomes—such as rejection and conflict [20]. 

It is understood that the idea of approach-avoidance motivation, along with the concepts of incentive 

and probability of success, are particularly important not only in achievement motivation, but also 

affiliation, power and other forms of motivation [1]. 

Affiliation refers to a class of social interactions that seek contact with formerly unknown or little 

known individuals and maintain contact with those individuals in a manner that both parties experience 

as satisfying, stimulating and enriching [1]. The need for affiliation is activated when an individual 

comes into contact with another unknown or little known individual. While theories of affiliation have 

not been developed mathematically to the extent of the RTM, affiliation can be considered from the 

perspective of incentive and probability of success [1]. In contrast to achievement-motivated 

individuals, individuals high in affiliation motivation may select goals with a higher probability of 

success and/or lower incentive. This, often counter-intuitive preference, can be understood as avoiding 

risk, public competition or conflict. Rather, affiliation motived individuals prefer to “belong to a 

group”. Affiliation motivation is considered an important balance to power motivation [1]. 

Power can be described as a domain-specific relationship between two individuals, characterized by 

the asymmetric distribution of social competence, access to resources or social status [1]. Power is 

manifested by unilateral behavioral control and can occur in a number of different ways. Types of 

power include reward power, coercive power, legitimate power, referent power, expert power and 
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informational power. As with affiliation, power motivation can be considered with respect to incentive 

and probability of success. Specifically, there is evidence to indicate that the strength of satisfaction of 

the power motive depends solely on incentive and is unaffected by the probability of success [21] or 

risk. Power motivated individuals select high-incentive goals, as achieving these goals gives them 

significant control of the resources and reinforcers of others. Power motivated individuals like 

competition and like to win. 

McClelland [14] writes that, regardless of gender, culture or age, an individual’s implicit motive 

profile tends to have a dominating motivational driver. That is, one of the three motives discussed 

above will have a stronger influence on decision-making than the other two, but the individual will not 

be conscious of this. The dominant motive might be a result of cultural or life experiences and results 

in distinct individual characteristics, some of which are summarized in Table 1. 

Hybrid profiles of power, affiliation and achievement motivation have also been associated with 

distinct individual characteristics. For example, there appears to be a relationship between certain 

combinations of dominant and non-dominant motives and the emergence of leadership abilities in an 

individual [22]. However, this paper focuses on modeling agents with a single dominant motive. 

1.2. Assumptions and Related Work 

Previous work has modeled incentive-based profiles of power, achievement and affiliation 

motivation computationally for agents making one-off decisions [13]. For example, Figure 1 shows a 

possible computational motive profile as a function of incentive. Motivation is modeled as the sum of 

three sigmoid curves for achievement, affiliation and power motivation. The height of each sigmoid 

curve corresponds to the strength of the motive. The strongest motive is the dominant motive. The 

dominant motive in the profile in Figure 1 is thus power motivation. 

 

Figure 1. A computational motive-profile. The resultant tendency for action is highest for 

incentive of 0.8, which is the optimally motivating incentive (OMI) for this agent. This 

agent may be qualitatively classified as “power-motivated” as its OMI is relatively high on 

the zero-to-one scale for scale for incentive. Power motivation is the dominant motive. 
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Later work simplifies this kind of model for game-theoretic settings using the concept of an 

optimally motivating incentive (OMI) [8,23]. The OMI is the incentive value that maximizes a 

motivation curve. Assuming a fixed range for incentive, agents are qualitatively classified as power-, 

achievement- or affiliation-motivated if the incentive value that optimizes (maximizes) their 

motivation curve is “high”, “moderate” or “low” respectively in the range. This paper builds on the 

OMI approach, proposing agent models that incorporate OMIs to bias agents’ perception of a game. 

These models are presented in Section 2. We first outline the assumptions of these models, and how 

they differ to previous work. 

Two key assumptions in this paper are (1) that game theoretic “payoff” is used to represent 

incentive and (2) that individual agents are subjectively rational in their quest for this payoff. The first 

assumption means that this paper focuses on the influence of implicit motives when judging  

explicit incentives. 

The second assumption means that different agents may perceive the same explicit incentive 

(payoff) differently as a result of having different OMIs. They execute behaviors ܤ௧ so as to maximise 

their own perceived, subjective incentive. We define the subjective incentive of an agent as follows: ܫመ௧ = ܸ௠௔௫ − | ௧ܸ − Ω| (1)

where ܸ௠௔௫  is the maximum possible explicit incentive (payoff) and ௧ܸ  is the explicit incentive 

received for executing behavior ܤ௧ିଵ. Ω is the agent’s OMI, which is fixed for the lifetime of the 

agent. The logic behind this definition is that an individual’s subjective incentive is higher if there is a 

smaller difference between the explicit incentive and their OMI. That is, if | ௧ܸ − Ω|  is small. 

Subtraction of this term from ܸ௠௔௫ serves to normalize the resulting value to the range (0, ܸ௠௔௫). 

Other studies have considered the case where individuals are subjectively irrational [24,25]. In this 

paper, the assumption of subjective rationality hinges on the link between motivation and action.  

In particular, extensive experimental evidence indicates that individuals will act, apparently  

sub-optimally according to some objective function, to fulfil their (subjective) motives [1]. 

This paper further assumes (3) there is no communication between agents; and (4) the motivations 

of other agents are not observable. Non-communication between agents is a standard game theoretic 

assumption and we adopt it in this paper. Specifically we mean that agents do not communicate any 

indication of the decision they will make before they make the decision. The decision may of course be 

communicated once made. 

The non-observability of motivations is assumed based on the difficulty of identifying an 

individual’s implicit motive profile. This assumption differentiates our work from other work on 

altered perception or misperception where the perceptions of others are assumed to be observable [24]. 

We do not model perception of a game in terms of expectations about other players’ strategies. Such 

approaches have been taken in other related game [25], metagame [26] and hypergame [27] theory 

research concerning misperception or the evolution of preferences. Rather we model perception as a 

process of transforming one game into another. 

Other related work includes game theoretic frameworks for personality traits [28], reciprocity [29,30], 

aspiration models [31] and work on misperception in a game theoretic setting [32]. The work in this 

paper differs from these works through its specific focus on motivation rather than other kinds of 

personality traits, reciprocity, aspirations or misperception as a result of other factors. 
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Various techniques have also been explored previously for modelling agent learning during game 

theoretic interactions. These include learning from fictitious play [33], memory bounded learning [34] 

to compensate for non-stationary strategies by the opposition and cultural learning through 

reinforcement and replicator dynamics [35]. The models in this paper augment this latter approach to 

develop motivated learning agents. 

Yet, other work has considered the role of evolution in motivated agents, including the evolution of 

internal reinforcers [36,37]. Our work differs from this as it focuses on the evolution of a society of 

agents with different motivational preferences, rather than the evolution of reward signals. 

2. Materials and Method 

This section presents the new agent algorithms for motivated learning (Section 2.1) and evolving the 

proportions of different motivated agents in a population (Section 2.2). The first algorithm combines the 

concept of an OMI and motivated perception using Equation (1) with Cross learning formalized for two 

player games [35]. The second combines an OMI with a replicator equation for evolution. 

2.1. Motivated Learning Agents 

The motivated learning agent algorithm is shown in Algorithm 1. The algorithm is designed for a 

motivated agent interacting in a 2 × 2 game, that is, a two-player game in which each player has the 

choice of two behaviors ܤ஼  and ܤ஽ ஼ܤ .  is understood to be a “cooperative” behavior, while ܤ஽ is 

defined as a refusal to cooperate (also called defecting). The precise definition of cooperate or defect 

depends on the precise nature of the game. Some specific examples are given in Section 3, but in 

general, this paper focuses on mixed-motive games W of the form: ܅ = ቂܲ ܶܵ ܴቃ (2)

R denotes the “reward” for mutual cooperation. P denotes the “punishment” for mutual defection.  

T represents the “temptation” to defect, while S is the sucker’s payoff for choosing to cooperate when 

the other player chooses to defect. 

