
catalysts

Review

Non-Thermal Plasma for Process and Energy
Intensification in Dry Reforming of Methane

Rufat Sh. Abiev 1,* , Dmitry A. Sladkovskiy 2, Kirill V. Semikin 2, Dmitry Yu. Murzin 2,3

and Evgeny V. Rebrov 1,4,5

1 Department of Optimization of Chemical and Biotechnological Equipment, St. Petersburg State Institute of
Technology (Technical University), St. Petersburg 190013, Russia; E.Rebrov@warwick.ac.uk

2 Resource-Saving Department, St. Petersburg State Institute of Technology (Technical University),
St. Petersburg 190013, Russia; dmitry.sla@gmail.com (D.A.S.); kirrse@gmail.com (K.V.S.) ;
Dmitry.Murzin@abo.fi (D.Y.M.)

3 Laboratory of Industrial Chemistry and Reaction Engineering, Åbo Akademi University,
FI-20500 Åbo (Turku), Finland

4 School of Engineering, University of Warwick, Coventry CV4 7AL, UK
5 Department of Chemical Engineering and Chemistry, Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
* Correspondence: ohba@lti-gti.ru or abiev.rufat@gmail.com

Received: 2 October 2020; Accepted: 17 November 2020; Published: 22 November 2020
����������
�������

Abstract: Plasma-assisted dry reforming of methane (DRM) is considered as a potential way to convert
natural gas into fuels and chemicals under near ambient temperature and pressure; particularly for
distributed processes based on renewable energy. Both catalytic and photocatalytic technologies have
been applied for DRM to investigate the CH4 conversion and the energy efficiency of the process.
For conventional catalysis; metaldoped Ni-based catalysts are proposed as a leading vector for
further development. However; coke deposition leads to fast deactivation of catalysts which limits
the catalyst lifetime. Photocatalysis in combination with non-thermal plasma (NTP), on the other
hand; is an enabling technology to convert CH4 to more reactive intermediates. Placing the catalyst
directly in the plasma zone or using post-plasma photocatalysis could generate a synergistic effect
to increase the formation of the desired products. In this review; the recent progress in the area of
NTP-(photo)catalysis applications for DRM has been described; with an in-depth discussion of novel
plasma reactor types and operational conditions including employment of ferroelectric materials and
nanosecond-pulse discharges. Finally, recent developments in the area of optical diagnostic tools for
NTP, such as optical emission spectroscopy (OES), in-situ FTIR, and tunable diode laser absorption
spectroscopy (TDLAS), are reviewed.

Keywords: photocatalyst; non-thermal plasma; post-plasma catalysis; dry reforming of methane;
optical emission spectroscopy; dielectric barrier discharge; plasma jet reactor; pulsed plasma jet;
ferroelectrics; syngas; energy efficiency

1. Introduction

Natural gas is an abundant, cheap, and underutilized resource with increasing proved reserves.
It is mainly used as a source of energy for heating and power generation. Methane is the principal
component of natural gas with a volumetric fraction of more than 75% [1]. Increasing worldwide energy
demands with the discovery of huge shale deposits stimulated extensive research in the conversion of
natural gas to high-value transportation fuels and chemicals.

On the other size, CO2 is increasingly utilized in many applications. For example, in Iceland,
a pioneering CO2 to methanol plant using locally available cheap geo-thermal energy has been built by
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Carbon Recycling International company. In Canada, Blue Fuel Energy will build a CO2 to methanol
plant with a capacity of 400,000 tons per year, powered by renewable electricity [2].

Conventional thermo-catalytic approaches focus on converting methane to syngas [3,4], ethane and
ethylene [5], or C1 oxygenates [6]. It should be mentioned that along with commercially used
technologies (like e.g., steam and autothermal reforming methane to syngas) some other promising
methods are on the lab-scale level (such as dry reforming or methane coupling). High temperature
(>600 ◦C) is used in dry reforming reactors to facilitate reactions, leading to severe coke formation and
a relatively low yield of the desired products. A close to equilibrium yield is easily attainable over a
wide range of catalysts.

Photo- and plasma catalysis are potential technologies to enable methane activation to more
reactive intermediates. These technologies are also studied for their application towards CO2 reduction
to fuels and chemicals. Although the direct use of solar energy to convert CO2 and/or CH4 is feasible
via photocatalytic processes, low conversion efficiency and limited use of the full solar spectrum
are major drawbacks of this approach. While this is an attractive option, the main problems are
related to the low productivity and the combined (in a single compartment) formation of products
of reduction and oxidation, creating issues of safety (creation of explosive mixtures in a reaction
compartment) as well as high costs of separation. Although many research groups are working in
this direction, the industrial applications of this method are foreseen only in a rather distant future.
Conventional photocatalytic reactions occur at a gas-solid interface and therefore limited by available
surface area. Often, liquid products can form a film that prevents the efficient mass transfer of gas
molecules to the surface. Furthermore, the light intensity decreases with increasing the thickness of
the photocatalytic layer. Therefore reaction interface engineering is highly desirable to understand in
order to enhance the photocatalytic kinetics. However, it has received relatively little attention with
respect to catalyst design [7]. Therefore in the present form, photocatalytic processes are relatively
inefficient and, thus, are unlikely to compete with large-scale industrial chemical processes in short
and midterm. However, their ability to produce fuels paves the way for the potential storage of solar
energy, which could not be utilized otherwise [8,9].

Another alternative approach is to apply solar radiation to provide the heat (above 1200 ◦C) for CO2

decomposition reaction to generate CO (or CH4 decomposition reaction to generate H2), rather than
to generate charge separation and photoinduced electrical current. A concept of concentrated solar
power (CSP) plants with metal oxides was a hot research topic a few years ago. Despite many research
problems were solved, many others remained and those are related to limited production scale,
material stability at high temperatures, and high equipment costs. These factors strongly hinder further
development beyond the pilot plant scale, and current interest on this route is decreasing.

Plasma assisted catalysis, on the other hand, is able to convert large amounts of CO2 and CH4

via electrical energy attracting significant attention due to its mild operating conditions and unique
advantages in activating inert molecules. Because of the non-equilibrium characteristics, non-thermal
plasma (NTP) promotes thermodynamically unfavorable chemical reactions to occur at relatively low
temperatures [10]. However, due to high reactivity of plasma, producing a diversity of activated
species, radicals and ions, the process lacks selectivity towards the specific end products. Placing the
catalyst directly in the plasma zone or using post-plasma catalysis could generate a synergistic effect to
increase the formation of the desired products. The synergistic effect between NTP and the catalyst on
the yield of liquid fuels chemicals was previously reported in dry reforming of methane (DRM) [11].

