
catalysts

Article

Double Spirocyclization of
Arylidene-∆2-Pyrrolin-4-Ones with
3-Isothiocyanato Oxindoles
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Abstract: Arylidene-∆2-pyrrolin-4-ones undergo organocatalyzed double spirocyclization with
3-isothiocianato oxindoles in a domino 1,4/1,2-addition sequence. The products contain three
contiguous stereocenters (ee up to 98%, dr up to 99:1, 12 examples). The absolute configuration of the
major diastereomer was determined by single crystal X-ray analysis. Along with heterocyclic Michael
acceptors based on oxazolone, isoxazolone, thiazolidinone, pyrazolone, and pyrimidinedione, the
reported results display the applicability of unsaturated ∆2-pyrrolin-4-ones (pyrrolones) for the
organocatalyzed construction of 3D-rich pyrrolone-containing heterocycles.

Keywords: organocatalysis; pyrrolones; spiroheterocyclization; 3-isothiocyanato oxindoles; cascade
reaction; spiro compounds

1. Introduction

Spirooxindoles, containing various spiro rings attached at the C-3 position of the oxindole
framework, represent a privileged core scaffold frequently encountered in natural and synthetic
products exhibiting many different biological activities [1–4], as shown in Figure 1 [5–9]. Conformational
rigidity of spirooxindoles provides an excellent strategy to enforce the desired conformation for a
specific and strong ligand-protein binding [10].

Development of new catalytic methods for stereoselective construction of diverse spirooxindole
frameworks, possessing both a variable pharmacophore and functional groups that enable follow-up
transformations (i.e., the generation of compound libraries for the evaluation of their biological
activities), represents an important ongoing challenge. In this context, organocatalysis has emerged
as a powerful synthetic tool for the preparation of complex molecular architectures from simple
starting materials, especially due to its operational simplicity, easily available catalysts, and benign
reaction conditions [11–21]. 3-Isothiocyanato oxindoles, possessing both the nucleophilic and the
electrophilic reaction site, represent a convenient building block for the cascade construction of diverse
heterocyclic systems [22–25]. These transformations can be conducted under mild organocatalytic
conditions in a highly stereoselective manner. Thus, various mono- and bis-spiroheterocycles and their
fused analogues have been constructed featuring thioimidazolidinone-spirooxindoles [26–30],
fused-thioimidazolidinone-spirooxindoles [31], thiopyrrolidinone-spirooxindoles [32–52],
fused-thiopyrrolidinone-spirooxindoles [53–56], thiooxazolidinone-spirooxindoles [57–59], and
thio-1,2,4-triazolidinone [60].

Catalysts 2020, 10, 1211; doi:10.3390/catal10101211 www.mdpi.com/journal/catalysts

http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
https://orcid.org/0000-0002-3013-3491
https://orcid.org/0000-0001-6040-294X
https://orcid.org/0000-0002-8709-9853
https://orcid.org/0000-0003-3339-3595
https://orcid.org/0000-0002-5186-9879
http://dx.doi.org/10.3390/catal10101211
http://www.mdpi.com/journal/catalysts
https://www.mdpi.com/2073-4344/10/10/1211?type=check_update&version=2


Catalysts 2020, 10, 1211 2 of 13

Catalysts 2020, 10, x FOR PEER REVIEW 2 of 14 

 

have been applied. Thereof, bicyclic systems are prevalent (i.e., indole, tetralone, and indanone-

derived Michael acceptors) [33,35,37,38,40,41,46,47,52]. Among monocyclic heterocycles, Michael 

acceptors based on oxazolone [49], isoxazolone [45], thiazolidinone [36], pyrazolone [45,51], and 

pyrimidinedione (barbituric acid) [39] have been applied, with no reports on the application of 

pyrrolone-derived 1,4-acceptors (Scheme 1). The pyrrolone (Δ2-pyrrolin-4-one) core is an interesting 

motif prominent in several natural products (Brevianamide A [61]), bioactive molecules (modulators 

of opioid receptors [62], antimalarials [63,64], HIV-1 protease inhibitors [65]), and 

phytopharmaceuticals (herbicides [66]). 