Algorithm 1. Algorithm for a motivated learning agent. 
1. Initialize game world W of form in Equation (2), and identify ܸ௠௔௫ 
2. Initialize agent’s optimally motivating incentive Ω and ܲ(ܤ଴ = ଴ܤ)ܲ ஼) andܤ =  (஽ܤ
3. Repeat: 
4.  If t > 0 
5.  Receive payoff ௧ܸ for previously executed behavior ܤ௧ିଵ 
6.  Compute subjective incentive ܫመ௧ using Equation (1) 
7.  Compute ܲ(ܤ௧ = ௧ܤ)ܲ ஼) andܤ =  ஽) using Equation (3)ܤ
8.  Generate a random number r from (0, 1) 
9.  If r < P(Bt = BC) select behavior ܤ௧ = ௧ܤ ஼else select behaviorܤ =  ஽ܤ
10.  Store and execute ܤ௧ 

This game is initialized in line 1 of Algorithm 1. The agent is then initialized in line 2 with an OMI 

Ω and initial probabilities ܲ(ܤ଴ = (஼ܤ  and ܲ(ܤ଴ = (஽ܤ ଴ܤ)ܲ . = (஼ܤ  is the probability that the 
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behavior BC is executed at time t = 0. ܲ(ܤ଴ = ଴ܤ)ܲ ஼) is chosen at random from a uniform distribution andܤ = ଴ܤ)ܲ − ஽) = 1ܤ =  .(஼ܤ
When t = 0, the agent selects an action probabilistically based on ܲ(ܤ଴ = (஼ܤ  as shown in  

lines 8–9. In each subsequent iteration, the agent receives a payoff ௧ܸ  for its previously executed 

behavior (line 5) then computes a subjective incentive value based on its individual OMI (line 6). 

Next, the agent updates its probabilities of choosing ܤ஼ and ܤ஽ (line 7). Cross learning formalized 

for two player games [35] is used to model this cultural learning	as follows: ܲ൫ܤ௧ = ௜൯ܤ = ቊൣ1 − αܫመ௧൧ܲ൫ܤ௧ିଵ = ௜൯ܤ + αܫመ௧ ݂݅ ௧ିଵܤ = ௜ൣ1ܤ − αܫመ௧൧ܲ൫ܤ௧ିଵ = ௜൯ܤ ݁ݏ݅ݓݎℎ݁ݐ݋ 					  (3)

where i is either C or D and ߙ is the learning rate. 

The agent chooses its next behavior probabilistically (lines 8–9) based on the updated values  

of ܲ(ܤ଴ = (஼ܤ  and ܲ(ܤ଴ = (஽ܤ . The chosen behavior is then stored and executed (line 10).  

The intelligence loop in lines 4–10 is repeated as long as the agent is alive and/or has an opponent 

against which to play. 

As we will see in the analysis in Section 3, motivated learning agents will adapt their strategy over 

time, influenced by their own OMI and their opponent’s behavior. However, as they age, they will 

eventually converge on a stable strategy. If we would like to model the introduction of new generations 

of agents to a society of game-playing agents, then another algorithm is required. This is the topic of 

the next section. 

2.2. Evolution of Motivated Agents 

We model a society of n game-playing agents using the standard assumption that every agent in 

each new generation of agents engages in a two-player game with every other agent in its generation.  

The n-player game is thus a compound two player game. In such a game, the total payoff to a single 

agent when all other agents choose the same behavior as each other is either T(n − 1), S(n − 1), R(n − 1) 

or P(n − 1). 

To construct the algorithm for the evolution of a society of motivated agents (Algorithm 2) we first 

select payoff constants T, R, S and P (line 1) and use these to construct a game world W comprised of j 

different types of motivated agents. An agent type is defined by its OMI. The total number of different 

types of agents (i.e., the maximum number of different OMIs among agents in the society) is J.  

The game world W in which motivated agents evolve, is represented by a 2J by 2J matrix 

concatenating the perceived games of each of the J types of agents vertically, and then repeating this 

horizontally J times. These games are constructed using Equations (5)–(8), which are derived from 

Equation (1) using the assumption that ܸ௠௔௫ = ܶ(݊ − 1). 
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܅ =
ێێۏ
ێێێ
ۍێێ
෠ܲଵ ෠ܶଵመܵଵ ෠ܴଵ … ෠ܲଵ ෠ܶଵመܵଵ ෠ܴଵ..෠ܲ௝ ෠ܶ௝መܵ௝ ෠ܴ௝ … ෠ܲ௝ ෠ܶ௝መܵ௝ ෠ܴ௝..෠ܲ௃ ෠ܶ ௃መܵ௃ ෠ܴ௃ … ෠ܲ௃ ෠ܶ௃መܵ௃ ෠ܴ௃ ۑۑے

ۑۑۑ
ېۑۑ
 (4)

෠ܶ ௝ = T(n – 1) − | T(n – 1) − Ω௝ | (5)෠ܴ௝ = T(n – 1) − | R(n – 1) − Ω௝ | (6)෠ܲ௝= T(n – 1) − | P(n – 1) − Ω௝| (7)ܵ௝ = T(n – 1) − | S(n – 1) − Ω௝ | (8)

Algorithm 2. Algorithm for evolving the proportions of agents with different motives in a society of 

motivated agents. 
1. Initialize T, R, P, S and matrix ܅ of form in Equation (4) 
2. Initialize x0 of form in Equation (9) and n. 
3. Initialize a society A of n agents with correct proportions of each type according to x0. 
4. Repeat: 
5.  Compute xt+1 using update in Equations (11) and (12) 
6.  Normalize xt+1 (see text for details) 
7. Create a new generation of agents in society A (and remove the old generation) to reflect new 

proportions in xt+1 

We then construct a vector xt stipulating the proportions of each type of agent in the society, further 

broken down by the proportion at any time choosing BC and BD (line 2). 

࢚ܠ =
ێێۏ
ێێێ
ێێێ
௧ܤ)ଵܨۍێ = ௧ܤ)ଵܨ(஼ܤ = ௧ܤ)௝ܨ..(஽ܤ = ௧ܤ)௝ܨ(஼ܤ = ௧ܤ)௃ܨ..(஽ܤ = ௧ܤ)௃ܨ(஼ܤ = ۑۑے(஽ܤ

ۑۑۑ
ۑۑۑ
ېۑ
 (9)

௧ܤ)௝ܨ =   .௜) is the fraction of all agents who are of type j (with OMI Ωj) and will choose Biܤ

This means that ∑ ௧ܤ)௝ܨ = ௜)௜ܤ  is the fraction of agents of type j. The probability of an agent of a 

given type choosing ܤ஼ is: ܲ௝(ܤ௧ = (஼ܤ = ௧ܤ)௝ܨ = ∑(஼ܤ ௧ܤ)௝ܨ = ௜)௜ܤ  (10)

and likewise for ܤ஽. 
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A specific number of agents n is then chosen (line3) and a society A of n agents created such that 

the distribution of agent OMIs conforms to the proportions initialized in x0. These agents may be 

motivated learning agents, or indeed any other kind of motivated agent in which motivation and 

behavior are governed by an OMI. 

The evolutionary process is governed by the replicator equation: ܠሶ ௧ାଵ = (11) [௧ܠ௧TWܠ − ௧ܠW]௧ܠۿ

Q is a matrix of transition probabilities for the mutation of agent type j to agent type k. When Q is 

the identity matrix, Equation (11) models evolution without mutation. The Euler method is applied to 

simulate the process of evolution (line 5):  ܠ௧ାଵ = ௧ܠ + ℎܠሶ ௧ (12)

where h is a step size parameter that controls the rate of change of the composition of the population. 

Smaller step sizes result in slower changes to the composition of the population, and a generally more 

stable population. Large step sizes can produce large fluctuations in the proportions of the different 

types of agents. ܠ௧ାଵ  must be normalised by zeroing any negative fractions and ensuring that ∑ ∑ ௧ܤ)௝ܨ = ௜)௜ܤ = 1௝  (line 6). Finally the composition of A is updated by creating a new generation 

of agents with the appropriate new distribution of OMIs (line 7). 

Evolutionary dynamics predict the equilibrium outcomes of a multi-agent system when the survival 

of agents in iterative game-play is determined by their fitness. Using this approach, the proportion of a 

given type of agent playing BC or BD will increase if the subjective value of incentives earned by that 

type of agent is greater than the average subjective value perceived by the population. Conversely the 

proportion of a given type of agent will decrease if the subjective value of incentive earned is less than 

the average perceived by the population. Agent types with that perceive precisely the average 

subjective incentive will neither increase nor decrease in number, unless a mutation occurs. Agents are 

thus considered to be fitter if they satisfy their own motives, regardless of whether they receive the 

highest explicit incentive as defined in the original game. 