Over the last 5 years, several reviews covering CH4 activation in plasma have been published.
Chung and Chang discussed plasma-catalysis interactions in DRM reaction and possible synergy
mechanisms [12]. The review of Puliyalil et al. made an overview of different reaction pathways,
related to the partial oxidation steps of CH4 and CO2 as well as CO2 reduction with H2, CH4 or other
paraffin species to syngas [13]. Shao et al. published a review on the application of nanosecond
pulsed discharges for the activation of small molecules [14]. Recent progress on the mechanism of
nanosecond-pulse discharge based on runaway electrons and related measurement technology was
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discussed and the characteristics of three typical discharges, including direct-driven pulsed discharge,
pulsed dielectric barrier discharge and pulsed plasma jet, were reviewed. The authors argued that
classical Townsend and streamer theories cannot be applied to pulsed discharge.

Our paper aims to provide a view on the future development for a scientist or an engineer who
wants to understand the role of plasma technology in the new scenario of distributed energy production
for a sustainable and low-carbon economy. Therefore, first, we introduce the current state-of-the-art
and the potential of CH4 conversion technologies. This section is a snapshot of current research
activities in different research groups and it is not intended to give a complete picture over current
(thermos-chemical) methods of CH4 activation. Then the paper describes main plasma reactor types
used in the DRM reaction with a detailed view on the application of dielectric barrier discharge reactors.
This is followed by an overview of applications of ferroelectric and/or catalytic materials and examples
of synergistic effects between NTP and relevant catalysts. Photocatalysis is often considered as an
important step towards further developments in the plasma-catalysis field. Therefore, we introduced a
section describing photocatalytic applications for CH4 activation. Finally, the recent developments in
the area of plasma diagnostic methods are reviewed and discussed. In the outlook section, we discussed
the potential benefits of plasma-based CH4 conversion and its impact on distributed energy production
and climate change.

2. State of the Art in DRM

2.1. Conventional Thermo-Catalytic Methane Dry Reforming

DRM is a highly endothermic reaction requiring high energy input. The process temperature
occurs typically above 700 ◦C, and in some cases even at high T as 850 ◦C [15]. At the same time,
there is no direct involvement of oxygen leading to carbon deposition on the catalyst surface [16].
Possible reactions involved in the DRM process are listed below [17]:

CH4 + CO2↔ 2 CO + 2 H2 + 247 kJ mol−1 (1)

CO + H2↔ H2O + C − 131.3 kJ mol−1 (2)

CO2 +2 H2↔ C + 2 H2O − 90 kJ mol−1 (3)

CH4↔ C+2 H2 + 74.9 kJ mol−1 (4)

2 CO↔ C+ CO2 − 172.9 kJ mol−1 (5)

CO2 + H2↔ CO + H2O + 41 kJ mol−1 (6)

Besides hydrogenation of CO (entry 2) and CO2 (entry 3) leading to coke, the later can also be
produced by the decomposition of methane (entry 4) or the Boudouard reaction (entry 5). The main
challenge is, therefore, to suppress the undesired reactions by application of more selective catalysts [18,19].

Different solid catalysts used in DRM and the related reaction conditions are listed in Table 1.
For more information on thermo-catalytic the reader is referred to several reviews available in the
literature [20–22] In general, noble metal catalysts (namely, Pt, Ru, and Rh) provide enhanced lifetime
with a high catalytic activity [23]. Nonetheless, even for Pt on alumina catalysts, deactivation remains
significant [24]. The addition of small amounts of ceria along with Pr, Zr or Nb as dopants to Pt/Al2O3

catalyst improved the catalyst lifetime, at the expense of much higher catalyst costs.
Industrially preferred Ni- and Co-based catalysts have been extensively studied from the viewpoint

of selecting suitable promoters, catalyst supports, as well as preparation methods and the optimal
metal content [20–22]. The effect of different supports, such as Al2O3, SiO2, MgO, TiO2 and ZrO2,
on the activity of supported Ni catalysts was investigated [25]. A Ni/TiO2 catalyst showed the highest
reaction rate, with the activity decreased as follows: SiO2 < MgO < Al2O3 < ZrO2 < TiO2.
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The catalyst deactivation by rapid coke deposition was diminished by an addition of reducible
supports to Ni catalysts enhance the oxygen storage capacity and thus the catalyst lifetime. Due to their
basicity and high oxygen storage capacity, reducible oxides such as CeO2 and La2O3 decreased the coke
deposition rate and improved the catalytic lifetime [26,27]. A 5 wt.% CeO2/25 wt.% Ni/Al2O3 composite
catalyst, prepared by ultrasonic-assisted co-precipitation, was stable during 15 h on-stream [27].
Addition of rare-earth elements further improved the catalytic activity of Ni catalysts. The largest
positive effect was achieved with an addition of Ce, followed by Pr and Y. The smallest effect was
observed with the addition of Sc, yet the catalyst was still more active compared to the unpromoted
one. The carbon deposition decreased by 25% over Ce-promoted catalysts due to enhanced surface
basicity and higher Ni dispersion. In addition, both Ce- and Pr-modified catalysts demonstrated
fast redox behavior that involved the reversible formation of Ce3+/Ce4+ and Pr3+/Pr4+ redox pairs,
facilitating their decoking.

Table 1. Comparison of catalytic activity of different catalysts studied in thermo-catalytic dry reforming
of methane (DRM) process.

Catalysts Temp (◦C) TOS (h)
GHSV (L
gcat−1h−1)

Conversion (%) H2/CO
Ratio

(Molar)

Ref.
CH4 CO2

Mo-Ni/Al2O3 600 7 200 22 30 0.60 [28]
Co-Zr/AC 600 45 7 89 89 – [29]

Co-Ni/Al2O3-MgO 850 20 24 92 95 0.97 [30]
Pd-Ni/Al2O3 750 100 8 85 83 1.03 [31]

Co3Mo3N 800 50 6 87 98 0.83 [32]
Co-Ni/Al2O3 600 180 – 16 18 0.46 [33]

Pt/Al2O3 800 24 – 17 20 0.53 [24]
Pt/CePr/Al2O3 800 24 – 59 69 0.81 [24]
Pt/CeNb/Al2O3 800 24 – 40 52 0.59 [24]
Pt/CeZr/Al2O3 800 24 – 42 55 0.70 [24]

Ni/Al2O3 800 8 120 65 70 0.89 [34]
Ni/Al2O3-CeO2 800 8 120 82 89 0.94 [34]
Ni/Al2O3-La2O3 800 8 120 67 80 0.87 [34]

Ni/MgAl2O4 700 15 18 70.6 81.2 – [35]
Ni-MgO-Al2O3 700 12 180 71.4 79.8 0.92 [36]

2.2. Application of Non-Thermal Plasma and Catalysis for DRM

Due to very high stability of CO2 and CH4 molecules, it is impossible to convert them directly
into liquid products in one-step catalysis. In this context NTP offers a unique way to enable
thermodynamically unfavorable chemical reactions at low temperatures owing to the non-equilibrium
character of plasma. Non-thermal plasma is created by applying electricity to a gas. The electrons
are heated by the electric field applied, and they can activate CH4 molecules by excitation, ionization,
and dissociation, creating the reactive species and allowing chemical reactions to occur at near ambient
temperature and pressure. While non-thermal plasma is already applied on an industrial scale in
waste incineration and ozone manufacturing, its use in CH4 activation to obtain fuels and chemicals,
is limited to the laboratory scale. Currently, NTP is seen as an enabling technology for the future of
sustainable energy, where chemical processes will be based on renewable sources rather than on fossil
fuels [37].