In continuation of our research on the implementation of pyrrolone derivatives in asymmetric 

organocatalyzed transformations [67–70], we herein report a successful application of the arylidene-

Δ2-pyrrolin-4-ones [71] 1 for the enantioselective construction of oxindole-thiopyrolidinone-Δ2-

pyrrolin-4-one bis-spiroheterocycles 3 (Scheme 1). 

 

Figure 1. Selected biologically active compounds possessing a spirooxindole scaffold. Figure 1. Selected biologically active compounds possessing a spirooxindole scaffold.

For the construction of bis-spiroheterocyclic thiopyrrolidinone-spirooxindoles with
3-isothiocyanato oxindoles, arylidene or (functionalized) alkylidene (hetero)cyclic Michael acceptors
have been applied. Thereof, bicyclic systems are prevalent (i.e., indole, tetralone, and indanone-derived
Michael acceptors) [33,35,37,38,40,41,46,47,52]. Among monocyclic heterocycles, Michael acceptors
based on oxazolone [49], isoxazolone [45], thiazolidinone [36], pyrazolone [45,51], and pyrimidinedione
(barbituric acid) [39] have been applied, with no reports on the application of pyrrolone-derived
1,4-acceptors (Scheme 1). The pyrrolone (∆2-pyrrolin-4-one) core is an interesting motif prominent in
several natural products (Brevianamide A [61]), bioactive molecules (modulators of opioid receptors [62],
antimalarials [63,64], HIV-1 protease inhibitors [65]), and phytopharmaceuticals (herbicides [66]).
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In continuation of our research on the implementation of pyrrolone derivatives in
asymmetric organocatalyzed transformations [67–70], we herein report a successful application
of the arylidene-∆2-pyrrolin-4-ones [71] 1 for the enantioselective construction of oxindole-
thiopyrolidinone-∆2-pyrrolin-4-one bis-spiroheterocycles 3 (Scheme 1).

2. Results and Discussion

The DABCO-catalyzed reaction between methyl (E)-5-benzylidene- 1,2-dimethyl-4-oxo-4,5-
dihydro-1H-pyrrole-3-carboxylate (1a) and 3-isothiocyanato-1-methylindolin-2- one (2a) in THF yielded
the corresponding racemic oxindole-thiopyrrolidineone-∆2-pyrrolin-4-one rac-3a. The subsequent
screening of the chiral noncovalent bifunctional organocatalysts I-VII based on camphor,
cyclohexane-1,2-diamine, and quinuclidine in toluene at 25 ◦C is presented in Scheme 2. Several
cyclohexane-1,2-diamine- and quinuclidine-based catalysts (VIb, VIIIb, IXb, Xb, XIb) containing
either the thiourea or the squaramide H-bond donor and 3,5-bis(trifluoromethyl)phenyl group are
compatible with the model reaction 1a + 2a→3a in both yields and stereoselectivity. Among the
screened catalysts, the best results along with the cleanest reaction profile were obtained with the
catalyst IXb (dr = 95:5, ee = 79%, 60% yield).
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With the optimal catalyst IXb in hand, solvent optimization for the reaction 1a + 2a→3a was
performed (Table 1). Compared to toluene (Entry 1, 79% ee), the enantioselectivity decreased
significantly in dichloromethane, acetonitrile, and methanol (Entries 6, 10, 11; up to 52% ee), while
in ethereal solvents (Entries 2, 5, 9) and acetone (Entry 8), the enantioselectivity improved (82–87%
ee). A drop of diastereoselectivity was observed in diethyl ether, acetonitrile, and methanol (Entries
3, 10, 11). In terms of yield, the conversion was lower in the majority of the tested solvents (Entries
2–6, 8–11). Trifluorotoluene (Entry 7) gave the cleanest reaction profile with practically unchanged
diastereoselectivity, alongside the highest yield and enantioselectivity (dr = 93:7, ee = 87%, 67% yield).