3. Results and Discussion 

This section examines learning by, and evolution of, motivated agents in two settings. The first 

setting, examined in Section 3.1, is a two-player PD game and its n-player compound, a CPR game.  

The second setting, examined in Section 3.2, is a two-player snowdrift game and its n-player compound, 

the hawk-dove game. In each setting, a theoretical examination of learning and evolutionary behavior is 

presented first, followed by empirical examinations of learning in the two-player game and evolution in 

the corresponding n-player compound game. The theoretical analysis demonstrates how different 

motivated agents perceive a game in terms of the subjective incentives they perceive. The empirical 

investigations reveal what happens when agents with different motives actually play the game. A brief 

demonstration in Appendix B completes the progression from theory to application. 

3.1. The Prisoners’ Dilemma and Common Pool Resource Games 

The two-player PD game [38] derives its name from a hypothetical strategic interaction in which 

two prisoners are held in separate cells and cannot communicate with each other. The police have 
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insufficient evidence for a conviction unless at least one prisoner discloses certain information. Each 

prisoner has a choice between concealing the information (BC) or disclosing it (BD). If both conceal, 

both with be acquitted and receive a payoff of R. This is denoted the (BC, BC) outcome. If both 

disclose, both will be convicted and receive minor punishments P. This is denoted the (BD, BD) 

outcome. If only one prisoner discloses information he will be acquitted and also receive a reward T 

for his information. The prisoner who conceals information unilaterally will receive a heavy 

punishment S. Thus, in a PD game it is assumed that T > R > P > S. 

The compound nPD version of this game has been used as a model for arms races, voluntary wage 

restraint and the iconic “tragedy of the commons” as well as for conservation of scarce CPRs [26].  

The dilemma confronting an individual citizen faced with a scarce CPR—such as energy or water for 

example—is whether to exercise restraint in resource use (BC) or exploit the restraint of others (BD).  

An individual benefits from restraint only if a large proportion of others also exercise restraint. 

However, if this condition holds, it appears to become individually rational to ignore the call for 

restraint. In practice this does not happen all the time and the following theoretical results offer insight 

into why this is the case in a society of motivated agents. The theoretical analysis here is done for the 

general case of n players. When n = 2 we have the special case of a two-player PD game. We use the 

two-player game in an empirical study of motivated learning in Section 3.1.2 and the n player game to 

study evolution of motivated agents in Section 3.1.3. 

3.1.1. Theoretical Results 

We consider three cases for theoretical analysis corresponding to perception caused by power, 

achievement and affiliation motivation. We use the following mapping of OMI values to motivation 

types [23]: 

• Power-motivated agents have T(n – 1) > Ω௝ > ½(T + P)(n – 1) 

• Achievement-motivated agents have ½(T + P)(n – 1) > Ω௝ > ½(R + S)(n – 1) 

• Affiliation-motivated agents have ½(R + P)(n – 1) > Ω௝ > S(n – 1) 

This mapping implies that power-motivated individuals prefer “high” incentives;  

achievement-motivated individuals prefer “moderate” incentives and affiliation-motivated individuals 

prefer “low” incentives. Furthermore, this mapping of motivation types to incentive values implies that 

“high”, “moderate” and “low” can change depending on the distribution of values T, R, S and P. The 

division of OMIs into “high”, “medium” and “low” ranges is informed by the literature on  

incentive-based motives discussed in Section 1.1, but represents a stronger mathematical assumption 

than has previously been made by psychologists. Specifically, while previous experiments with 

humans have provided evidence that individuals with different dominant motives prefer different 

goals, these experiments have not attempted to define precise value ranges for the incentives that will 

be preferred by different individuals. 

Power-Motivated Perception 

For power-motivated agents we assume T(n – 1) > Ω௝ > ½(T + P)(n – 1). Two different games may 

be perceived by power-motivated agents, depending on whether Ω௝ is closer to T(n – 1) or R(n – 1). 
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First, T(n – 1) > Ω௝  > ½(T + R)(n – 1) (i.e., Ω௝  closer to T(n – 1)) gives us the following 

transformation of the PD game using the Equations (5)–(8) and simplifying the absolute values: ෠ܶ ௝ = T(n – 1) − (T(n – 1) − Ω௝) = Ω௝ (13)෠ܴ௝ = T(n – 1) − (Ω௝ − R(n – 1)) = (T + R)(n – 1) − Ω௝ (14)෠ܲ௝ = T(n – 1) − (Ω௝ − P(n – 1)) = (T + P)(n – 1) − Ω௝ (15)መܵ௝ = T(n – 1) − (Ω௝ − S(n – 1)) = (T + S)(n – 1) − Ω௝ (16)

Theorem 1: When a player with T(n – 1) > Ω௝ > ½(T + R)(n – 1) perceives a nPD/CPR game W with  

T > R > P > S, the game they perceive is still a valid nPD/CPR game with ෠ܶ௝ > ෠ܴ௝ > ෠ܲ௝ > መܵ௝. 
Proofs of the theorems in this section are given in Appendix A. 

When ½(T + R)(n – 1) > Ω௝ > ½(T + P)(n – 1) (i.e., Ω௝ closer to R(n – 1)), there is an additional 

transformation for the case when Ω௝< R(n – 1): ෠ܴ௝ = ܶ(݊	– 	1) − (ܴ(݊ – 1) − Ω௝) = (T – R)(n – 1) + Ω௝ (17)

Theorem 2: When a player with ½(T + R)(n – 1) > Ω௝ > ½(T + P)(n – 1) perceives a nPD/CPR game 

W with T > R > P > S, the game they perceive will have ෠ܴ௝ > ෠ܶ௝ > ෠ܲ௝ > መܵ௝ 
Figure 2 visualizes the expected subjective incentive of games perceived by one power-motivated 

agent of type j given that a certain number of other agents nC < n play BC. It is clear from the 

visualization that the strategy of always playing BD dominates for ½(T + R)(n – 1) < Ω௝ (see Figure 

2a), but no longer dominates when ½(T + R)(n – 1) > Ω௝ (see Figure 2b). The implication is that there 

are conditions under which a power-motivated agent will exhibit a preference for choosing BC. 

Specifically, they may do so if they have a lower OMI in the power-motivated range, and if there is a 

sufficiently large proportion of other agents choosing BC. 

 

Figure 2. Visualization of the subjective incentive perceived by a power-motivated agent 

playing an explicit PD game according to (a) Theorem 1 and (b) Theorem 2. 

Achievement-Motivated Perception 

For achievement-motivated individuals we assume ½(T + P)(n – 1) > Ω௝ > ½(R + S)(n – 1). We 

again consider two cases, depending on whether Ω௝ falls closer to R(n – 1) or P(n – 1). When it falls 

closer to R(n – 1) we have: 
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Theorem 3: When a player with ½(T + P)(n – 1) > Ω௝ > ½(R + P)(n – 1) perceives a nPD/CPR game 

W with T > R > P > S, the game they perceive is either: ෠ܴ௝ > ෠ܲ௝ > ෠ܶ ௝ > መܵ௝ if Ω௝ > ½(T + S)(n – 1) or ෠ܴ௝ > ෠ܲ௝ > መܵ௝ > ෠ܶ௝ if Ω௝ < ½(T + S)(n – 1) 

Theorem 3 shows that the transformation of a game may depend on the distribution of incentive  

values as well as the value of Ω௝. ෠ܴ௝ > ෠ܲ௝ > መܵ௝ > ෠ܶ ௝ results if the values of T, R, P and S have a highly 

non-linear distribution, with a much larger gap between T and R than between the other incentives.  ෠ܴ௝  > ෠ܲ௝  > ෠ܶ ௝  > መܵ௝  results from all other distributions, including linear distributions. Figure 3a,b 

visualize the structure of the perceived games for each of the cases in Theorem 3. In both games there 

are two pure strategy equilibria: “always play BC” or “always play BD”. The former is more likely for 

players who perceive ෠ܴ௝ > ෠ܲ௝ > መܵ௝ > ෠ܶ ௝. These games also both have a mixed strategy equilibrium, 

where either some players play BC and some play BD, or players alternate between the two pure 

strategies with some probability. 

 

Figure 3. Visualization of the subjective incentive perceived by achievement-motivated 

agents playing an explicit PD game according to (a,b) Theorem 3 and (c,d) Theorem 4. 

