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Abstract: Nickel electrodes under continuous potential cycling were applied for the electrooxidation
of benzyl alcohol and glycine in KOH solutions, and their activities were measured and compared
by cyclic voltammetry. It is shown that intrinsic activities of both reactions decrease with the
increasing catalyst loadings, and a more significant decreasing trend was observed in glycine
electrooxidation when compared to benzyl alcohol electrooxidation. These phenomena may be
explained by an increasing of mass loading induced a decrease of the catalyst surface conductivity,
structure changes of Ni(OH)2 from α-phase to β-phase, and the intercalation of glycine molecules
into nickel hydroxide interlayers.

Keywords: nickel hydroxide; benzyl alcohol; glycine; potential cycling; electrocatalytic activity

1. Introduction

Nickel hydroxide-based materials have been extensively used in the electrooxidation of several
small molecules [1,2]. Ni-(oxy) hydroxide-based materials such as nickel−iron oxyhydroxide (NiFeOOH)
are promising earth-abundant catalysts for electrochemical water oxidation in basic media [3–5].
It was discovered in early 1971 that a series of amines and alcohols can be electrooxidized
by nickel hydroxide [6,7]; for example, several electrooxidation reactions of benzyl alcohol in
an alkaline medium were accomplished on different types of nickel hydroxide electrodes [8,9]. Glycine,
as a biosynthetic intermediate of all purines and porphyrins, can be electrooxidized by Ni(OH)2

as well [10]. High-catalytic activity has been obtained in nickel manganese oxide with spinel
nanostructure-mediated electrooxidation reaction toward glycine in alkaline electrolytes [11]. Due to its
potential applications in wastewater treatment, fuel cells, hydrogen production, and urea electrolysis,
using nickel hydroxide-based materials as electrocatalysts has attracted much attention [12–14]. Besides
the above-mentioned, nickel hydroxide-based catalysts have been used in electrocatalytic reactions
related to formaldehyde [15] and sulfide [16].

In order to optimize both intrinsic activity and the number of active sites for particular electrolysis
applications, how intrinsic activity changes as a function of the catalyst loading should be understood
thoroughly. It was observed that specific electrooxidation activity related to glycerol decreases
with increasing Au loading [17], and this finding can be explained by the increasing gold oxide
inhibition, which is caused by the accumulation of oxidation products within the electrocatalytic layers.
When nickel hydroxide was used as a cocatalyst for bismuth vanadate and iron vanadate photoanodes
for water oxidation, the large loadings of Ni(OH)2 induce a drastic decrease in the photoelectrocatalytic
activity because of the charge recombination at the semiconductor/Ni(OH)2 interface [18–20].

Boettcher et al. discovered that in studies of oxygen-evolution reactions [21], turnover frequency of
pulse-deposited Ni–Fe (oxy)hydroxide films increase with increasing loadings, whereas continuously
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electrochemically deposited films show the opposite relationship. It is generally accepted that Ni(OH)2

forms electrochemically on Ni electrodes in alkaline media [22,23]. Potential cycling is one of the most
versatile and convenient techniques that can be used to generate hydrous oxides with a real-time
determination of active centers and subsequent electrocatalytic activities. Changes of structure,
amount, and other properties of nickel hydroxide induced by potential cycling have been addressed
by atomic-force microscopy (AFM), Raman spectroscopy, X-Ray Photoelectron Spectroscopy (XPS),
ellipsometry, and gravimetry with an electrochemical quartz-crystal microbalance [23–29]. For example,
in situ AFM with the tip fixed has been used to monitor the changes of nickel hydroxide-film thickness
during the potential cycling process [21]; in situ Raman spectroscopy observations indicate that aging
of γ-NiOOH film in KOH electrolyte by electrochemical cycling produces a β-NiOOH film [25].

To the best of our knowledge, the influence of potential cycling on the activity of nickel-based
electrocatalytic reactions is still obscure, and the relationship between the intrinsic activity and catalyst
loading needs to be addressed. Herein, electrooxidation reactions of benzyl alcohol and glycine were
performed by an electrodeposited nickel electrode in 1 mol L−1 KOH. The effects of increased nickel
hydroxide loadings and other changes induced by potential cycling on electrocatalytic activities were
investigated by cyclic voltammetry. It should be noted that the reason for choice of these two substrates
was because of their chemical structural simplicity, and conclusions from them can be easily applied to
other alcohols or amino acids.

