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Abstract: Pure titanium dioxide TiO2 photocatalytic substrates exhibit antibacterial activity only when
they are irradiated with ultraviolet light, which comprises high-energy wavelengths that damage
all life. Impurity doping of TiO2-related materials enables visible light to stimulate photocatalytic
activity, which enhances opportunities for TiO2 to be used as a disinfectant in living environments.
Boron-doped TiO2 displays visible-light-responsive bactericidal properties. However, because
boron-derived compounds also exert notable antibacterial effects, most reports did not clearly
demonstrate the extent to which the bactericidal property of boron-doped TiO2 is contributed by
visible-light-stimulated photocatalysis. In addition, TiO2 thin films have considerable potential
for applications in equipment that requires sterilization; however, the antibacterial properties of
boron-doped TiO2 thin films have been examined by only a few studies. We found that boron-doped
TiO2 thin films displayed visible-light-driven antibacterial properties. Moreover, because boron
compounds may have intrinsic antibacterial properties, using control groups maintained in the dark,
we clearly demonstrated that visible light stimulated the photocatalysis of boron-doped TiO2 thin
films but not the residue boron compounds display antibacterial property. The bactericidal effects
induced by visible light are equally potent for the elimination of the model organism Escherichia
coli and human pathogens, such as Acinetobacter baumannii, Staphylococcus aureus, and Streptococcus
pyogenes. The antibacterial applications of boron-doped TiO2 thin films are described, and relevant
perspectives discussed.

Keywords: titanium dioxide TiO2; boron-doped TiO2; visible light responsive photocatalyst;
antibacterial material

1. Introduction

Disinfectants are critical in the elimination of environmental pathogens for adequately maintaining
a clean water supply, sanitation and hygiene services, and hospital facilities [1]. Titanium dioxide
(TiO2) materials are one of the most common photocatalysts used for antimicrobial applications [2].
The exposure of photocatalytic materials to ultraviolet (UV) light results in the generation of
electron–hole pairs because electrons from the valence band are stimulated to enter the conduction
band. Efficient photocatalysis utilizes these holes and electrons in reaction rather than in recombination,
which is a process that involves the release of energy in the form of heat to cause incomplete
photocatalysis. In efficient photocatalysis, antimicrobial reactive oxygen species are produced by
reactions between excited electron–hole pairs and atmospheric water or oxygen [3]. However, the toxic
effects of UV light prohibit the usage of UV photocatalysts in workplaces and living environments.
The impurity doping of TiO2-related materials with various metal and nonmetal elements, which results
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in a shift of excitation wavelength from the UV region to the visible light, can be a feasible solution
to this problem [2,4–13]. In addition, the recombination rates of electron–hole pairs can be reduced
through the impurity doping of TiO2.

Research has revealed visible-light-induced antibacterial properties in boron-doped TiO2 [14–16].
However, in a previous study, boron-doped TiO2 was also found to exert a strong bactericidal effect in
the dark [16]. Other evidence has revealed that without TiO2, boron-derived compounds exert levels of
antibacterial properties [17–23]. As boron-containing materials display strong antibacterial properties,
whether or how strongly the photocatalytic property contributes to the antibacterial property of
boron-doped TiO2 requires further characterization. In addition, the antibacterial property of TiO2 thin
films, which are a type of nanomaterial used largely in personal hygiene and clinical equipment [24],
have been examined to a limited extent on the boron-doped films. Therefore, in the present study,
we investigated the antibacterial property of boron-doped TiO2 thin films. Relevant implications and
applications of this property are also discussed.

2. Results

2.1. Analyses of Boron-Doped Titania Thin Films

Following previously described methods [25], two series (as-deposited and annealed) of
boron-doped TiO2 [TiO2(B)] films with thickness ranging from 117 nm to 484 nm were prepared in this
study. The as-deposited films were prepared under the same processing parameters by varying the
deposition time and the annealed films were heat-treated at 600 ◦C in air for one hour. Field-emission
scanning electron microscopy showed that the surfaces of the as-deposited TiO2(B) thin films were
evenly coated with materials before and after annealing, nano-sized grains mixed with pores developed
forming nanoporous films (Figure 1; experiment settings, Figure S1).
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Figure 1. Field-emission scanning electron microscopy of TiO2(B) films. Examples of the vertical views
(A–H) of TiO2(B) films with various thickness, before (A–D) and after (E–H) annealing.