If Ω௝ falls closer to P(n – 1), the transformations in Equations (13) and (15)–(17) apply, with the 

addition of Equation (18) for the case when Ω௝ < P(n – 1): ෠ܲ௝ = T(n – 1) − (P(n – 1) − Ω௝ ) = (T – P)(n – 1) + Ω௝ (18)

Theorem 4: When a player with ½(R + P)(n – 1) > Ω௝ > ½(R + S)(n – 1) plays a nPD/CPR game W 

with T > R > P > S, the game they perceive is either: ෠ܲ௝ > ෠ܴ௝ > ෠ܶ ௝ > መܵ௝ if ½(T + S)(n – 1) < Ω௝ or ෠ܲ௝ > ෠ܴ௝ > መܵ௝> ෠ܶ௝ if ½(T + S)(n – 1) > Ω௝ 
Once again, ෠ܲ௝ > ෠ܴ௝ > ෠ܶ௝ > መܵ௝ can only occur for a highly non-linear payoff distribution. Figure 3c,d 

visualize the structure of the perceived games for each of the cases in Theorem 4. In both games there 

are still two pure strategy equilibria, and the possibility of a mixed strategy equilibrium. 

Affiliation-Motivated Perception 
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For affiliation-motivated agents, we assume ½(R + S)(n – 1) > Ω௝ > S(n – 1). We again consider two 

cases, depending on whether Ω௝ is closer to P(n – 1) or S(n – 1). First we consider the case where Ω௝ is 

closer to P(n – 1). 

Theorem 5: When a player with ½(R + S)(n – 1) > Ω௝ > ½(P + S)(n – 1) plays a nPD/CPR game W 

with T > R > P > S, the game they perceive has ෠ܲ௝ > መܵ௝ > ෠ܴ௝> ෠ܶ௝. 
If Ω௝ is closer to S(n – 1), then the transformations in Equations (13) and (16)–(18) apply. 

Theorem 6: When a player with ½(P + S)(n – 1)> Ω௝ > S(n – 1) plays a nPD/CPR game W with  

T > R > P > S, the game they perceive has መܵ௝ > ෠ܲ௝ > ෠ܴ௝ > ෠ܶ ௝ . 
Figure 4 visualizes the structure of the perceived games for the cases in Theorems 5 and 6. We see 

in Figure 4b that affiliation-motivated agents with a very low OMI will perceive a game in which the 

“always play BC” strategy dominates the “always play BD” strategy. This means that affiliation-motivated 

agents with very low OMI will always converge on the “always play BC” strategy over time. 

 

Figure 4. Visualization of the subjective incentive perceived by affiliation-motivated 

agents playing an explicit PD game according to (a) Theorem 5 and (b) Theorem 6. 

The analysis above demonstrates how motivation results in a number of different perceived games 

with different subjective incentives. Some power-motivated individuals will still perceive a valid 

nPD/CPR game, but agents with other motives will perceive one of seven different games with 

different possible equilibria. 

The next sections examine empirically, how these different types of agents learn during interactions 

with agents of other types and how evolution affects the proportions of different types of agents in  

a population. 

3.1.2. Empirical Study of Motivated Learning in the Prisoners’ Dilemma Game 

In the experiments in this section, six sets of thirty pairs of agents A1 and A2 use Algorithm 1 to 

learn during 3000 iterations of a game. Each agent Aj has probabilities Pj(Bt = Bi) and OMI Ω௝ .  

α = 0.001. The results in this section are presented visually in Figure 5 in terms of the change in  

Pj(Bt = BC) (and by implication, Pj(Bt = BD)) as agents learn. The horizontal axis on each chart measures 

P1(Bt = BC) and the vertical axis measures P2(Bt = BC). Thus, a point in the upper right corner of each 

graph is indicative that both agents are choosing BC. The other corners also have a prescribed meaning. 

Corners in which equilibria occur are labelled. Points closer to the center of the chart are indicative of 
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a more or less equal preference for BC and BD. The dominant motive of each agent is indicated in the 

sub-figure titles. These motives are: 

• Power-motivated: Ω௝ = 3.9 

• Achievement-motivated: Ω௝ = 2.6 

• Affiliation-motivated:	Ω௝ = 1.1 

We choose these values as the theoretical analysis in the previous section indicates that agents with 

these OMIs have the most pronounced differences in perception. They are thus interesting to study. 

In Figure 5a all agents have a “high” OMI, representing power-motivated individuals of the type 

that perceive a PD game. We see that, because the perceived games are PD games, all agent pairs tend 

to converge on the (BD, BD) NE (bottom left corner) over time. This outcome is the non-cooperative  

(i.e., competitive) outcome. Competitive behavior is one of the characteristics of power-motivated 

individuals recognized by psychologists that we saw in Table 1. 

Now suppose A2 agents are achievement-motivated (prefer moderate incentive). We see from  

Figure 5b that the outcome is different in this case. A1 power-motivated agents still prefer competitive 

behavior (BD). A2 agents initially choose to increase or maintain their levels of cooperation, indicated 

by the upward and horizontal trends of their trajectories. However, A2 agents learn they are being 

exploited by A1 and change their strategy to BD. This is indicated by the downward trends of their 

trajectories in Figure 5b, and eventual convergence in the bottom left corner of the figure. 

   

Figure 5. Cont. 



Games 2015, 6 618 

 

 

 

Figure 5. Learning trajectories when six sets of r thirty pairs of motivated learning agents 

play 3000 iterations of the prisoners’ dilemma game. Each set of agents has differently 

motivated opposing agents as per the individual sub-figure labels. Trajectories start at 

random positions in the centre of each sub-figure at t = 0, and proceed towards one or  

more of the corners. Each corner represents a different equilibrium, as per the labels in (a). 

(a) All agents are power-motivated; (b) Agents A1 are power-motivated, A2 are  

achievement-motivated; (c) Agents A1 are power-motivated, A2 are affiliation-motivated;  

(d) Agents A1 are affiliation-motivated, A2 are achievement-motivated; (e) All agents are 

achievement-motivated; (f) All agents are affiliation-motivated. 

Next, we consider what happens when agents A2 are affiliation motivated. We see in Figure 5c that 

the power-motivated agents A1 continue to exhibit a preference for competitive behavior BD. Their 

trajectories move directly from the right to the left of this figure In contrast, agents A2 choose the 

cooperative solution, resulting in convergence in the top left corner of this figure. They do this in spite 

of being universally exploited by their opponents A1 as a result. 

In contrast to an affiliation-motivated agent, an achievement-motivated agent will learn to adapt to 

the strategy of its opponent. We have already seen that an achievement-motivated agent will eventually 

learn to choose BD if its opponent attempts to exploit it. Figure 5d shows that an  

achievement-motivated agent will, however, choose BC, when it plays an opponent that also prefers BC. 

Agents A2 are achievement-motivated, while agents A1 are affiliation-motivated in Figure 5d. The U 

shaped learning trajectories shows that achievement-motivated agents A2 will respond to an opponent 

choosing BD by also choosing BD, resulting in the initial downward trend of the learning trajectory. 

However, when the opponent begins to cooperate, the achievement-motivated agent also begins to 

cooperate, leading to the upward moving trajectory and convergence in the top right corner of the 

figure. In summary, achievement-motivated agents in will adopt either an aggressive, competitive 

strategy or a cooperative strategy, depending on the behavior exhibited by their opponent. When two 

achievement-motivated agents play each other, they will converge on either the (BD, BD) or (BC, BC) 

outcome, depending on the initial choice of both agents (Figure 5e). 

When both players have Ω௝ < 1.5, the (BC, BC) outcome is dominant as shown in Figure 5f and 

predicted by Theorem 6. This is, of course, the cooperative outcome and cooperative or collaborative 
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behavior is one of the recognized characteristics of affiliation-motivated individuals that we saw  

in Table 1. 

We note that with a learning rate of α = 0.001 it takes a few thousand iterations before behavior is 

observed that converges on the game’s theoretical equilibrium. This gradual adaptation can be 

advantageous for agents who require lifelong learning. Alternatively, speed of learning can be 

increased by increasing α. The effect of increasing α is to permit the agent to make larger adjustments 

to is values of Pj(B0 = BC) and Pj(B0 = BD). This effect is illustrated in Figure 6 for α = 0.01 and  

α = 0.1. Each tenfold increase in α also speeds convergence roughly tenfold, meaning that ten times 

fewer decisions are made before P1(B0 = BC) and P2(B0 = BC) stabilize. The trade-off is that, 

particularly in the case of α = 0.1, the learning trajectory is less predictable. The agents can have large 

changes in Pj(B0 = BC) and these changes can be either increases or decreases. In summary, while the 

eventual equilibrium remains predictable, the trajectory taken to get there can be highly variable. 