2. Results and Discussion

Cyclic voltammograms recorded during the growth of Ni(OH)2 film on electrodeposited Ni
particles in 1.0 mol L−1 KOH are presented in Figure 1; the amount of electrodeposited Ni measured
by chronoamperometry is 2.6 × 10−7 mol cm−2. It is calculated using the equation ΓNi = QNi/2FA, in
which QNi can be calculated from the integration of current–time curve, F is the Faraday’s constant,
and A is the geometric surface area of the copper electrode. The growth of the film is evident from
the anodic- and cathodic-peak current density, which becomes more developed with an increasing
number of potential cycles. It can be assumed that the reduction peak represents the conversion from
nickel hydroxide to nickel oxyhydroxide, and the oxidation peak is caused by the oxidation of Ni
(0) to Ni(OH)2 and the oxidation of Ni(OH)2 to NiOOH. Since the cathodic charge is almost equal
to the anodic charge, a conclusion could be drawn that peak current contributed by the generation
of Ni(OH)2 from Ni (0) in the oxidation-peak current is negligible. Here, cathodic charge was used
to calculate the amount of Ni(OH)2. The variation of ΓNi(OH)2 with the number of potential cycles is
presented in the inset of Figure 1. It is obvious that nickel hydroxide loadings on the copper electrode
increase with the potential cycling, and the surface amount of nickel hydroxide increases to around 9 ×
10−8 mol cm−2 within 80 cycles at a scan rate of 10 mV/s.

Different loadings of nickel hydroxide were generated by potential cycling of a nickel-film-modified
electrode in 1 mol L−1 KOH. Nickel hydroxide loadings were calculated by integrating the
Ni(OH)2/NiOOH oxidation wave, assuming one electron per Ni oxidized, the corresponding equation
is ΓNi(OH)2 = QNi(OH)2/FA, where QNi(OH)2 is the cathodic-voltammetric charge corresponding to the
oxidation process. The electrochemical activity of the catalyst upon different potential cycles was
investigated for the benzyl alcohol electrooxidation in 1 mol L−1 KOH/0.02 mol L−1 benzyl alcohol
solution at 298 K by cyclic voltammetry, with the addition of benzyl alcohol, the height of the anodic
peak increases with the cathodic peak decreasing, the characteristic of a classical electrocatalytic
mechanism (EC’) was observed in Figure 2a. A general mechanism for the oxidation of benzyl alcohol
was proposed and shown in Scheme 1, based on previous work [7]. Meanwhile, an increasing
anodic/cathodic current density was discovered with the increasing potential cycling number, when the
anodic-peak current density was 3 mA cm−2 and with a catalyst loading of ~3 × 10−8 mol cm−2, while
it was 5.5 mA cm−2 when the loading increased to ~1 × 10−7 mol cm−2 (Figure 2b inset). It is reasonable
to conclude that more benzyl alcohol molecules can be electrochemically oxidized with the increasing
concentration of nickel hydroxide. To evaluate whether intrinsic activity was independent of catalyst
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loading or not, the relative anodic-peak current densities jc/jb (jc and jb represent the anodic-peak
current density in the presence or absence of benzyl alcohol, respectively) as a function of nickel
hydroxide loadings was demonstrated in Figure 2b. It is obvious that intrinsic activity (the catalytic
ability of per nickel hydroxide molecule) relative to benzyl alcohol decreases with the increasing total
nickel hydroxide amount during potential cycling.
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Figure 1. Cyclic voltammograms of the Ni electrode in 1 mol L−1 KOH under different potential cycles,
inset: loadings of nickel hydroxide as a function of oxide-growth-cycle numbers.
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Figure 2. (a) Cyclic voltammograms of Ni in 1 mol L−1 KOH/20 mmol L−1 benzyl alcohol after
submitting to 1 mol L−1 KOH upon different numbers of potential cycling, (b) relative anodic-peak
current density and anodic-peak current density (inset) as a function of nickel hydroxide loadings for
benzyl alcohol electrooxidation.