X-ray photoelectron spectroscopy (XPS) analysis indicated the deposition of boron in the films
(Figure 2A,B; Table S1). The X-ray diffraction (XRD) results indicated that the anatase phase of titania
was formed after the annealing (Figure 2C vs. Figure 2D) of the films. Absorption spectroscopy
analysis in the ultraviolet–visible (UV–Vis) range revealed that no marked changes occurred after
annealing, whereas the B-containing samples exhibited a marginal red shift, which indicated increased
absorption in the visible light range (Figure 3A,B).
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Figure 2. Boron contents in various TiO2(B) films. The XPS results of surface composition of the
TiO2(B) films, ranging from 117 nm to 484 nm, before (A) and after (B) annealing. X-day diffraction
analysis results obtained before (C) and after (D) annealing. TiO2 122 nm are control groups with pure
TiO2 (C,D).
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Figure 3. Ultraviolet (UV)–visible absorption spectroscopy analysis of TiO2(B) thin-film samples.
The UV–visible absorption spectroscopy results of the TiO2(B) films, ranging from 117 nm to 484 nm,
before (A) and after (B) annealing are showed.

Since the as-deposited films are prepared under the same conditions except for deposition time,
their chemical composition is expected to be comparable. However, after annealing at 600 ◦C in air for
one hour, some of the boron content may form B2O3 and evaporate away, leaving nanoporous TiO2(B)
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films with less boron content. The remaining boron in the TiO2(B) may exist as residual B2O3 and
as [BO3] and [Ti2BO2] species in the TiO2 lattice and their effect on the XPS spectra and on UV-Vis
spectra have been studied and discussed in our previous paper [25]. The amount and ratio of these
boron related species in the annealed films are different due to film thickness. In addition to these data,
the photocatalytic activity and antimicrobial property of TiO2(B) thin films require further investigation.

2.2. Photocatalytic Activity and Escherichia Coli Killing Property of TiO2(B) Thin Films

The UV-driven and visible-light-driven photocatalytic properties were further investigated using
a methylene blue (MB) degradation experiment. We found that B doping considerably increased the
UV-induced and visible-light-induced photocatalytic responses, specifically in relatively thick TiO2(B)
samples (Figure 4A,B). The degradation rate constant was also determined, with the 484 nm samples
exhibiting the strongest catalytic property under visible light (Figure 4C). In literature, crystalline
anatase is the most active form for photocatalysis under UV light, but less effective under visible
light, while mixed phases of anatase and rutile have a better photocatalytic performance under visible
light [5,26,27]. This is consistent with the correlation between the phases of films in Figure 2D and the
photocatalytic performance presented in Figure 4.
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Figure 4. Methylene blue (MB) degradation analyses. The MB degradation of various TiO2(B) films,
ranging from 117 nm to 484 nm, under UV light (A), MB degradation of various TiO2(B) films under
visible light (B), and the degradation rate constant (C).

To investigate the antibacterial property of TiO2(B) thin films, the most commonly used
bacterial model organism, Escherichia coli, was employed. Using the plating method, we found
that, in agreement with MB degradation analysis, the 484 nm TiO2(B) thin-film samples displayed
the greatest bacteria-killing property under visible light illumination but not in the dark (Figure 5),
which suggested the induction of antibacterial property by visible light.
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Figure 5. Visible-light-induced photolytic killing of Escherichia coli with or without treatments on
various TiO2 substrates. Pure TiO2 films as well as 313, 405, and 484 nm TiO2(B) thin films were used.
The percentage of surviving bacteria without placement on the films (no film, untreated groups) was
normalized to 100%. n = 6, # p < 0.05 (compared with the respective untreated group); * p < 0.05
(compared with the respective dark group).

2.3. Pathogen-Killing Property of TiO2(B) Thin Films

To investigate the performance of TiO2(B) films in the eradication of pathogenic bacteria,
Acinetobacter baumannii, Staphylococcus aureus, and Streptococcus pyogenes were used. A. baumannii
and S. aureus are nosocomial infectious bacteria, which increase infections and mortality in hospitals [28].
We found that these three pathogens were markedly suppressed after the treatment of TiO2(B) films
with visible light with a wavelength of 484 nm (Figure 6, dark vs. light groups). The TiO2(B) films
displayed approximately equally potent bactericidal effects for the elimination of Gram-negative
bacteria (A. baumannii) and Gram-positive bacteria (S. aureus and S. pyogenes) (Figure 6).
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Figure 6. Visible-light-induced photolytic killing of pathogenic bacteria. The percentage of surviving
bacteria without placement on the 484-nm TiO2(B) film (untreated groups) was normalized to 100%.
n = 6, ## p < 0.01 (compared with the respective untreated group), ** p < 0.01 (compared with the
respective dark group).
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3. Discussion

Various nanomaterials with antimicrobial properties have been developed [29] to reduce
pathogenic microorganisms for the purposes of personal hygiene, water treatment, food production,
and hospital facilities [1] and for controlling the spreading of infectious diseases during large
epidemics [30]. The photocatalytic disinfection of bacteria by using various nanomaterials is a
promising research area [31]. UV-stimulated TiO2 substrates are the most commonly used photocatalyst
for antimicrobial purposes [2]. Because UV irradiation is harmful to humans, impurity doping in
TiO2 with metal and nonmetal elements results in red shift of the excitation wavelength from UV to
visible light [4–7]. This finding suggests that visible-light-driven photocatalysis may be a more feasible
approach for killing bacteria than UV-driven photocatalysis is [2,12,13]. Despite the aforementioned
findings, the visible-light-responsive antimicrobial property of nanoscale TiO2(B) films still requires
further investigation.