(a) (b) 

Figure 6. Thirty pairs of motivated learning agents play 3000 iterations of the prisoner’s 

dilemma game. All agents are affiliation-motivated. Agents in (a) have α = 0.01. Agents in 

(b) have α = 0.1. 

From the experiments above, in scenarios that can be modeled by a PD game we can conclude that: 

• Power-motivated agents, specifically those with Ω௝> ½(T + R)(n – 1), will adapt to exploit 

(choose BD) all opponents. They will exhibit characteristics of competitive behavior. 

• Achievement-motivated agents, specifically those with ½(T + P)(n – 1) > Ω௝> ½(R + P)(n – 1) 

will adapt differently to different opponents, choosing BD when exploited, but BC when their 

opponent does likewise. 

• Affiliation-motivated agents, specifically those with Ω௝< ½(P + S)(n – 1), will choose BC 

against all opponents. They will exhibit characteristics of cooperative behavior. 

These simulations give us an initial understanding of the adaptive diversity that can be achieved 

using motivated learning agents. There are clear differences in perception by agent with different 

motivations, and these differences manifest in behavior when they interact. There is some correlation 
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between the characteristics that psychologists associate with different motivation types and the types of 

behavior exhibited by agents with different motives. 

3.1.3. Empirical Study of the Evolution of Motivated Agents during n-Player Common Pool  

Resource Games 

This section presents an empirical study of the evolution of seven different types of agent playing  

a CPR game. In contrast to the previous section, which considered how individual agents learn,  

the n-player CPR game permits us to consider how the proportions of agents with different motives 

change in a society under the constrained conditions of a CPR game. For the CPR game in this section, 

we use values T = 4, R = 3, S = 2 and P = 1. Specific OMI values for the different types of agents are 

shown in Table 2. 

The first type of agent (j = 1) uses the explicit payoff of the game to compute evolutionary fitness. 

We call these agents “correct perceivers” (CPs). The lattfer six types of agents fall into each of the six 

categories examined theoretically in Section 3.1.1. They use the game transformations presented in 

Section 2 to compute ෠ܲ௞, ෠ܶ ௞, መܵ௞and ෠ܴ௞ which are then compounded to form an n-player game in a  14 × 14 matrix of the form in Equation (4). 

Table 2. Experimental setup for studying evolution in the common pool resource game. 

j Name Description OMI ܨ௝(ܤ଴ = ଴ܤ)௝ܨ (஼ܤ =  (஽ܤ
1 CP Correct perceiver n/a 0.5 0.5 
2 nPow(1) Strong power motivated agent 375 0 0 
3 nPow(2) Weak power motivated agent 325 0 0 
4 nAch(1) Achievement motivated agent 275 0 0 
5 nAch(2) Achievement motivated agent 225 0 0 
6 nAff(1) Weak affiliation motivated agent 175 0 0 
7 nAff(2) Strong affiliation motivated agent 125 0 0 

We then construct a vector x0 of the form in Equation (9), stipulating the initial proportions of each 

type of agent choosing BC and BD (see the last two columns of Table 2 for values used). Initially the 

society comprises only CP agents (without motivation) with equal probability of choosing either BC or 

BD. The simulation examines whether there is evolutionary benefit of motivated agents by permitting 

mutation of motivated agents and allowing survival of agents with the highest fitness. For motivated 

agents, subjective incentive is used to measure fitness. For non-motivated agents explicit payoff is 

used to measure fitness. 

In the simulations n = 101 and h = 0.001. Each simulation is run for 3000 generations. Mutation is 

governed by the matrix Q shown in Equation (19). Each type of agent has a probability of 0.98 of no 

mutations from within that type. Correct perceivers have a probability of 0.02 of mutating to nPow(1) 

agents, who themselves have an equal probability of choosing BC or BD. All the motivated agents have 

a probability of 0.02 of mutating to another type of agent with a slightly lower or slightly higher OMI. 
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Q = 

ێێۏ
ێێێ
ێێێ
ۍێێ
0.980 0.0000.000 0.980 0.005 0.0050.005 0.005… 0.000 0.0000.000 0.0000.010 0.0100.010 0.010		0.980 0.0000.000 0.980…	0.000 0.0000.000 0.0000.000	 0.000		0.000	 0.000		0.005 0.0050.005 0.005…	0.000 0.0000.000 0.000...0.000 	0.000		0.000 0.000		0.000 0.0000.000 0.000…	0.010 0.0100.010 0.0100.000 	0.0000.000 0.000 0.000 0.0000.000 0.000… 0.980 0.0000.000 ۑۑے0.980

ۑۑۑ
ۑۑۑ
ېۑۑ
 (19)

We examine three charts that expose the population dynamics that occur when different motivated 

and non-motivated agents (CPs) interact in a multi-player game. The first chart shows the fraction of 

each type of agent in the population in each generation. That is, ∑ ௧ܤ)௝ܨ = ௜)௜ܤ . The second chart 

shows the probability with which agents of given type will choose BC at the end of the 3000th 

generation, as defined in Equation (10). Finally, the third chart shows the subjective incentive 

perceived by each of the motivated agent types. 

Figure 7 shows that the proportion of CPs drops dramatically in the first 100 generations as 

mutations progressively introduce different kinds of motivated agents into the population. We see that 

all of these mutants survive and thrive from generation to generation, but some form a greater on-going 

proportion of the population than others. Specifically, nAch(2) agents and nAff(2) agents form 

approximately 65% of the population by the end of the 3000th generation. Figure 8 shows that the 

nAch(2) agents prefer the BD choice, while the nAff(2) agents prefer the BC choice. In fact, by the 

3000th generation 49% of agents prefer the BC choice and 51% prefer the BD choice. 

 

Figure 7. Change in composition of a society of agents playing a common pool resource game. 
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Figure 8. Probability with which each type of agent chooses BC by the end of the 3000th 

generation of a common pool resource game. 

The NE for a society of CPs predicts that 100% of agents will prefer the BD choice. The average 

explicit incentive for all agents would be 200. However, in our simulation with motivated agents,  

the average explicit payoff is higher: 248.6 on average. This is because some agents are subjectively 

fitter choosing BC (see Figure 9). This cooperation raises the objective fitness of the population. In this 

experiment we thus see an evolutionary benefit of motivation: specifically that differences in 

subjective fitness result in a diversity of agents and higher overall objective fitness of the society. 

 

Figure 9. Subjective incentive of each behavior for different types of motivated agent 

playing a common pool resource game. 

The next section examines the theoretical and empirical results for a second game, and provides 

evidence that the properties we observe in this section hold in other scenarios. 



Games 2015, 6 623 

 

 

3.2. Snowdrift and the Hawk-Dove Game 

The snowdrift game occurs when two drivers are stuck at a snowdrift. Each driver has the option of 

shoveling snow to clear a path (BC), or remaining in their car (BD). The highest payoff outcome T is to 

leave the opponent to clear all the snow. The opponent receives a payoff of S in this case. However,  

if neither player clears the snow, then neither can traverse the drift and both receive the lowest possible 

payoff of P. A reward of R to both results if both players clear the snow. A snowdrift games occurs  

when T > R > S > P. 

The n-player compound of a snowdrift game is the hawk-dove game [39]. Traditionally, the  

hawk-dove game is a contest over resources such as food or a mate. The contestants in the game are 

labeled as either “hawks” or “doves”1. The strategy of the “hawk” is to first display aggression, then 

escalate into a fight until it either wins or is injured. The strategy of the “dove” is to first display 

aggression, but run to safety if the opponent escalates to a fight. If not faced with this level of 

escalation the dove will attempt to share the resource. 

The contested resource in a hawk-dove game is given the value U, and the damage from losing a 

fight is given a cost C. C is assumed to be greater than U. Thus we have the following possibilities 

during pairwise interactions: 

• A hawk meets a dove and the hawk gets the full resource. Thus T = U. 

• A hawk meets another hawk of equal strength. Each wins half the time and loses half the time. 

Their average payoff is thus ܲ = ௎ଶ − ஼ଶ each. Note that P is negative. 

• A dove meets a hawk. The dove backs off and gets nothing (that is, S = 0) 

• A dove meets a dove and both share the resource (ܴ = ௎ଶ each). 