Table 1. Evaluation of organocatalyst IXb in bis-spiroheterocyclization of 5-arylidene-∆2-pyrrolin-4-one
1a with 3-isothiocyanatooxindole 2a. a
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Solvent Yield (%) dr ee (%)

1 toluene 60 95:5 79
2 1,4-dioxane 46 93:7 83
3 Et2O 35 80:20 75
4 1,2-dimethoxyethane 49 95:5 78
5 THF 55 94:6 82
6 CH2Cl2 61 93:7 6
7 PhCF3 67 93:7 87
8 acetone 44 94:6 87
9 t-butyl methyl ketone 41 95:5 87
10 MeCN 30 79:21 52
11 MeOH 34 86:14 36

a 5-Arylidene-∆2-pyrrolin-4-one 1a (0.1 mmol), 3-isothiocyanato oxindole 2a (0.13 mmol), catalyst IXb (10 mol%),
solvent (1 mL), 25 ◦C, 24 h; ee and dr determined by HPLC after flash column chromatography.

Having established the optimal reaction conditions (catalyst IXb, trifluorotoluene), the scope of
the studied transformation was evaluated. For that purpose, several ∆2-pyrrolin-4-ones 1 [71,72] and
two 3-isothiocyanato oxindoles 2 [30,53,59] were applied (Figure 2). The results of the investigated
scope are presented in Scheme 3. With the N-methyl-substituted ∆2-pyrrolin-4-ones 1a–g, the effect
of electron-donating and electron-withdrawing substituents on the phenyl ring of the arylidene
moiety, including tiophen-2-yl moiety, did not establish a clear trend; the products were isolated
with good to excellent enantioselectivities (80–98% ee), diastereoselectivity above 75:25, and low to
moderate yields (18–67%). Despite our best efforts, stereoisomers of the products rac-3m–p, derived
from pyrrolones 1h–k and unsubstituted 3-isothiocyanato oxindole 2a, could not be separated on
chiral HPLC columns (see the Supplementary Materials). The products 3f–j, derived from 5-methyl
substituted 3-isothiocyanato oxindole 2b, compared with the products 3a–e, derived from unsubstituted
3-isothiocyanato oxindole 2a, were generally formed in slightly higher enantioselectivities though
lower yields at longer reaction times.

The absolute configuration (3R,3′S,4′R) of the major stereoisomer of the product 3b was determined
by single crystal X-ray analysis (Figure 3) (see the Supplementary Materials). Consequently, the same
absolute configuration (3R,3′S,4′R) was assigned to all the major diastereomers of products 3a–j.
The reaction of 3-isothiocyanato oxindoles 2a and 2b with N-unsubstituted pyrrolones 1l and 1m
yielded the corresponding products 3k and 3l in low yields (7 and 14%), and low to moderate
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enantioselectivities (21 and 57% ee), respectively. Based on previous observations, where enantiomeric
products were obtained in the reaction of (E)- and (Z)-pyrrolones 1 with 2-mercaptoacetaldehyde [71],
an enantiomeric relationship of (3S,3′R,4′S) was tentatively assigned to products 3k and 3l (Scheme 3).

The follow-up methylation of compound 3a with iodomethane in the presence of K2CO3 in
acetone gave the S-methylated product 4 (Scheme 4).

According to the Grayson [72,73] proposal of stereochemistry origin in squaramide-catalyzed
asymmetric Michael addition reactions and the observed absolute configuration revealed by X-ray
analysis of the major diastereomer of compound 3b (cf. Figure 3), a plausible transition state (TS)
leading to the product (as exemplified for the formation of product 3a) can be postulated (Scheme 5).
The protonated catalyst activates and coordinates the pyrrolone electrophile via the protonated
quinuclidine moiety, while the squaramide functionality simultaneously orients and activates the
nucleophile for the attack. The Si face of the nucleophile attacks the Re face of the electrophile, which is
followed by the spiro-cyclisation yielding product 3a (Scheme 5).
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3. Materials and Methods