The first application of NTP for DRM reaction was reported by Capezzuto et al. [38]. They used a
radiofrequency (RF) plasma reactor to conduct the reaction under a low pressure of 20 Torr and observed
that acetylene was the main reaction product. However, low-pressure plasma is not economical for
industrial applications due to the high costs of vacuuming and low flow rates. Therefore, subsequent
studies were focused on atmospheric-pressure DRM via gliding arc (GA) discharge. The GA plasma
produced a mixture of C2H2, C2H4, CO and H2 [39]. In atmospheric pressure plasma DRM process,



Catalysts 2020, 10, 1358 5 of 39

the energy for electronic ionization is very high, therefore the overall efficiency strongly depends on
the possibility of secondary electron formation in the electron collision step.

Another type of reactors studied is a corona discharge [40]. The discharge can be induced between
two symmetric or asymmetric electrodes via AC (for symmetric) or DC (for both cases) power supply
and it was also applied for methane activation [41]. Acetylene was the major by-product, and selectivity
to CO was typically higher than to H2 indicating that hydrocarbon formation plays an important role
in the corona discharge process [42–45].

The dielectric barrier discharge (DBD) plasma reactor was first reported by Siemens et al. to
generate ozone [46]. In this reactor, there is a dielectric layer between the two electrodes. High selectivity
to hydrocarbons was attributed to the partial dissociation of CH4 that gives large amounts of CHx

radicals (x = 1 − 3), which further recombine to form C2H6 and C2H4 [12]. A possibility of one-step
NTP reforming of CO2 and CH4 into liquid fuels and chemicals was considered to replace the indirect
route which normally requires at least two steps. The first step is to produce syngas (CO and H2)
which is very similar to thermal methane activation described in Section 1 This is followed by the
conversion of syngas into oxygenates in a downstream reactor over platinum group metal (PGM)
catalysts (Scheme 1) [10].

Catalysts 2020, 10, 1358 5 of 41 

pressure plasma DRM process, the energy for electronic ionization is very high, therefore the overall 
efficiency strongly depends on the possibility of secondary electron formation in the electron 
collision step. 

Another type of reactors studied is a corona discharge [40]. The discharge can be induced 
between two symmetric or asymmetric electrodes via AC (for symmetric) or DC (for both cases) 
power supply and it was also applied for methane activation [41]. Acetylene was the major 
by-product, and selectivity to CO was typically higher than to H2 indicating that hydrocarbon 
formation plays an important role in the corona discharge process [42–45]. 

The dielectric barrier discharge (DBD) plasma reactor was first reported by Siemens et al. to 
generate ozone [46]. In this reactor, there is a dielectric layer between the two electrodes. High 
selectivity to hydrocarbons was attributed to the partial dissociation of CH4 that gives large amounts 
of CHx radicals (x = 1 − 3), which further recombine to form C2H6 and C2H4 [12]. A possibility of 
one-step NTP reforming of CO2 and CH4 into liquid fuels and chemicals was considered to replace 
the indirect route which normally requires at least two steps. The first step is to produce syngas (CO 
and H2) which is very similar to thermal methane activation described in Section 1 This is followed 
by the conversion of syngas into oxygenates in a downstream reactor over platinum group metal 
(PGM) catalysts (Scheme 1) [10]. 

 
Scheme 1. Possible reaction pathways for the formation of oxygenated liquid products in a dielectric 
barrier discharge (DBD) reactor (adopted from [10] with permission of Wiley). 

2.3. Dissociation Mechanisms in Different Plasma Reactors 

During the discharge, the electrons with a relatively high kinetic energy of about 10 eV form 
microfilaments. While this energy is considerably higher than in other non-thermal plasmas, its 
major part dissipates via the dielectric layer resulting in low energy efficiency [11,47,48]. In 
atmospheric-pressure plasma, the density of electrons with high kinetic energy is relatively low to 
induce direct dissociation of CH4 and CO2, requiring 9 and 11 eV, respectively [49,50]. The 
dissociation of both CH4 and CO2 occurs, therefore, stepwise (Equations (7)–(12)). When vibrational 
levels of CO2 molecules are excited by plasma, the kinetic energy of electron impact dissociation 
reduces to from 11 to 5.5 eV [41]. Therefore, excitation of CO2 vibrational level to induce dissociation 
is an important activation channel in plasma. Several electron impact channels (Equations (8)–(10) 
and (12)) result in CO2 dissociation [50–52]. During an electron impact excitation, several excited 
states of CO2 are generated (Equations (7) and (11))[52]. 

𝑒 ൅ 𝐶𝑂ଶ(𝑋ଵ ෍)ା
௚  → 𝑒 ൅ 𝐶𝑂ଶ(1ଵ ෍)ା

௚  (7) 

𝑒 ൅ 𝐶𝑂ଶ(1ଵ ෍)ା
௨  → 𝑒 ൅ 𝐶𝑂(𝑋ଵ ෍)ା

 ൅ 𝑂(ଵ𝑆) (8) 

Scheme 1. Possible reaction pathways for the formation of oxygenated liquid products in a dielectric
barrier discharge (DBD) reactor (adopted from [10] with permission of Wiley).

2.3. Dissociation Mechanisms in Different Plasma Reactors

During the discharge, the electrons with a relatively high kinetic energy of about 10 eV
form microfilaments. While this energy is considerably higher than in other non-thermal plasmas,
its major part dissipates via the dielectric layer resulting in low energy efficiency [11,47,48].
In atmospheric-pressure plasma, the density of electrons with high kinetic energy is relatively low to
induce direct dissociation of CH4 and CO2, requiring 9 and 11 eV, respectively [49,50]. The dissociation
of both CH4 and CO2 occurs, therefore, stepwise (Equations (7)–(12)). When vibrational levels of CO2

molecules are excited by plasma, the kinetic energy of electron impact dissociation reduces to from 11
to 5.5 eV [41]. Therefore, excitation of CO2 vibrational level to induce dissociation is an important
activation channel in plasma. Several electron impact channels (Equations (8)–(10) and (12)) result
in CO2 dissociation [50–52]. During an electron impact excitation, several excited states of CO2 are
generated (Equations (7) and (11)) [52].

e + CO2(X1
+∑
g
) → e + CO2(11

+∑
g
) (7)

e + CO2(11
+∑
u
) → e + CO(X1

+∑
) + O(1S) (8)
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e + CO2(X1
+∑
g
) → e + CO(a3

∏
) + O(5S) (9)

e + CO2(X1
+∑
g
) → e + CO(a3

∏
) + O(5S) (10)

e + CO2(X1
+∑
g
) → e + CO2(001) (11)

e + CO2(001) → e + CO(X1
+∑
) + O(1S) (12)

