

Article

Supplementary Materials: Testing Metal–Organic Framework Catalysts in a Microreactor for Ethyl Paraoxon Hydrolysis

Palani Elumalai ¹, Nagat Elrefaei ², Wenmiao Chen ¹, Ma'moun Al-Rawashdeh ^{2,*} and Sherzod T. Madrahimov ^{1,*}

- ¹ Chemistry Department, Texas A&M University at Qatar, Doha, Qatar; palani.elumalai@qatar.tamu.edu (P.E.); cwm-tamu@tamu.edu (W.C.)
- ² Chemical Engineering Department, Texas A&M University at Qatar, Doha, Qatar; nagat.elrefaei@qatar.tamu.edu
- * Correspondence: mamoun.al-rawashdeh@qatar.tamu.edu (M.A); sherzod.madrahimov@qatar.tamu.edu (S.T.M.)

Figure S1. TEM images of 1.

Catalysts 2020, 10, 1159

Figure S2. TEM-EDS-elemental mapping and EDX-elemental distributions of 1.

Figure S3. SEM images of 1.

2 of 10

Catalysts **2020**, 10, 1159

Figure S4. TEM images of 1a.

Figure S5. TEM-EDS-elemental mapping and EDX-elemental distributions of 1a.

Catalysts 2020, 10, 1159

Figure S6. SEM images of 1a.

Figure S7. TEM images of 4.

Figure S8. TEM-EDS-elemental mapping and EDX-elemental distributions of 4.

4 of 10

Catalysts **2020**, 10, 1159

Figure S9. TEM-EDS-elemental mapping and EDX-elemental distributions of 4a.

Figure S10. SEM images of 4a.

Figure S11. TEM images of 3.

Figure S12. TEM images of 3a.

Catalysts 2020, 10, 1159

Figure S13. TEM-EDS-elemental mapping and EDX-elemental distributions of 3a.

Figure S14. HR-TEM and EDS elemental mapping images with EDX pattern (left) and FE-SEM images (right) of **3a**.

Figure S15. PXRD patterns of 1, 1a and 1a^{AR} (left) and 4 and 4a (right).

ARAfter catalytic run.

Figure S16. PXRD patterns of 2 and 2a (left), and 3 and 3a (right).

MOF	BET surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)
1	222	0.26
1a	180	0.23
1a ^{AR}	216	0.20
2a	116	0.09
3a	34	0.06
4	217	0.26
4a	204	0.24

Table S1. BET surface areas and pore volume for prepared MOFs.

ARAfter catalytic run.

Figure S17. N2 adsorption-desorption isotherms.

Figure S18. UV-Vis calibration curve of p-nitrophenol.

Figure S19. Reaction yield using MOF catalysts **1** at varied flow rates and catalyst particle sizes of reactor 1 (**1a**) and reactor 2 (**1b**).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).