CHA-type zeolite prepared by interzeolite conversion method using FAU and LTL-type zeolite: effect of the raw materials on the crystallization mechanism, and physicochemical and catalytic properties

Toshiki Nishitoba ¹, Takuya Nozaki ¹, Sungsik Park ¹, Yong Wang ¹, Junko N. Kondo ¹, Hermann Gies ^{1, 2}, Toshiyuki Yokoi ^{* 1}

¹ Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan;

² Institute of Geology, Mineralogy und Geophysics, Ruhr-University Bochum, 44780, Germany

^{*} Correspondence: yokoi@cat.res.titech.ac.jp; Tel.: +81-45-924-5430, Fax: +81-45-924-5431

2 of 5

Figure S1. Physicochemical properties of (**a**) LTL (HSZ-500KOA (Si/Al = 3.0)), (**b**) FAU (JRC-Y-4.8 (Si/Al = 2.4) and (**c**) seed crystal (CHA-type zeolite) used as parent zeolite for the synthesis of CHA.

Figure S2. XRD patterns of (a) CHA-LTL-TMAda, (b) CHA-FAU-TMAda, (c) CHA-LTL-TEA, (d) CHA-FAU-TEA.

Figure S3. ²⁷Al MAS NMR spectra of the calcined Na-type products: (a) CHA-FAU-TMAda, (b) CHA-LTL-TMAda, (c) CHA-LTL-TEA, (d) CHA-FAU-TEA.

Figure S4. ²⁷Al MAS NMR spectra of the H⁺- type products: (a) CHA-FAU-TMAda, (b) CHA-LTL-TMAda, (c) CHA-FAU-TEA, (d) CHA-LTL-TEA.

Table	S1.	The	products	s' selectiv	vities in	the	MTO	reaction	over	CHA-LT	L-TMAd	la,
CHA-	FAL	J-TM	Ada, CH	IA-LTL-	ГЕА, an	d CH	IA-FA	AU-TEA.				

	Acid amount ^a	TOS ₉₅ ^b - / min	Product selectivity (C-atom %) ^b						
Catalyst	/ mmol g ⁻¹		C2=	C3=	C4=	Paraffins (C1-C4)	DME	Over C5	
CHA-LTL- TMAda	0.46	180	56.7	28.8	6.4	6.0	0.3	1.9	
CHA-FAU- TMAda	0.47	240	55.9	28.9	7.7	4.7	2.0	0.9	
CHA-LTL- TEA	0.80	180	51.6	33.4	6.3	4.6	2.8	1.3	
CHA-FAU- TEA	1.17	120	48.0	30.8	5.9	5.2	8.9	1.1	

a; Estimated by the NH3-TPD, b; TOS₉₅ indicates TOS (time on Stream) required to achieve methanol conversion drop below 95%.