3.1. Materials and Methods, Syntheses, and Characterization

Solvents for chromatography and extractions were of technical grade. They were distilled prior
to use. Technical grade anhydrous Na2SO4 was used for drying of extracts. Melting points were
determined on a Kofler micro hot stage and an SRS OptiMelt MPA100-Automated Melting Point
System (Stanford Research Systems, Sunnyvale, CA, USA). The NMR spectra were obtained on a
Bruker UltraShield 500 plus (Bruker, Billerica, MA, USA) at 500 MHz for 1H and 126 MHz for a 13C
nucleus, using DMSO-d6 and CDCl3 with TMS as the internal standard, as solvents. Mass spectra
were recorded on an Agilent 6224 Accurate Mass TOF LC/MS (Agilent Technologies, Santa Clara, CA,
USA), and IR spectra on a Perkin-Elmer Spectrum BX FTIR spectrophotometer (PerkinElmer, Waltham,
MA, USA). Column chromatography (CC) was performed on silica gel (Silica gel 60, particle size:
0.035–0.070 mm (Sigma-Aldrich, St. Louis, MO, USA)). HPLC analyses were performed on an Agilent
1260 Infinity LC (Agilent Technologies, Santa Clara, CA, USA) using CHIRALPAK IA-3 (0.46 cm ø ×
25 cm), CHIRALPAK AD-H (0.46 cm ø × 250 mm), CHIRALCEL AS-H (0.46 cm ø × 250 mm), and
CHIRALCEL OD-H (0.46 cm ø × 250 mm) as chiral columns (CHIRAL TECHNOLOGIES, INC., West
Chester, PA, USA). All the commercially available chemicals used were purchased from Sigma-Aldrich
(St. Louis, MO, USA).

Methyl 5-arylidene-2-methyl-4-oxo-4,5-dihydro-1H-pyrrole-3-carboxylates 1 [71] and 3-isothio
cyanatooxindoles 2a and 2b [30,53,59] were prepared following the literature procedures.

Organocatalysts Ia [70], II [69], IIIa [70], IV [70], Vb [74], VIa [75], VIb [76], VIIa [77], VIIb [76],
IXa [78], IXb [79], IXc [80], Xb [81], XIa [19], and XIb [78] were prepared following the literature
procedures; organocatalysts VIIIb and XII were purchased from Sigma-Aldrich.
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3.2. Synthesis of (E)-Methyl 5-Arylidene-1,2-Dimethyl-4-oxo-4,5-Dihydro-1H-Pyrrole-3-Carboxylate-General
Procedure 1 (GP1)

To a solution of methyl (Z)-2-(2-chloroacetyl)-3-(methylamino)but-2-enoate (E) [71] (1 equivalent)
in anhydrous EtOH at room temperature, KOH (1.05 equivalent,ω = 0.85) was added and the resulting
reaction mixture was heated to 75 ◦C. After the disappearance of the starting material (ca. 45 min),
according to the TLC analysis (mobile phase: EtOAc/MeOH = 4:1) (Figure S1), the mixture was
cooled to room temperature. KHSO4 (0.5 equivalent) was added, followed by the addition of H2O
(5 mL), and the mixture was stirred for 10 min at room temperature, followed by the addition of
an aldehyde (1 equivalent). The mixture was heated to 75 ◦C and stirred until the disappearance
of the ∆2-pyrrolin-4-one intermediate A (ca. 30 min), according to the TLC analysis (mobile phase:
EtOAc/MeOH = 4:1) (Figure S1). Afterwards, the solution was cooled to room temperature, followed by
the slow addition of ice-cold water (ca. 100 mL) until the formation of the precipitate. The precipitate
was collected by filtration, washed with ice-cold water, and dried under a high vacuum at 60 ◦C.
Unless noted otherwise, the crude product was purified by recrystallization from MeOH/H2O and
dried under a high vacuum at 60 ◦C, which afforded the product 1 (compounds 1c, 1f, 1g, 1i) as a
brightly colored solid. Other 5-arylidene-2-methyl-4-oxo-4,5-dihydro-1H-pyrrole-3-carboxylates were
prepared following the literature procedures [71].