Direct electron impact dissociation proceeds through a dissociative electronically excited state.
On the contrary, vibrational excitation requires significantly less energy. Once the lowest vibrational
levels are populated, they can gradually populate the higher vibrational levels by vibrational-vibrational
(VV) collisions. This process, so-called “ladder-climbing” requires the minimum amount of 5.5 eV for
CO2 dissociation, providing a more efficient dissociation pathway. The process can be exploited in MW
and GA reactors at either reduced pressure or during pulsed plasma operation. This can considerably
improve the EE in these plasma types. However, the vibrationally excited species lose their energy
upon collision with ground-state molecules. The latter process is called vibrational-translational
(VT) relaxation. It depopulates the vibrational levels, and therefore detrimental for energy-efficient
conversion by the ladder-climbing pathway. The VT process heats up the gas, while its rate increases
with temperature, creating a positive feedback mechanism, which is difficult to control. VT relaxation
appears to be quite important in GA plasmas, explaining their high gas temperature (often 3000 K
and above). For this reason, GA plasma is also called “warm plasmas,” as its temperature is in
between those of NTP such as DBD, which operate typically at room temperature, and thermal plasmas,
where the gas temperature can reach 10,000 K, which is the same as the electron temperature. In GA
plasma reactors, the electron temperature is higher than the gas temperature, however, the vibrational
and gas temperature are close to each other (i.e., vibrational-translational equilibrium is achieved).

2.4. Configurations of Plasma Reactors

While the performance of various plasma types is already competitive with other emerging
technologies such as electrochemistry, plasma-assisted CH4 (and/or CO2) conversion is carried out at
the laboratory scale and is not implemented in industrial processes. Different types of plasma reactors
are being investigated for DRM, including dielectric barrier discharge, microwave, gliding arc plasmas,
glow discharges, nanosecond pulsed discharges, corona and spark discharges. They differ in the way
the electricity is applied and the value of the electric field, reactor configuration, operation pressure
and power. Various reactor designs are briefly summarized in Table 2.
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Table 2. Examples of plasma reactors applied in the DRM reaction and related experimental conditions.

Reactor Type Schematic View Key Reactor Characteristics Ref.

1. Point-to-point
reactor

Catalysts 2020, 10, 1358 7 of 41 

Table 2. Examples of plasma reactors applied in the DRM reaction and related experimental 
conditions. 

Reactor Type Schematic View 
Key Reactor 

Characteristics Ref. 

1. 
Point-to-point 

reactor 

 

Two stainless steel 
electrodes with sharp 

ends. Gap distance: 2.5 
mm.Frequency: 4 kHz 
(pulsed). Voltage: 17 

kV. The electrodes are 
inserted in a quartz 

tube. 

[53] 

2. AC 
disc-and-tube 

spark 
discharge  

No picture was provided by the authors 

Ground electrode: a 
disc (diameter: 30 mm. 
HV electrode: stainless 
steel tube, i.d.: 1 mm, 

o.d.: 2 mm. Gap 
distance: 2.5 mm. The 
electrodes are inserted 
in a quartz tube with a 

diameter 100 mm. 
Frequency: 5 kHz. 
Voltage was not 

reported. 

[54] 

3. Tube in tube  

 

Metal tube: i.d. = 3 mm 
O.d. = 6 mm. Metal rod 
8mm. The gap size: 8 

mm. The volume: 0.23 
mL. Frequency: 20 

kHz. Voltage:16 kV. 

[55] 

4. Tube in tube 
with a 

ferroelectric 
layer 

 

The same as in [55], 
except the gap 
between two 

electrodes, which was 
5 mm.  

[12] 

Two stainless steel electrodes
with sharp ends. Gap

distance: 2.5 mm.Frequency:
4 kHz (pulsed).
Voltage: 17 kV.

The electrodes are inserted
in a quartz tube.

[53]

2. AC
disc-and-tube

spark discharge
No picture was provided by the authors

Ground electrode: a disc
(diameter: 30 mm. HV

electrode: stainless steel
tube, i.d.: 1 mm, o.d.: 2 mm.
Gap distance: 2.5 mm. The
electrodes are inserted in a

quartz tube with a diameter
100 mm. Frequency: 5 kHz.
Voltage was not reported.

[54]

3. Tube in tube

Catalysts 2020, 10, 1358 7 of 41 

Table 2. Examples of plasma reactors applied in the DRM reaction and related experimental 
conditions. 

Reactor Type Schematic View 
Key Reactor 

Characteristics Ref. 

1. 
Point-to-point 

reactor 

 

Two stainless steel 
electrodes with sharp 

ends. Gap distance: 2.5 
mm.Frequency: 4 kHz 
(pulsed). Voltage: 17 

kV. The electrodes are 
inserted in a quartz 

tube. 

[53] 

2. AC 
disc-and-tube 

spark 
discharge  

No picture was provided by the authors 

Ground electrode: a 
disc (diameter: 30 mm. 
HV electrode: stainless 
steel tube, i.d.: 1 mm, 

o.d.: 2 mm. Gap 
distance: 2.5 mm. The 
electrodes are inserted 
in a quartz tube with a 

diameter 100 mm. 
Frequency: 5 kHz. 
Voltage was not 

reported. 

[54] 

3. Tube in tube  

 

Metal tube: i.d. = 3 mm 
O.d. = 6 mm. Metal rod 
8mm. The gap size: 8 

mm. The volume: 0.23 
mL. Frequency: 20 

kHz. Voltage:16 kV. 

[55] 

4. Tube in tube 
with a 

ferroelectric 
layer 

 

The same as in [55], 
except the gap 
between two 

electrodes, which was 
5 mm.  

[12] 

Metal tube: i.d. = 3 mm
O.d. = 6 mm. Metal rod

8mm. The gap size: 8 mm.
The volume: 0.23 mL.

Frequency: 20 kHz.
Voltage:16 kV.

[55]

4. Tube in tube
with a

ferroelectric layer

Catalysts 2020, 10, 1358 7 of 41 

Table 2. Examples of plasma reactors applied in the DRM reaction and related experimental 
conditions. 

Reactor Type Schematic View 
Key Reactor 

Characteristics Ref. 

1. 
Point-to-point 

reactor 

 

Two stainless steel 
electrodes with sharp 

ends. Gap distance: 2.5 
mm.Frequency: 4 kHz 
(pulsed). Voltage: 17 

kV. The electrodes are 
inserted in a quartz 

tube. 

[53] 

2. AC 
disc-and-tube 

spark 
discharge  

No picture was provided by the authors 

Ground electrode: a 
disc (diameter: 30 mm. 
HV electrode: stainless 
steel tube, i.d.: 1 mm, 

o.d.: 2 mm. Gap 
distance: 2.5 mm. The 
electrodes are inserted 
in a quartz tube with a 

diameter 100 mm. 
Frequency: 5 kHz. 
Voltage was not 

reported. 