As discussed previously, these payoffs are compounded to form an n-player game. That is, 
(௡ିଵ)௎ଶ  is 

the reward if all players choose BC, 
(௡ିଵ)(௎ି஼)ଶ  is the punishment if all players choose BD, (n – 1)U is 

the temptation to choose BD when all other players choose BC and 0 is the payoff for choosing BC when 

the other players choose BD. 

3.2.1. Theoretical Evaluation 

We can follow the same process as Section 3.1.1 to construct the perceived versions of 

snowdrift/the hawk-dove game. For the snowdrift/hawk-dove game, agent types are defined by the 

following OMI ranges: 

• Power-motivated agents have T(n – 1) > Ω௝ > ½(T + S)(n – 1) 

• Achievement-motivated agents have ½(T + S)(n – 1) > Ω௝ > ½(R + P)(n – 1) 

• Affiliation-motivated agents have ½(R + P)(n – 1) > Ω௝ > P(n – 1) 

Proofs are omitted from section. They follow a similar logic to that used in Appendix A. 

Power-Motivated Perception 

                                                 
1 While in nature these are two different species that cannot cross-breed, the spirit of this game model is such that the 

terms “hawk” and “dove” refer to strategies used in the contest rather than species of bird. 
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For power-motivated agents playing a snowdrift/hawk-dove game, we assume T(n – 1) > Ωj >  

½(T + S)(n – 1). This gives the transformation in Equations (13)–(16). There are two possible 

perceived games, depending on whether Ωj is closer to T(n – 1) or R(n – 1). When Ωj is closer to  

T(n – 1) we have: 

Theorem 7: When a player with T(n – 1) > Ωj > ½(T + R)(n – 1) perceives a snowdrift/hawk-dove  

game W with T > R > S > P, the game they perceive is still a valid snowdrift/hawk-dove game  ෠ܶ௝ > ෠ܴ௝ > መܵ௝ > ෠ܲ௝. 
When Ωj is closer to R(n – 1), the additional transformation in Equation (17) is possible. A single 

perceived game still results as follows: 

Theorem 8: When a player with ½(T + R)(n – 1) > Ωj > ½(T + S)(n – 1) perceives a snowdrift/hawk-dove 

game W with T > R > S > P, the game they perceive will have ෠ܴ௝ > ෠ܶ ௝ > መܵ௝ > ෠ܲ௝. 
Figure 10 visualizes the structure of the perceived games in Theorems 7 and 8. The visualization 

shows that the expected subjective incentive changes as OMI decreases. Power-motivated agents with 

OMIs in the highest range expect to prefer BC if most other agents prefer BD. A mixed strategy 

equilibrium is also possible. However, power-motivated agents with a lower OMI perceive a game in 

which the “always play BC” strategy dominates. 

 

Figure 10. Visualization of the subjective incentive perceived by power-motivated agents 

playing an explicit hawk-dove game according to (a) Theorem 7 and (b) Theorem 8. 

Achievement-Motivated Perception 

For achievement motivated individuals we assume ½(T + S)(n – 1) > Ωj > ½(R + P)(n – 1). We 

again consider two cases, depending on whether Ωj falls closer to R(n – 1) (Theorem 9) or S(n – 1) 

(Theorem 10). The transformations in Equations (13)–(18) and (20) are all required. መܵ௝ = T(n – 1) – (S(n – 1) – Ωj) = (T – S)(n – 1) + Ωj (20)

Theorem 9: When a player with ½(T + S)(n – 1) > Ωj > ½(R + S)(n – 1) perceives a snowdrift/hawk-

dove game W with T > R > S > P, the game they perceive is either ෠ܴ௝> መܵ௝ > ෠ܶ ௝> ෠ܲ௝ if Ωj > ½(T + P)(n – 1) or ෠ܴ௝> መܵ௝> ෠ܲ௝ > ෠ܶ௝ if ½(T + P)(n – 1) > Ωj. 
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Theorem 10: When a player with ½(R + S)(n – 1) > Ωj > ½(R + P)(n – 1) perceives a snowdrift/hawk-

dove game with T > R > S > P, the perceived game is either: 

 መܵ௝ > ෠ܴ௝ > ෠ܶ ௝ > ෠ܲ௝ if Ωj > ½(T + P)(n – 1) or 

 መܵ௝ > ෠ܴ௝ > ෠ܲ௝ > ෠ܶ௝ if ½(T + P)(n – 1) > Ωj 

In all four cases that result from Theorems 9 and 10, the strategy “always play BC” dominates. 

Achievers will always dig in the snowdrift game, even if it means working alone. Likewise, they will 

always play a dove strategy in the hawk-dove game. 

Affiliation-Motivated Perception 

For affiliation-motivated agents we assume ½(R + P)(n – 1) > Ωj > P(n – 1). We consider two cases 

depending on whether Ωj is closer to S(n – 1) (Theorem 11) or P(n – 1) (Theorem 12). The additional 

transformation in Equation (20) is required for the case when Ωj < S(n – 1) . 

Theorem 11: When a player with ½(R + P)(n – 1) > Ωj > ½(P + S)(n – 1) perceives a snowdrift/hawk-

dove game with T > R > S > P, the perceived game is መܵ௝ > ෠ܲ௝ > ෠ܴ௝ > ෠ܶ ௝. 
Theorem 12: When a player with ½(S + P)(n – 1) > Ωj > P(n – 1) perceives a snowdrift/hawk-dove 

game W with T > R > S >P, the game they perceive is ෠ܲ௝ > መܵ௝ > ෠ܴ௝ > ෠ܶ௝. 
Figure 11 visualizes the structure of the perceived games in Theorems 11 and 12. In the first game 

(Figure 11a) the “always play BC” strategy dominates. However, this ceases to be the case for agents 

with very low OMIs (Figure 11b). These agents prefer to play the same strategy as the majority of 

other agents is adopting. 

 

Figure 11. Visualization of the subjective incentive perceived by affiliation-motivated 

agents playing an explicit hawk-dove game according to (a) Theorem 11 and (b) Theorem 12. 

It is clear from the analysis above that agents with different dominant motives also perceive the 

snowdrift/hawk-dove game differently. The perceived game depends on the OMI of the agent and the 

distribution of the explicit payoff. The next section considers how these differences in perception 

influence learning when agents interact with other agents with different motives. 
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3.2.2. Learning in the Snowdrift Game 

The results in this section are presented in the same order as Section 3.1.2, starting with  

power-motivated agents. When both players are power-motivated, they both perceive a snowdrift 

game. Three strategies emerge over time as shown in Figure 12a. Players either converge on the  

(BC, BD) or (BD, BC) outcome (top left, or bottom right corners), or their trajectories remain in the 

central region of the figure. This means they prefer a mixed strategy in which BD and BC are chosen 

with some probability. The equilibrium that emerges depends on the initial probabilities of choosing 

BC or BD. 

When one of the players is power-motivated and the other is not, different equilibria emerge.  

Figure 12b shows power-motivated agents A1 playing achievement-motivated agents A2. We see that, 

when competing with an achievement-motivated agent that has an initial preference for refusing to dig, 

power-motivated agents will initially increase their probability of digging. However, once the 

achievement-motivated agent starts to do the same, the power-motivated agents learn to exploit this 

and refuse to dig. Eventually an equilibrium is reached with power-motivated agents choosing BD and 

achievement-motivated agents choosing BC. This corresponds to the top left of the figure. 

 

Figure 12. Cont. 
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Figure 12. Learning trajectories when six sets of r thirty pairs of motivated learning agents 

play 3000 iterations of the snowdrift game. Each set of agents has differently motivated 

opposing agents as per the individual sub-figure labels. Trajectories start at random 

positions in the centre of each sub-figure at t = 0, and proceed towards one or more of the 

corners. Each corner represents a different equilibrium, as per the labels in (a). (a) All 

agents are power-motivated; (b) Agents A1 are power-motivated, A2 are  

achievement-motivated; (c) Agents A1 are power-motivated, A2 are affiliation-motivated; 

(d) Agents A1 are achievement-motivated and agents A2 are affiliation-motivated; (e) All 

agents are achievement-motivated; (f) All agents are affiliation-motivated. 