3.3. Organocatalyzed Bis-Spiroheterocyclization-Preparation of Racemic Mixtures-General Procedure 2 (GP2)

To a mixture of arylidene-∆2-pyrrolin-4-one 1 (0.1 mmol), 3-isothiocyanato oxindole 2 (0.13 mmol),
and 1,4-diazabicyclo[2.2.2]octane (DABCO) (0.01 mmol, 1.12 mg) under argon, anhydrous THF (1
mL) was added and the resulting reaction mixture was stirred at 25 ◦C for 24 h. Volatile components
were evaporated in vacuo and the residue was purified by column chromatography (Silica gel 60,
mobile phase: EtOAc/petroleum ether = 2:1). Fractions containing the pure racemic product rac-3 were
combined and volatile components were evaporated in vacuo followed by HPLC analysis on chiral
columns. Products rac-3 (compounds rac-3k-n), that could not be separated on chiral columns, were
fully characterized.

3.4. Organocatalyzed Stereoselective Bis-Spiroheterocyclization-General Procedure 3 (GP3)

To a mixture, arylidene-∆2-pyrrolin-4-one 1 (0.1 mmol), 3-isothiocyanato oxindole 2 (0.13 mmol),
and organocatalyst I-XII (10 mol%) under argon, anhydrous solvent (1 mL) was added and the resulting
reaction mixture was stirred at 25 ◦C for 24–72 h.

(i) For catalyst and solvent screening (model reaction 1a + 2a→3a), volatile components were
evaporated in vacuo and the residue was purified by flash column chromatography to remove the
catalyst (Silica gel 60, mobile phase: EtOAc/petroleum ether = 2:1). Fractions containing the product
3a were combined and volatile components were evaporated in vacuo followed by determination of
the enantiomeric excess and diastereomeric ratio by HPLC analysis.

(ii) For the reaction scope synthesis (reactions 1 + 2→3; compounds 3a–l), volatile components
were evaporated in vacuo and the residue was purified by column chromatography (Silica gel 60,
mobile phase: EtOAc/petroleum ether = 2:1). Fractions containing pure product 3 were combined and
volatile components were evaporated in vacuo, followed by determination of the enantiomeric excess
by HPLC analysis, determination of the diastereomeric ratio by 1H-NMR, and full characterization.

4. Conclusions

We have shown that Michael acceptors based on ∆2-pyrrolin-4-ones (pyrrolones), which are easily
prepared from bulk chemicals [71], undergo stereoselective organocatalyzed double spiro-cyclization
with 3-isothiocianato oxindoles. A library of 12 products containing three contiguous stereocenters (ee
up to 98%, dr up to 99:1) has been synthesized and a follow-up transformation demonstrated. This
research offers a new entry for the construction of 3D-rich pyrrolone-containing heterocycles.



Catalysts 2020, 10, 1211 9 of 13

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/10/1211/s1,
Synthesis and Characterization Data for Compounds 1 and 3; HPLC data; Copies of 1H- and 13C-NMR spectra;
Structure Determination by NMR-NOESY spectra (for compounds 1); Copies of HRMS reports of Compounds 1
and 3; Structure Determination by X-ray Diffraction Analysis, Figure S6: Ortep drawing of compound 3b.

Author Contributions: For Conceptualization, U.G., S.R., J.S., F.P., and B.Š.; methodology, U.G. and S.R.; software,
U.G., S.R., L.C., J.S., F.P., and B.Š.; validation, U.G., S.R., J.S., F.P., and B.Š.; formal analysis, U.G., Ž.T., H.B., and
S.R.; investigation, S.R., Ž.T., L.C., and U.G.; resources, U.G., S.R. and J.S.; data curation, U.G., Ž.T., L.C., J.S., S.R.,
F.P., H.B., and B.Š.; writing—original draft preparation, U.G., S.R., J.S., F.P., and B.Š.; writing—review and editing,
U.G., J.S., S.R., L.C., F.P., and B.Š.; visualization, U.G., B.Š., and J.S.; supervision, U.G.; project administration, U.G.
and J.S.; funding acquisition, J.S., U.G., F.P., and B.Š. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Slovenian Research Agency through grants P1-0179 and P1-0175.