Nanoscale thin films, which are low-dimension materials fabricated with a thickness in
the nanometer range, are deposited onto substrate surfaces to achieve superior properties.
The fabrication and characterization of thin films have a long history, with one early report describing
thin-metal-film-deposited glassware [32]. Nanoscale thin films can theoretically be synthesized from a
wide variety of materials, which opens the possibility of applications in various fields. For example,
nanoscale thin films are primarily developed for physical, chemical, and electronic applications [33]
and have also been used in biomedical applications [34]. Because visible-light-responsive antibacterial
TiO2(B) thin films have not yet been well characterized, in the present study, we characterized TiO2(B)
thin films and found that they exhibited a visible-light-responsive photocatalytic property. Because
the thickness of the TiO2(B) thin films determines the photocatalytic outcome, sufficient thickness is
suggested to be crucial for visible-light-initiated photocatalysis.

Because boron-derived compounds exhibit levels of antibacterial properties [17–23],
we investigated whether TiO2(B) thin films also exerted an antibacterial effect in the dark. Analysis
data from antibacterial experiments revealed that TiO2(B) thin films displayed no antibacterial effect
in the dark, which suggested that no boron-derived nonphotocatalytic antibacterial property was
involved in this system. In addition, the analysis results revealed that the antibacterial property of
TiO2(B) thin films reduced the live cell population of not only the model organism E. coli but also
the human pathogenic bacteria A. baumannii, S. aureus, and S. pyogenes. The aforementioned results
suggest that without the nonphotocatalytic antibacterial property of boron, TiO2(B) thin films continue
to exhibit a visible-light-driven bactericidal effect. In addition, visible-light-responsive antibacterial
TiO2(B) thin films may be a feasible material for the elimination of human pathogens.

4. Materials and Methods

4.1. Preparation of TiO2(B) Films

TiO2(B) films were prepared using a reactive magnetron sputtering system (AJA International,
Scituate, MA, USA) according to the methods described in [25]. The distance between the substrate
holder and the targets was set as 100 mm. The chamber was evacuated with an Alcatel mechanical
pump and a turbomolecular pump (models 2015SD and TMU261; Pfeiffer Vacuum, de Brogny, France).
The basal pressure was 4.0 × 10−5 Pa or lower. Through sputtering from 99.99% titanium metal targets,
TiO2 films were deposited at the substrate temperature of 100 ◦C with a constant power of 200 W for
each 99.99% titanium metal target as well as one 99.5% TiB2 target of 120 W in Ar/O2 plasma. The gas
flow rate was adjusted to be 20 sccm for Ar and 8 sccm for O2 under a total pressure of approximately
4.0 × 10−1 Pa (3.0 × 10−3 Torr). A series of films with thickness ranging from 117 nm to 484 nm was
prepared by controlling the deposition time. Polished Si (100) wafers and glass and fused quartz slides
were used as substrates. All the substrates were solvent-cleaned before use and sputter-etched with
argon plasma for 10 min prior to the film deposition to remove potential pollutants on the surfaces.
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4.2. Characterization of TiO2(B) Films

On the basis of the methods described in [8,25], the structure and crystallinity of TiO2(B) films
were analyzed using XRD measurements recorded using an X-ray diffractometer (D/MAX-2500V,
Rigaku, The Woodlands, TX, USA) with a Cu Kα radiation (40 kV, 100 mA) source. The surface
morphology and cross-section view of the films was observed using field-emission scanning electron
microscopy (SEM; JEM-6500F, JEOL, Tokyo, Japan). The thickness of the films was measured using
a surface profilometer (DektakXT, Bruker, Germany) and double-checked with SEM cross-sectional
view. The UV–Vis absorption spectra of the films were recorded using a spectrophotometer (JASCO
V-650) with a wavelength range of 300–900 nm. The composition of samples was determined through
energy-dispersive spectroscopy (EMAX-ENERGY, Horiba, Kyoto, Japan) and X-ray photoelectron
spectroscopy (K-Alpha, Thermo Fisher Scientific, Waltham, MA, USA) by using an AlK α X-ray
radiation source to estimate elements semi-quantitatively.