Nickel hydroxides formed by potential cycling and continuously precipitated on the outer surface
of the film, based on Tucceri’s work [30], might result in a reduced conductivity of the electrode with
the increasing cycling numbers. It should also be noted that the potential cycling approach involves
a slow conversion of α-Ni(OH)2 to a more thermodynamically favored β-phase of Ni(OH)2 [22–24].
Compared to α-Ni(OH)2/γ-NiOOH, a more ordered β-Ni(OH)2/β-NiOOH displays a less accessible
ion–solvent intercalation during electrocatalysis. Moreover, according to the studies of Nocera et al.
in the nickel-based, oxygen-evolving catalyst γ-NiOOH [27], including a higher oxidation state of
Ni than β-NiOOH, can favor the formation of hydroperoxy (OOH) species (key intermediates in the
alcohol electrooxidation [22]), which make it more effective as a catalyst in the electrooxidation reaction
toward benzyl alcohol.
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Opposite behavior of electrocatalytic-peak current densities as a function of potential cycle numbers
(loadings of nickel hydroxide) was observed in the study of glycine electrooxidation (Figure 3a,b
inset). A more significant decrease of intrinsic activities dependent on nickel hydroxide loadings
was discovered in glycine electrooxidation when compared with benzyl alcohol electrooxidation.
If these two relationships can be treated approximately as linear relations, for the case of glycine
electrooxidation, the slope is around −0.98 nmol−1 cm2, while it is around −0.011 nmol−1 cm2 for
benzyl alcohol electrooxidation. Based on the studies of Fleischmann et al. [7], a possible reaction
mechanism for Ni(OH)2-mediated glycine electrooxidation has been shown in Scheme 2.
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Scheme 1. Reaction mechanism of benzyl alcohol electrooxidation mediated by Ni(OH)2.
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Figure 3. (a) Cyclic voltammograms of Ni in 1 mol L−1 KOH in the presence of 20 mmol L−1 glycine
under different cycle numbers, (b) relative anodic-peak current density and anodic-peak current density
(inset) as a function of nickel hydroxide loadings for glycine electrooxidation.
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Yodhida et al. discovered that a glycine molecule could combine with the NiO6 clusters by binding
with NH2 and COOH groups, leading to the formation of NiOOH–glycine complex [31], therefore, it is
reasonable to postulate that upon potential cycling, glycine molecules will transport into interlayers
of NiOOH, resulting in the formation of a similar NiOOH–glycine complex with the diminishing
of glycine-surface amount. It can be suggested that besides the electronic conductivity decreasing
and structure changes, incorporation of glycine into the catalyst should also be responsible for the
reduction of the catalytic activity in glycine electrooxidation.

3. Materials and Methods

Copper-electrode (d = 3.0 mm) modification with nickel films was achieved by electrodeposition
in 1 mol L−1 NiSO4 + 0.5 mol L−1 H3BO3 electrolyte under constant potential −1.25 V (vs. Ag/AgCl,
sat. KCl) for 60 s. Ninety-nine and nine-tenths percent nickel sulfate hexahydrate, 99% benzyl alcohol,
99% nickel nitrate hexahydrate, 99.99% potassium hydroxide, and 99.5% boric acid were purchased
from Aladdin, and biotechnology-grade glycine was obtained from Macklin. All chemicals were
used as received without further purification, and all solutions were prepared using ultrapure water
(18.2 MΩ cm), which was made from a purifier ultrapure water system. Cyclic voltammetry was
performed using an CHI440C electrochemical workstation (Chenhua, China), and the scan rate used
was 10 mV/s. An electrochemical cell with a three-electrode configuration was used here, a platinum
plate and an Ag/AgCl/KCl (sat.) were employed as counter and reference electrodes, respectively.
All electrodes were obtained from Gaossunion (Wuhan, China).

4. Conclusions

In order to investigate the influence of potential cycling on catalytic abilities of nickel
hydroxide-mediated small-molecule electrooxidation reactions, benzyl alcohol and glycine
electrooxidation was achieved and characterized by cyclic voltammetry; different loadings of nickel
hydroxide onto nickel films were obtained by using potential cycling as a simple approach. It was
shown that for benzyl alcohol electrooxidation, intrinsic activities decrease with the increased loadings,
this decreasing trend may be caused by the increase of surface resistance and structure variation of the
catalyst. A more evident decreasing trend was discovered in glycine electrooxidation, and besides
the two reasons noted above, this is also caused by the intercalation of glycine to interlayer with
nickel oxyhydroxide. Further explanations for the observed phenomena are still under investigation.
This work is a reminder that when looking into nickel-mediated, small-molecule electrocatalytic
reactions in alkaline solutions, the potential cycling effect should not be overlooked.
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