[54] 

3. Tube in tube  

 

Metal tube: i.d. = 3 mm 
O.d. = 6 mm. Metal rod 
8mm. The gap size: 8 

mm. The volume: 0.23 
mL. Frequency: 20 

kHz. Voltage:16 kV. 

[55] 

4. Tube in tube 
with a 

ferroelectric 
layer 

 

The same as in [55], 
except the gap 
between two 

electrodes, which was 
5 mm.  

[12] 
The same as in [55], except

the gap between two
electrodes, which was 5 mm.

[12]



Catalysts 2020, 10, 1358 8 of 39

Table 2. Cont.

Reactor Type Schematic View Key Reactor Characteristics Ref.

5. Annular
channel with

mesh electrodes
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Table 2. Cont.

Reactor Type Schematic View Key Reactor Characteristics Ref.

8. AC GA plasma
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A point-to-point reactor was made of the Pyrex tube (12 mm i.d., 15 mm o.d, 80 cm length) and
two stainless steel sharp electrodes, positioned on the opposite ends of the tube [53]. The voltage
was fixed at 17 kV. A CO2/CH4 mixture was fed at a flow rate of 200 mL/min at a 1 bar pressure [53].
A spark discharge reactor [54] consisted of a rotary stainless steel disc (30 mm o.d, 3 mm thickness)
as the ground electrode and a stainless steel tube (1 mm i.d., 2 mm o.d.) as a high-voltage electrode.
The electrodes were placed in a quartz tube (100 mm o.d.) at a distance of 6 mm. The reactor operated at
an AC voltage of 5 kHz. The gas was fed via the tubular electrode. A spark discharge reactor was made
of a quartz tube (o.d. 24 mm, 36 cm length) [55]. One electrode was the stainless steel tube (3 mm i.d.,
6 mm o.d.), while the other electrode was a stainless steel rod (8 mm o.d) positioned at a distance of
8 mm. A CH4/CO2 mixture with a molar ratio of 2 was fed at a flow rate of 100–200 mL/min. A quartz
holder was positioned inside the tube to accommodate a catalyst (2 g). A DC pulse operation at 16 kV
with a pulse rising time between 25 and 100 µs was studied. In a similar configuration presented
in [12]. A BZT ferroelectric layer (0.5 g) was positioned between the two electrodes positioned at a
distance of 5 mm from each other. The reactor operated at DC pulses of 20 kV. A GHSV has varied
in the range of 8500–85,000 h–1. A DBD reactor with an annular channel with mesh electrodes was
demonstrated in [56]. The reactor consists of two coaxial quartz tubes covered with stainless steel
mesh electrodes. The high voltage electrode was positioned in the center, and the outer electrode was
grounded. The length of the discharge region was 55 mm with a discharge gap of 3 mm. A CH4/CO2

mixture with a molar ratio of 1 was fed at a flow rate of 25–100 mL/min. The reactor operated at a
peak-to-peak voltage of 24 kV and a variable frequency of 30–40 kHz. A different design of a coaxial
DBD reactor was presented in [57]. In this reactor, the center electrode was grounded while the outer
electrode was connected to an AC high voltage output (40 kV). The discharge region was 90 mm.
The reactant flow rate was 50–300 mL/min. The electrodes were cooled with water. A cylindrical
dielectric tube (10 mm i.d, 40 cm length) with an aluminum mesh was used in a coaxial DBD reactor
in [58]. A stainless steel rod was used as the center electrode.
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An AC gliding arc plasma reactor operating at 10 kV was demonstrated in [59]. Two semi-
ellipsoidal aluminum electrodes (50 mm long, 30 mm wide) were fixed in an insulating housing and
symmetrically placed on both sides of a gas nozzle with a diameter of 1.5 mm. A 3D cylindrical tornado
electrode (3D-CTE) with the shape of the conical diffuser (2 mm o.d.) provided higher efficiency for
interactions between the plasma species and the reactants [60]. A needle electrode was placed in the
middle of the reactor. The gap between the tip of the needle electrode and the throat was 0.6 mm.
The plasma was created with an AC power supply operated at 4–8 kV at a frequency of 50 Hz.

It can be concluded that the three most common plasma types are DBD, spark, and GA plasma
reactors. The two electrodes can be parallel plates, but for CH4 conversion, a cylindrical configuration
in which the two electrodes are concentric cylinders, is desirable as it minimizes the amount of gas
bypassing the plasma zone. DBD reactors have a rather simple design, which makes it easy for
upscaling and industrial applications. In addition, the simple design allows the implementation of
catalysts and ferroelectric materials inside the reactors in order to improve the selectivity towards high
added value chemicals and reaction rate.

In a GA plasma reactor, an electric potential difference is applied between two flat diverging
electrodes. An arc is created at the shortest distance near the gas inlet, and it glides towards the reactor
outlet carried by gas flow until it extinguishes. Then a new arc is created again at the shortest distance
and the process continues. A GA reactor operates at atmospheric pressure, and exhibits quite good
energy efficiency.

A spark plasma arises when applying electric power between two point electrodes in the space
filled with gas. The gas temperature can easily rise to above 4000 K which makes the application of
catalysts possible only in post-plasma mode (as it will be discussed in the next sections).

3. Characteristics of Plasma Reactors

3.1. Main Efficiency Parameters

The energy efficiency (EE) is defined as the total syngas generated per kilowatt-hour input
(Equation (13)) to compare the syngas generation efficiency for different plasma reactors [61]:

EE(
mol
kWh

) =
nH2 + nCO

t P
=

3.6
P

FV

RT
p, (13)

where n is the number of products, P is the electric power, t is discharge time, p is the pressure, FV is
the volumetric flow rate, T is the temperature, and R is the ideal gas constant. The EE can also be
expressed in grams of H2 per kWh or %. Expressing EE in percentage is a common method to estimate
chemical energy efficiency based on the reactant conversion, total power supplied to the system and
the heat of the target DRM reaction [61]:

EE(%) =
(nCH4)converted × ∆H298

P
, (14)

where ∆H298 = 247 kJ/mol.
An EE research target of 60% was defined by Snoeckx and Bogaerts [62] based on the comparison

with electrochemical water splitting, being the main competitor of plasma conversion for storing
renewable energy, and already reaching commercial energy efficiencies of 65–75%. A comparison with
other novel technologies for CO2 conversion, which directly use solar energy (solar thermochemical
conversion with a solar-to-fuel conversion efficiency of 20%) requires a plasma-based CO2 conversion
with an EE of 60–80% to get an overall solar-to-fuel efficiency of 15–20%.
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Another useful parameter, the specific energy density (SED), is defined as the average power
dissipated in the discharge divided by the total gas flow rate. The discharge power (P) is calculated by
the effective voltage (U) multiplied by the current (I) (Equation15):

SED(
J
L
) =

P
FV

=
UmaxI
√

2 FV
(15)

It can be seen that the SED is a reciprocal function of EE, expressed in different units: Liter instead
of mol and Joule instead of kWh. Increasing the flow rate usually results in higher EE in warm plasma
types (corona, GA, spark) because of more chance for impact dissociations utilizing high energy
electrons (Figure 1). However, the too-high flow rate decreases the EE because the secondary electron
production is decreased. Selectivity to H2 and CO is almost independent of the flow rate [41].
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The local electric field near the contact point between the pellets can be 10–104 times higher than
that in a spherical void. The average electric field (E) inside a spherical void and the corresponding
electron density (number of electrons in the reactor volume, ne) are expressed by Equations (16) and (17),
respectively [63].