4.3. Photocatalytic Properties

The analysis protocols were based on the methods reported in [4,25,35,36], in which the MB
(Sigma-Aldrich, St. Louis, MO, USA) degradation rate is used to analyze the photocatalytic performance
of impurity-doped TiO2. By determining the degradation of 10 ppm MB, the photocatalytic efficiency
of the TiO2(B) films was evaluated. For measurements with a UV–Vis spectrometer, the intensities of
light absorption at 664 nm were used to determine the concentration of MB in tested solution. A sample
of fixed size (1 cm × 1 cm) was submerged in 2 mL of the MB-containing aqueous solution. An 8 W
fluorescent lamp (UVItech-LF104L) with a wavelength distribution of 300–400 nm and a maximum
intensity of 370 nm was used for UV irradiation. The distance between the UV light source and the
sample was 10 cm, which resulted in an average power intensity of 3.2 mW/cm2 [25]. A fluorescent
lamp (P-LF27W/865, Philips Taiwan, Taipei, Taiwan) with a wavelength distribution of approximately
400–750 nm and a maximum intensity of 543–611 nm was used to perform visible light illumination as
described in [8]. With 8 cm between the visible light source and the samples, the lamp produced an
average power density of 4.2 mW/cm2.

4.4. Antibacterial Experiment

Standard protocols for bacterial culture, plating, and storage and for determining bacterial counts
were performed in accordance with the methods described in [5,8,37–39]. For example, the bacterial
counts were determined using the standard plating method or optical density readings at 595 nm (OD595).
The conversion factor for E. coli was calculated to be 1 × 109 colony-forming units (CFUs)/mL at OD595,
and the cultures were diluted with the culture medium to 1 × 107 CFUs/mL [8]. For the photocatalytic
killing of bacterial cells, the 1 × 106 CFU culture was dripped onto the sample (bacterial-containing
droplet covered area with approximately 6.25 cm2) and was then placed in a dark room or exposed
to visible light at room temperature. An incandescent lamp (Classictone incandescent lamp, 60 W,
Philips; Taipei, Taiwan) was used as the visible light source. The illumination density was recorded
using a light meter (model LX-102; Lutron Electronic Enterprises, Taipei, Taiwan) [8]. The illumination
distance between the sample and the lamp was approximately 10 cm, with exposure lasting for 30 min.
Moreover, the light intensity on the sample surface was almost 1.2 × 103 lux (lumen/m2) (30 mW/cm2)
in the photocatalytic reaction. After illumination, 100 µL of the bacterial solution was recovered from
the photocatalytic substrates. Finally, standard dilution and plating methods were used to determine
the live bacterial levels [8]. Clinical isolates of S. aureus (strain SA02), pandrug-resistant A. baumannii
(strain M36788), and S. pyogenes (strain M29588) were provided by the Buddhist Tzu-Chi General
Hospital in Hualien, Taiwan [5,8]. LB agar (BD Diagnostics, Sparks, MD, USA) or lysogeny broth (LB)
medium was used to maintain E. coli. Moreover, A. baumannii. S. pyogenes, and S. aureus were grown in
tryptic soy broth with yeast extract (TSBY) or TSBY broth agar (MDBio, Inc., Taipei, Taiwan) at 37 ◦C.
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To prevent the illumination of small parts of the sample with UV wavelengths in the photocatalytic
experiments, a UV cut-off filter (400 nm; Edmund Optics, Barrington, NJ, USA) was used [8].

4.5. Statistical Analysis

In this study, means, standard deviations, and all other statistics were calculated using Microsoft
Office Excel 2003 and SigmaPlot 10 to obtain statistical and quantitative analysis data. A post hoc
Bonferroni corrected test followed by one-way analysis of variance was performed to determine the
significance of the data, and the probability of the type I error (α) being equal to or greater than 0.05
was recognized as statistically significant.

5. Conclusions

In the present study, TiO2(B) thin films exhibited a visible-light-driven degradation and
bactericidal effects without the nonphotocatalytic antibacterial property of boron. In addition,
the visible-light-responsive antibacterial TiO2(B) thin films proved to be feasible materials for the
control and elimination of human pathogens. The as-deposited films are amorphous and after annealing
at 600 ◦C in air for one hour, some of the boron content evaporated away, leaving nanoporous TiO2(B)
films with less boron content. The photocatalytic effects are increasing with the film thickness in
general, but the phase of the films also plays a significant role. The thicker TiO2(B) film of mixed
phases of anatase and rutile shows better photocatalytic performance under visible light.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/11/1349/s1:
Figure S1: Experimental settings and Table S1: X-ray photoelectron spectroscopy composition analysis.
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