Acknowledgments: We thank EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, 1000 Ljubljana, Slovenia,
for using BX FTIR spectrophotometer and Agilent 1260 Infinity HPLC system.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Panda, S.S.; Mohapatra, P.P.; Jones, R.A.; Bachawala, P. Spirooxindoles as Potential Pharmacophores. Mini
Rev. Med. Chem. 2017, 17, 1515–1536. [CrossRef] [PubMed]

2. Yu, B.; Yu, D.-Q.; Liu, H.-M. Spirooxindoles: Promising scaffolds for anticancer agents. Eur. J. Med. Chem.
2015, 97, 673–698. [CrossRef] [PubMed]

3. Zheng, Y.; Tice, C.M.; Singh, S.B. The use of spirocyclic scaffolds in drug discovery. Bioorg. Med. Chem. Lett.
2014, 24, 3673–3682. [CrossRef] [PubMed]

4. Galliford, C.V.; Scheidt, K.A. Pyrrolidinyl-spirooxindole natural products as inspirations for the development
of potential therapeutic agents. Angew. Chem. Int. Ed. 2007, 46, 8748–8758. [CrossRef]

5. Zhao, Y.; Yu, S.; Sun, W.; Liu, L.; Lu, J.; McEachern, D.; Shargary, S.; Bernard, D.; Li, X.; Zhao, T.; et al. A
Potent Small-Molecule Inhibitor of the MDM2-p53 Interaction (MI-888) Achieved Complete and Durable
Tumor Regression in Mice. J. Med. Chem. 2013, 56, 5553–5561. [CrossRef] [PubMed]

6. Crosignani, S.; Page, P.; Missotten, M.; Colovray, V.; Cleva, C.; Arrighi, J.-F.; Atherall, J.; Macritchie, J.;
Martin, T.; Humbert, Y.; et al. Discovery of a New Class of Potent, Selective, and Orally Bioavailable CRTH2
(DP2) Receptor Antagonists for the Treatment of Allergic Inflammatory Diseases. J. Med. Chem. 2008, 51,
2227–2243. [CrossRef] [PubMed]

7. Edmondson, S.; Danishefsky, S.J.; Sepp-Lorenzino, L.; Rosen, N. Total Synthesis of Spirotryprostatin A,
Leading to the Discovery of Some Biologically Promising Analogs. J. Am. Chem. Soc. 1999, 121, 2147–2155.
[CrossRef]

8. Yeung, B.K.S.; Zou, B.; Rottmann, M.; Lakshminarayana, S.B.; Ang, S.H.; Leong, S.Y.; Tan, J.; Wong, J.;
Keller-Maerki, S.; Fischli, C.; et al. Spirotetrahydro β-Carbolines (Spiroindolones): A New Class of Potent and
Orally Efficacious Compounds for the Treatment of Malaria. J. Med. Chem. 2010, 53, 5155–5164. [CrossRef]

9. Yu, Q.; Guo, P.; Jian, J.; Chen, Y.; Xu, J. Nine-step total synthesis of (-)-strychnofoline. Chem. Commun. 2018,
54, 1125–1128. [CrossRef]

10. Ye, N.; Chen, H.; Wold, E.A.; Shi, P.-Y.; Zhou, J. Therapeutic Potential of Spirooxindoles as Antiviral Agents.
ACS Infect. Dis. 2016, 2, 382–392. [CrossRef]

11. Torres, R.R. (Ed.) Stereoselective Organocatalysis: Bond Formation Methodologies and Activation Modes, 1st ed.;
JohnWiley & Sons: Hoboken, NJ, USA, 2013.

12. Jakab, G.; Schreiner, P.R. Brønsted Acids: Chiral (Thio)urea Derivatives. In Comprehensive Enantioselective
Organocatalysis: Catalysts, Reactions, and Applications, 1st ed.; Dalko, P.I., Ed.; Wiley-VCH: Weinheim, Germany,
2013; pp. 315–342.
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