E ≈
V
d

3εp

2εp + εg
(16)

ne ≈
P

VαAeµ0Eω0 E1−ω
≈

P

VαAeµ0Eω0 (V
d

3εp
2εp+εg

)
1−ω

, (17)

where V is the voltage, d is the gap size between the electrodes, εg and εp are the dielectric constants
of the background gas and the pellets, respectively, α and A are the void fraction and cross-sectional
area of the reactor, respectively, e is the electric charge of electrons (e = 1.6 × 10–19 C), µ0 is the electron
mobility at the reference electric field E0, andω is an empirical coefficient, which depends on the gas
properties. For example,ω is equal to 0.501 and 0.198 for air and nitrogen, respectively [64]. It can be
seen from Equation (16), that the electric field has a minimum value (Ex ≈ V/d) when εg ≈ εp ≈ 1.

The gamma value, being the normalized capacitance γ = (Cdiel − ζdiel)/(Cdiel − Ccell), where Cdiel

and Ccell are the electrical capacitances of the reactor, defined from its geometry, ζdiel is an effective
capacitance, represents the areal fraction of the electrodes that is not discharging. A value of zero
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(γ = 0) indicates complete charge bridging in the reactor, and a value of γ = 1 indicating no charge
bridging (i.e., no plasma present). With increasing voltages, the gamma value generally tends to
decrease from 1 to 0 at the highest applied voltages [65]. This rapid decrease in gamma is due to a
charge being transferred across the gap, rather than being ‘trapped’ by the pellet. In a packed bed
reactor, each packing pellet acts as an individual capacitor and can therefore trap charges.

3.2. The Effect of Reduced Electric Field on the DRM Reactor Choice

The influence of the reduced electric field E/n (Td = Townsend, 1 Td = 10−21 V·m2) on the
electron energy loss deposited into relevant excitation, dissociation, or ionization channels of N2 and
CO2 in reactors is shown in Figure 2 [66]. As an example, in a nitrogen plasma, a reduced electric
field of 100 Td corresponds to average electron energy of approximately 2 eV. It can be seen from
Figure 2 that a significant fraction of the energy is converted into the internal energy of rotational and
vibrational excitations at low electric fields, while the higher-energy electronic excitation, ionization,
and dissociation channels become significant at reduced electric fields of 100 Td or above. It is worth to
mention that the level of 100 Td corresponds to a DBD regime (dashed vertical lines in Figure 2 indicate
E/n values demarking the onset of the DBD regime). It can be seen that the efficiency of vibrational
excitations is close to zero in a DBD regime, whereas the electronic excitation has a maximum at 200 Td.
This explains the low values of EE as listed in Table 3.

Table 3. Comparison of dry reforming of methane assisted by different methods.

Plasma
Type

Reactor
Type

Packing
Material

Reaction Conditions
SED

[J/mL]

Conversion (%) Selectivity (%) EE
(mol/kWh) Ref.

CH4 CO2 H2 CO

DBD Annular
channel Ni/γ-Al2O3

lgap = 3 mm,
Q = 50 mL/min,

30–40 kHz, 24kV,
8 kV/mm, 50W

60.0 38.0 21.0 28.0 45.0 1.17 [56]

Spark – Q = 150 mL/min, 45W 18.0 65.0 55.0 62.0 87.0 6.61 [54]

RF – Q = 200 mL/min, 36.2W 10.9 65.9 57.8 85.9 8.64 [53]

GA 2D –

lgap = 3.2 mm,
Q = 7500 mL/min,

0.05 kHz, 24kV,
6.25 kV/mm, 165 W

1.3 13.1 8.4 31.4 69.5 11.16 [56]

Spark Tube in
tube C-BZT 1

lgap = 5 mm,
Q = 200 mL/min,

22 kHz, 24kV,
3.6 kV/mm, 39.3 W

11.8 86.9 83.3 90.1 66.0 16.53 [12]

Spark Tube in
tube –

lgap = 8 mm,
Q = 350 mL/min,

20 kHz, 24kV,
2 kV/mm, 41.4 W

7.1 42.3 30.2 76.9 67.1 14.38 [55]

Spark Tube in
tube LFO600 2

lgap = 8 mm,
Q = 350 mL/min,

20 kHz, 24kV,
2 kV/mm, 44.6 W

7.6 53.5 40.0 85.0 71.8 18.42 [55]

1 C-BZT—(coarse BaZr0.05Ti0.95O3 particles of size of 210–420µm)—ferroelectric material. 2 LFO600—perovskite-type
photocatalyst, LaFeO3. notations: lg—gap length [mm]; Q—gas flowrate [ml/min]; Input voltage in [kV], frequency in
[kHz], power in [W] and electric field in [kV/mm].

It can be seen in Figure 2, a reduced electric field of about 50 Td is ideal for vibration-induced
dissociation. This value is typically observed in the microwave and GA plasma reactors, which explains
their high EE. However, DBD reactors operate in the higher E/n range. Therefore, it is necessary to
lower the reduced electric field in DBD reactors to values below 100 Td. In theory, this can be done in
two ways: (i) by lowering the applied electric field (E) or (ii) by increasing the number of electrons in
the reactor volume (n). The applied electric field is determined by the power source. As such applying
lower power may be beneficial, although the power should be sufficient to create a stable plasma.
However, this approach would not always create a lower electric field, as the CH4 DBD plasma is
typically filamentary. Therefore, lower power may also create fewer filaments instead of a lower
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electric field in these filaments. Thus, it is not straightforward to control the E/n value in a DBD plasma
reactor [67].
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The microwave (MW) plasma is seldom employed in the DRM reaction (Table 4). Hrycak et al. [68]
conducted experiments with microwave pulsed plasma for syngas production using a mixture of CH4

and CO2 at a molar ratio of 0.66. The optimum H2 production rate was 156 g/h at a power input of
7.5 kW. An EE of 21 g/kWh (EE = 7.2%) was reported at a CH4 conversion of 80%. The highest yield of
43 g(H2)/kWh was reported when water vapor was fed in the plasma region [69]. The performance
was enhanced with the implementation of a CH4 recycling loop [70]. However, the yield was still
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rather far from the US Department of Energy (DOE) set a target for H2 production of 60 g/kWh which
is needed for a large scale industrial implementation [71].

Table 4. Microwave plasma reactors employed of DRM [68].