Interestingly, this equilibrium is not reached when power-motivated agents encounter  

affiliation-motivated agents. Affiliation-motivated agents prefer outcomes in which both players do the 

same thing (see Figure 12f). That is, outcomes when both players cooperate and dig together or  

both make the decision to refuse to dig. Thus, when the power-motivated agents begin to exploit 

affiliation-motivated agents, affiliation-motivated agents will learn to refuse to dig. Thus Figure 12c 

shows the emergence of an ongoing cycle emerges between four pure strategy equilibria. 

This oscillation disappears when the difference in OMIs decreases and is replaced by cooperation. 

This cooperation is evident between almost any pairs of achievement and affiliation motivated agents 

(see Figure 12d–f). However, because affiliation motivated agents are subjectively content if they are 

doing the same as their opponent, some pairs of affiliation-motivated agents will also mutually refuse 

to dig (Figure 12f). 

In summary, in scenarios that can be modeled by a snowdrift game, we can conclude that: 

• Power-motivated agents, specifically those with Ω௝> ½(T + R)(n – 1), prefer outcomes in which 

one player refuses to dig (either (BC, BD) or (BD, BC)). If one player is not power-motivated then 

the power-motivated agent will be the one that refuses to dig. That is, the power-motivated 

agent will gain the benefit from the digging without exerting themselves. This is consistent with 

the preference for competitive behavior identified in Table 1. 

• Achievement-motivated agents, specifically those with Ω௝	= ½(R + S)(n – 1) will dig regardless 

of the motive profile of the other player. They do not mind working alone, consistent with the 

suggestion in Table 1. 
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• Affiliation-motivated agents, specifically those with Ω௝< ½(P + S) (n – 1), prefer the outcomes 

where both players do the same thing. This is consistent with wanting to belong to a (peer) 

group, as in Table 1. 

Adaptive diversity is again demonstrated, with different agent types exhibiting different behavior 

against different opponents. The adaptive characteristics of the three types of agents playing snowdrift 

are slightly different to when they play a PD game, as they are automatically tailored to the incentives 

offered in the current game, but the broad characteristics of motivated behavior still hold. There is 

some similarity between these behaviors and some of the characteristics listed for humans, albeit in a 

simplified and abstracted manner. 

3.2.3. Empirical Study of Evolution in the Hawk-Dove Game 

We now examine evolution in the hawk-dove game. We use the assumption that U = 4 and C = 8. 

This gives us the non-compounded payoff values T = 4, R = 2, S = 0 and P = −2. The game world W is 

again a 14 × 14 matrix comprised of subjective payoff functions for seven different types of agents, 

defined as per Table 3. 

Table 3. Experimental setup for studying evolution in the hawk-dove game. 

j Name Description OMI ଴ܤ)௝ܨ = ଴ܤ)௝ܨ (஼ܤ = (஽ܤ
1 CP Correct perceiver n/a 0.5 0.5 
2 nPow(1) Strong power motivated agent 350 0 0 
3 nPow(2) Weak power motivated agent 250 0 0 
4 nAch(1) Achievement motivated agent 150 0 0 
5 nAch(2) Achievement motivated agent 50 0 0 
6 nAff(1) Weak affiliation motivated agent –50 0 0 
7 nAff(2) Strong affiliation motivated agent –150 0 0 

Figure 13 shows that the proportion of CPs again drops over the first 100 generations as mutations 

progressively introduce different kinds of motivated agents into the population. In this scenario, we see 

that not all of these mutants survive and thrive from generation to generation. Some form significant, 

stable proportions of the population but others do not increase in number beyond the 1% mutation rate. 

BC choosing nAch(1) agents form the majority (almost 80%) of the population by the 500th generation, 

and remain so by the 3000th generation. CPs and nPow(2) agents are the next most prevalent agent types. 

The NE for a society of CPs predicts that 50% of agents will choose BD and 50% BC. The average 

explicit incentive for all agents would be 100. However, in our simulation with motivated agents,  

the average explicit incentive is higher: 194.1 on average. This is because more than 50% of agents are 

subjectively fitter choosing BC (see Figures 14 and 15). This cooperation raises the objective fitness of 

the population. In this experiment we thus again see an evolutionary benefit of motivation, as well as 

some population diversity. 
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Figure 13. Change in composition of a society of agents playing a hawk-dove game. 

 

Figure 14. Probability with which each type of agent chooses BC by the end of the 3000th 

generation of a hawk-dove game. 
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Figure 15. Subjective incentive of each behavior for different types of motivated agent 

playing a hawk-dove game. 

4. Conclusions and Future 

In conclusion, the theoretical and experimental analysis in this paper has demonstrated that we can 

achieve some of the characteristics of particular dominant motives observed in humans in artificial 

agents. In two two-player games we observed that: 

• Power-motivated agents learn competitive behavior. 

• Achievement-motivated agents will adapt differently to different opponents and different games. 

• Affiliation-motivated agents will exhibit characteristics of cooperative behavior and prefer 

outcomes where both players do the same thing. 

When an evolutionary algorithm is used to create new generations of motivated agents: 

• Different types of motivated agents thrive in different scenarios 

• Diversity of agents is achieved 

• Evolutionary benefit can be observed in the form of higher average explicit incentive (payoff) 

achieved by the society than we would expect of a society of objectively rational agents  

without motivation. 

These conclusions are observed in both of the games studied, providing evidence that the 

methodology and results are applicable beyond a single scenario. 

From a human perspective, the models explored in this paper give us some insight into to the 

relationship between incentive, motivation and emergent behavioral characteristics. The computational 

models support the hypothesis that competitive behavior is related to a preference for higher incentive 

goals. Conversely, cooperative behavior emerges in agents with a preference for lower incentive goals. 
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In demonstrating this, the models in this paper better reflect the decision-making diversity seen in 

humans, than do traditional models that assume objective rationality. . 

However, there are other salient characteristics of the various dominant motives listed in Table 1  

that are not revealed in the scenarios studied in this paper. Different and potentially more complex 

abstract game scenarios are likely to be required to reveal these characteristics during game play. 

Game theory literature provides us with a rich set of alternatives for this. Some examples that lend 

themselves to study in the context of motivation include the leader game, battle of the sexes, stag hunt 

and public goods games. 

The next phase of this work will continue to examine the behavior of agents when they are applied 

in more concrete settings. Specifically, we are interested in the emergent behavior of agents when BC 

and BD have an effect on a real or simulated environment. Some scenarios that could be used as 

starting points have been proposed by Givigi and Schwarz [28], who examined the behavior of agents 

with different personality traits. A number of variations of such scenarios are possible, including the 

interaction of two motivated agents, the interaction of a society of motivated agents, or the interaction 

of a single motivated agent with many other (not necessarily motivated) agents, or even humans. Other 

settings for this kind of investigation include computer games and virtual worlds, where humans are 

used to interacting with virtual agents. Motivated agents offer a new kind of behavioral diversity in this 

setting, while giving game programmers the confidence of the theoretical predictions governing the 

emergent learning behavior of agents. 

The study of computational motivation in a game theoretic setting offers us a way to model and 

understand diversity in decision-making by acknowledging individual differences in implicit motives. 

Implementation of computational motivation in artificial agents permits us to simulate strategic 

interactions at both an individual and social level. Because we can run large numbers of simulations 

rapidly, there is, in future, potential to explore “what-if” scenarios in simulation. Such scenarios may 

include exploration of the impact of changing payoff functions on decision-making by individuals or 

groups. This may further permit development of rules that explain differences in decision-making as a 

result of motivation, and suggest how individuals with different motives will respond to changing 

payoff functions over time. 
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Appendix A—Proofs 

Proof of Theorem 1: If we assume ෠ܴ௝ ≥ ෠ܶ ௝ then we have (T + R)(n – 1) − Ω௝ ≥ Ω௝ which simplifies to 

½(T + R)(n – 1) ≥ Ω௝. This contradicts the assumption that T(n – 1) > Ω௝ > ½(T + R)(n – 1) so it must 

be true that ෠ܶ௝ > ෠ܴ௝. If we assume that ෠ܲ௝ ≥ ෠ܴ௝ then we have (T + P)(n – 1) − Ω௝ ≥ (T + R)(n – 1) − Ω௝ 
or P ≥ R which contradicts the definition of PD. Thus it must be true that ෠ܴ௝ > ෠ܲ௝. Likewise, if we 

assume that መܵ௝ ≥ ෠ܲ௝ then we have (T + S)(n – 1) − Ω௝ ≥ (T + P)(n – 1) − Ω௝ which simplifies to S ≥ P 

which contradicts the definition of PD. Thus it must be true that ෠ܲ௝ > መܵ௝ □ 
  



Games 2015, 6 632 

 

 

Proof of Theorem 2: If we assume ෠ܶ௝ ≥ ෠ܴ௝, there are two possibilities. First, substituting Equations 

(13) and (14) gives Ω௝ ≥ (T + R)(n – 1) − Ω௝ which simplifies to Ω௝≥ ½(T + R)(n – 1). This contradicts  

the assumption that ½(T + R)(n – 1) > Ω௝. Similarly, substitution of Equations (13) and (17) gives  Ω௝ ≥ (T – R)(n – 1) + Ω௝ which simplifies to R ≥ T and contradicts the definition of the PD. Thus it 

must be true that ෠ܴ௝ > ෠ܶ௝. If we assume that መܵ௝ ≥ ෠ܲ௝ then we have (T + S)(n – 1) − Ω௝ ≥ (T + P)(n – 1) 

− Ω௝ which simplifies to S ≥ P. This contradicts the definition of the PD. Thus it must be true that  ෠ܲ௝ > መܵ௝. Finally, if we assume ෠ܲ௝ > ෠ܶ௝ we have (T + P)(n – 1) − Ω௝ > Ω௝ or ½(T + P)(n – 1) > Ω௝ 
which contradicts the assumption for power-motivated agents that Ω௝ > ½(T + P)(n – 1). Thus it must 

be true that ෠ܶ௝ > ෠ܲ௝ □ 

Proof of Theorem 3: ෠ܴ௝ > ෠ܶ ௝ and ෠ܲ௝ > መܵ௝ according to the proof of Theorem 2. However, as we now 

assume ½(T + P)(n – 1) > Ω௝  we have ෠ܲ௝  > ෠ܶ௝  (converse of Theorem 2). There are then two  

alternative orderings, differing in the position of መܵ௝. If ෠ܶ ௝ > መܵ௝ substitution of Equations (13) and (16) 

gives Ω௝ > (T + S)(n – 1) − Ω௝ which simplifies to Ω௝ > ½(T + S)(n – 1). Conversely if መܵ௝ > ෠ܶ௝ then  

½(T + S)(n – 1) > Ω௝□ 

Proof of Theorem 4: ෠ܴ௝  > ෠ܶ ௝  according to the proof of Theorem 2. If we assume that መܵ௝  ≥ ෠ܲ௝ 
substituting Equations (15) and (16) gives (T + S)(n – 1) − Ω௝ ≥ (T + P)(n – 1) − Ω௝. This simplifies to 

S ≥ P which contradicts the definition of the PD. Likewise, substituting Equations (17) and (18) gives 

(T + S)(n – 1) − Ω௝ > (T – P)(n – 1) + Ω௝. This simplifies to ½(S + P)(n – 1) > Ω௝, which contradicts 

the assumption of an achievement-motivated agent. Thus it must be true that ෠ܲ௝ > መܵ௝. There are then 

two alternative orderings, differing in the position of መܵ௝. If ෠ܶ ௝ > መܵ௝ substitution of Equations (13) and 

(16) gives Ω௝ > (T + S)(n – 1) − Ω௝, which simplifies to Ω௝ > ½(T + S)(n – 1). Conversely, if መܵ௝ > ෠ܶ௝ 
then ½(T + S)(n – 1) > Ω௝□ 

Proof of Theorem 5: If we assume ෠ܶ௝  ≥ ෠ܴ௝ , substitution of Equations (13) and (17) gives us  Ω௝ ≥ (T – R)(n – 1) + Ω௝ which simplifies to R ≥ T . This contradicts the definition of the PD so it  

must be true that ෠ܴ௝  > ෠ܶ௝. If we assume that መܵ௝ ≥ ෠ܲ௝ substituting Equations (15) and (16) gives us  

(T + S)(n – 1) − Ω௝ ≥ (T + P)(n – 1) − Ω௝ which simplifies to S ≥ P which contradicts the definition of 

the PD. Likewise, substituting Equations (16) and (18) gives (T + S)(n – 1) − Ω௝≥ (T – P)(n – 1) + Ω௝ 
which simplifies to ½(P + S)(n – 1) ≥ Ω௝ and contradicts the assumption that Ω௝ > ½(P + S)(n – 1).  

Thus it must be true that ෠ܲ௝ > መܵ௝. If we assume ෠ܴ௝> መܵ௝ substitution of Equations (16) and (17) gives  

(T – R)(n – 1) + Ω௝ > (T + S)(n – 1) − Ω௝. Simplification gives Ω௝ > ½(R + S)(n – 1) which contradicts 

the assumption for affiliation-motivated agents that ½(R + S)(n – 1) > Ω௝. Thus it must be true that  መܵ௝ > ෠ܴ௝ □ 

Proof of Theorem 6: If we assume ෠ܲ௝ ≥ መܵ௝ then we have (T – P)(n – 1) + Ω௝ ≥ (T + S)(n – 1) − Ω௝ which 

simplifies to Ω௝ ≥ ½(P + S)(n – 1). This contradicts the assumption that ½(P + S)(n – 1) > Ω௝ Thus it 

must be true that መܵ௝ > ෠ܲ௝. If we assume ෠ܴ௝ ≥ ෠ܲ௝ then we have (T – R)(n – 1) + Ω௝ ≥ (T – P)(n – 1) + Ω௝ 
which simplifies to P ≥ R. This contradicts the definition of the PD. Thus it must be true that ෠ܲ௝ > ෠ܴ௝. 
Likewise, if we assume ෠ܶ ௝ ≥ ෠ܴ௝ then we have Ω௝ ≥ (T – R)(n – 1) + Ω௝ which simplifies to R ≥ T. This 

contradicts the definition of the PD. Thus it must be true that ෠ܴ௝ > ෠ܶ௝ □ 
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Appendix B 

This appendix presents a brief demonstration to complete the progression from theoretical and 

empirical analysis to application. The application chosen here is a simple implementation of Algorithm 1 

in the snowdrift scenario. This demonstration takes place in a 16 × 16 meter space as shown in Figure 16. 

Two agents A1 (blue; left) and A2 (green; right) have exited their cars. Their initial positions  

(the positions of their cars) are ܘ଴ଵ = (6, 2) and ܘ଴ଶ = (10, 2). The snowdrift is located to the north at 

location ܘ଴ଷ = (8, 12). As in Section 3.2, α = 0.001 and each agent makes 3000 decisions. This occurs 

over a period of 4 seconds using a MATLAB implementation. 

 

Figure 16. Movement trajectories when two power-motivated agents encounter each other 

at a snowdrift. 

The motivated agents use Algorithm 1 with specific behaviors as follows: 

• BC moves the motivated agent towards the snowdrift according to: ܘ௧ାଵ௝ = ௧௝ܘ + λ ௧ܲ(ܤ௧ = ௧ଷܘ஼)൫ܤ − ௧௝൯ܘ + ߶ (21)

• BD moves the motivated agent towards position of their own car: ܘ௧ାଵ௝ = ௧௝ܘ + λ ௧ܲ(ܤ௧ = ଴௝ܘ஼)൫ܤ − ௧௝൯ܘ + ߶ (22)

where λ is the step-size between 0 and 1 (we used λ = 0.05) and ߶ is a small random number selected 

with a uniform distribution from the interval (–0.05, 0.05). This movement update moves the agent 

approximately in the direction of the snowdrift by a distance that is proportional to the chosen step-size 

λ and the agent’s preference for such movement, represented by ௧ܲ(ܤ௧ =  ஼). Both agents have equalܤ

initial preferences for BC and BD. 

Figure 16 demonstrates two power-motivated agents. These agents never reach the snowdrift, as 

they both develop mixed strategies, remaining around 50% probability of approaching the drift. In 

contrast, in Figure 17a, in which a power-motivated and achievement-motivated agent encounter the 

drift, the achievement-motivated agent approaches the drift, while the power-motivated agent returns 

to its car. When two achievement-motivated agents encounter the drift they will cooperate to clear it as 
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shown in Figure 17b. These behaviors conform to the theory and empirical results studied in the 

previous sections. We can thus achieve a diversity of learned behavior that remains predictable. 

 

Figure 17. (a) A power-motivated (blue) and achievement-motivated (green) agent 

encounter each other a snowdrift (b) Two achievement-motivated agents encounter each 

other at a snowdrift. 
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