Production Method
Initial

Composition
(Molar Ratio)

H2 Production
Rate [g(H2)/h]

EE
[g(H2)/kWh]

CH4 Conversion
(H2 Selectivity)

[%]

CH4 steam reforming CH4 + H2O + Air large scale 60 Benchmark case
Corona CH4/CO2 (1.00) 0.46 12.6 12.6 27.8 (55.1)

Glow discharge CH4/CO2 (1.00) 0.28 12.2 61 (77)
DBD CH4/CO2 (2.33) 0.25 5.5 11 (98)
DBD CH4/CO2 (1.00) 0.06 0.42 62 (75)

AC-pulsed arc plasma CH4/CO2 + Air
(1.5 +3.3) 13.1 394 80 (54)

Rotating GA CH4/CO2 (0.43) 12.4 25.2 58.5 (35.3)
Coaxial-line-based

microwave (2.45 GHz) CH4/N2 (2.0) 50 14.6 40.1 (30)

Metal-cylinder-based
microwave (2.45 GHz) CH4/CO2 (1.0) 66 19 32.5 (40.9)

Metal-cylinder-based
microwave (2.45 GHz)

CH4 + CO2 + H2O
(30:12:25) 192 43 22 (n.d)

Quartz-cylinder-based
microwave (2.45 GHz) CH4 + CO2 (1.00) 112 19 96.8 (77.2)

Metal-cylinder-based
microwave (915 MHz) CH4 + CO2 (0.66) 156 21 61.4 (63.7)

4. Dielectric Barrier Discharge Reactors

Dielectric barrier discharge (DBD) is the most popular type of plasma reactors used for DRM in the
past, partly due to its simple design, easy scalability and its affordability for pilot-scale research [72,73].
The conversion and EE depend on the applied power, specific energy input, operating pressure and
temperature. Introduction of the inert gas such as helium, argon and nitrogen as well as a catalyst can
improve yields of hydrogen and CO (syngas route) and different hydrocarbons [74,75].

4.1. AC Mode

Usually, the DBD reactors operate in the so-called filamentary mode when the gas excitation
occurs in the discharge volume by stochastically distributed microdischarge channels of 0.1–1 mm in
diameter that appear during each half-period of the applied AC voltage. There is a good understanding
of the physical mechanisms involved in the DBD operation. However, the literature lacks kinetic
information about some of the individual steps involved. There are also no detailed models of plasma
chemical reactors accounting for a complex microdischarge channels structure and convective heat
and mass transport by the gas flow.

Snoeckx and Bogaerts [62] summarized recent research data for DRM obtained in DBD reactors
for both packed and unpacked configurations. The results are shown in Figure 3 where the energy
costs are shown as a function of conversion. It can be seen that the energy cost decreases with an
increasing total conversion for the packed DBD reactor on the contrary to the non-packed discharge.

Wang et al. [76] reported a conversion for CH4 (and CO2) into syngas of 80% at the equimolar ratio.
The selectivity to hydrogen reached 100% at a CH4/CO2 molar ratio of 0.2. The authors concluded that
the multistage ionization was critical for achieving such high conversion. Li et al. [75] also reported a
significant improvement in conversion for multistage ionization. They also found a strong correlation
between the discharge gap and the selectivity to ethanol and methanol, with a larger discharge gap
giving a high concentration of alcohols in the product stream.
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identified. However, the pulse power supply mode is generally associated with a higher equipment 
price which seems to be the main reason for its relatively low penetration into the research 
community so far. At equal peak voltage, the AC power supply gives a low current continuously 
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4.2. Pulsed Discharge Mode

More recently nanosecond pulsed discharge (NPD) mode was also studied where the gas volume
is excited homogeneously. The discharge volume was divided into plasma elements that are not
connected with each other, but contribute to the total resistance of the plasma [72]. Over the last 5 years,
it was reported that the shorter pulsed power gives an improvement of energy efficiency, especially in
CO2 activation. Therefore, the development of nanosecond pulse discharge reactors (and corresponding
generators) is of paramount importance for practical applications. Both chemical and physical effects,
influencing also the plasma discharge behavior and electrical properties, were identified. However,
the pulse power supply mode is generally associated with a higher equipment price which seems to be
the main reason for its relatively low penetration into the research community so far. At equal peak
voltage, the AC power supply gives a low current continuously while pulse power source provides a
higher current and therefore the power in a moment for a short time ranging from microseconds to
nanoseconds [77].

The application of pulsed power instead of continuous AC or DC supply improves methane
conversion [77]. Figure 4 shows a considerable improvement in CH4 conversion and the EE in terms of
SED under the pulsed power supply. At lower energy input, the conversion increases from 5 to 40%.
However, both the EE and conversion approach those in AC operation at a higher energy input of
6000 kJ/mol. CH4 conversion of 60% was reported which is close to the state-of-the-art level in CH4

DBD reactors.
As the pulse width increased from 2 to 5µs, the CH4 conversion decreased from 47 to 42% at the

same selectivity. However, shorter pulses further increased energy efficiency [77]. The nanosecond
pulse discharge gives a CH4 conversion of 50% with a 65% hydrogen selectivity at a SED of 448 kJ/mol
and a residence time of 12–36 ms [78]. Thus the ultra-short pulses allowed to increase the efficiency of
DBD reactor to the level of other types such as GA, spark and corona [78]. Wang et al. determined an
optimal pulse peak width of 150 ns in an empty DBD reactor. Both CH4 and CO2 conversion decreased
as pulse rise time increased [79]. Cheng et al. used almost instantaneous power input of 0.8 × 106 W
(SED: 10 J/cm3) and short pulses (below 1 ns) to improve the EE [80]. They developed a numerical
model of a packed bed DBD reactor operated under ns-pulse plasma and observed a good agreement
between their computational results and the experiments. The simulations showed that the low duty
cycle (short plasma on-time) resulted in the low gas temperature and slow recombination kinetics,
which improved the CH4 and CO2 conversions.
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Figure 4. CH4 conversion (a) and energy efficiencies (b) in AC and power supply for DRM process in
DBD reactor without packing (data adopted from [77] and represented as a function of SED).

5. Effect of Ferroelectric Materials on the Plasma Discharge

Without discharge, the ferroelectric materials exhibit no polarization and no electrostatic force
exists between electrons and ions. With an external electric field, the cations in the ferroelectric are
attracted by the external electrostatic force in one direction and the anions (O−2) are attracted by the
electrostatic force to the opposite direction, resulting in polarization. After polarization, the ferroelectric
surfaces have positive and negative charges. While polarization of an insulator disappears with
the external electric field is removed, a ferroelectric retains a portion of its polarization, called the
remnant polarization, owing to internal forces in its crystalline structure. The positive charge on the
surface electrostatically attracts electrons, increasing their kinetic energy. Dielectric constants of typical
materials used in plasma reactors are shown in Table 5.

Table 5. Dielectric constant of typical materials.

Material Dielectric Constant Reference

Zeolites 1.5–5.0 [81]
SiO2 4 [65]

Al2O3 9–10 [65]
YSZ 27 [65]
TiO2 48 [81]

CaTiO3 200–300 [65]
BaTiO3 4000–15,000 [65]

According to Equation (17), the higher is the dielectric constant of the pellets used as a reactor
packing, the higher is the reduced electrical field for a given voltage V and a gap between electrodes d.

The use of a ferroelectric material in the packing enhanced the EE of 13 eV/molecule at a CH4

conversion of around 55% [82]. The authors observed a higher CH4 conversion over the packed bed
and explained the results by a slower rate of the backward reaction of CH3 and H. A mechanism of
ferroelectric polarization was proposed by Chung at al. [12] (Figure 5). It was shown that without
discharge, neither polarization nor electrostatic force exists between ions and electrons in the ferroelectric.
Due to the external electric force, Ba2+, Ti4+ and Zr4+ ions are attracted by the external electrostatic
field from the direct current source, and the oxygen O−2 anions are attracted by the external field of the
ground electrode. The movement of anions and cations to the opposite directions causes polarization in
the ferroelectric. In contrast to the dielectrics which polarization disappears as the external electric field
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is off, the ferroelectric materials preserve partly their polarization which is possible due to their specific
crystalline structure. A remnant polarized ferroelectric surface has opposing positive and negative
charges, first of them attracts anions, including free electrons. This results in free electron acceleration by
remnant polarization of ferroelectric, increasing the kinetic energy of free electrons. This, consequently,
favors vibrational excitation, dissociation and ionization in the discharge region. Chung at al. [12]
claim that Packing the spark discharge reactor with ferroelectric increases the power consumption
from 26.6W to 39.3 W, resulting in an increase of both CH4 and CO2 conversions. The enhancement of
the CO generation, CO2 dissociation as well as increasing of H2 selectivity in a ferroelectric-packed
bed was observed.
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Figure 5. Mechanism of ferroelectric polarization and its effect on reforming. Reproduced with
permission from [12]. Copyright 2020, Elsevier.

For BaTiO3 the transition to the streamer regime does not occur. This indicates that the majority
of the charges that are generated in plasma is trapped by the packing material at the edges of the
pellet i.e., plasma does not propagate between the electrodes, but between the edges of the pellets and
the electrodes. Some typical examples of plasma DRM reactors with ferroelectric materials and the
corresponding experimental conditions are listed in Table 6.

Table 6. Examples of plasma DRM reactors with ferroelectric materials and corresponding
experimental conditions.
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6. Plasma–Catalysis Synergy

The synergetic effect of plasma and catalysis is schematically shown in Figure 6. The NTP alters
the physicochemical characteristics of the catalyst via several routes mainly induced by the generation
of high energy electrons. The plasma changes the properties of the catalyst surface, which leads to
different adsorption and desorption rates. The surface morphology of a catalyst plays a key role in
determining the activity, selectivity, and stability of the catalyst. HRSEM images in combination with
EDX and elemental analysis revealed that polymer-like layers with a high content of hydrogen (60 at.%),
were deposited onto the surface in the course of reaction [86]. Cheng et al. also treated supported Ni
catalysts with DBD plasma and found an increase in the catalytic activity and stability for the partial
oxidation of CH4 [87]. The SEM images supported a case for enhanced dispersion and increased
interaction between the Ni metal and the Al2O3 support. These authors also reported a reduction
in the formation of the carbon layer around the Ni nanoparticles. The species adsorbed onto the
catalyst surface participate in reactions with the electrons and other ions that reach the surface. Thus,
the probability of electron impact reactions increases as compared to the system without a catalyst.
Liu et al. [88] studied the influence of NTP on the catalytic properties of alumina supported Pt, Pd,
and Ni catalysts. These authors reported that the plasma treatment could remarkably enhance the
dispersion of the metal on the support surface, increasing the activity of the catalyst at low temperatures
by generating and redistributing the acidic and basic sites, as well as improving the catalyst stability.
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On the other hand, the catalyst can change the strength of the electric field, resulting in a different
distribution of energy absorbed by plasma species influencing conversion and selectivity in DBD
reactors [89]. Tu et al. [90] reported the treatment of NiO/Al2O3 using H2/Ar DBD plasma at atmospheric
pressure and a temperature below 300 ◦C. It was found that plasma is capable of reducing NiO to
Ni, increasing the surface conductivity, and modifying the discharge characteristics of the plasma.
Hence, both electric field distribution and the catalyst activity are modified in the process. For the case,
εp >> εg, the electric field increases by 1.5 times, Ex ≈ 1.5 V/d (see Equation (17)). Enhancement of the
electric field in catalytic reactors would result in higher electron energy. However, the electron density
is inversely proportional to Ex. Therefore increasing Ex results in a lower electron density compared to
that of an empty reactor [91]. The catalyst packing can concentrate the energy inside the catalyst pores
as well as between the individual particles.

The presence of the solid particles of BaTiO3, α-alumina or silica-SBA-15 having a characteristic
dimension of 100–300 µm and their interactions with the plasma discharges shifted the distribution
of C2-hydrocarbons [89]. The electron impact excitation, dissociation and ionization take place more
frequently due to a higher local electron density.

Being different from other plasma reactors, DBD reforming has a higher C2H6 selectivity.
High selectivity to of hydrocarbons is attributed to a partial dissociation of CHx producing large
amounts of CH3 radicals that recombine to form hydrocarbons such as C2H6.

Applying catalysis to NTP chemistry has become increasingly popular in recent years, with catalysts
offering a degree of control over selectivity in processes which are notoriously difficult to control [92].
Whilst selectivity was the main focus in catalytic reactions combined with NTP, an increase in process
efficiency can also be observed if the catalyst is carefully selected [93]. The two main methodological
branches are in-plasma catalysis and post-plasma catalysis. These two variations on catalytic plasma
processing concern interactions of the catalyst with different species, as the timescale of plasma
processes is generally in the order of few milliseconds, therefore many of the reactive species which
would be present in the case of in-plasma processes will no longer be available for post-plasma catalysis.

6.1. In-Plasma Catalysis Mode

An important advantage of DBD plasma reactor type is the ability to change the plasma
properties by incorporation of packing materials and catalysts together with optimal discharge
chamber characteristics, feed gas space velocity and improved electrode morphology. The DRM
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catalysts studied in DBD reactors were considerably different in terms of the support, the specific
surface area, the size of pores and metal particles, the type of metal, dielectric constant, etc. Figure 7
gives a few examples of catalyst-plasma synergy in a DBD reactor. However, it is important to mention
that the materials with a similar composition can also diminish the EE by reducing the conversion of
CO2 and CH4 [10,94]. When γ -Al2O3 or 5%Ni/γ -Al2O3 were packed in the DBD reactor, the CH4

conversion decreased from 57.6 to 50.26% and 55.7% respectively [94].
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Metals supported on porous supports are among the most studied catalysts in plasma operations.
Among them, Ni-based catalysts, both unpromoted ones and doped with Fe, Co, Cu and La,
were extensively studied. The total metal loading is typically 10 wt.% or even higher. A sharp
increase in CH4 conversion from 19 to 90% was observed over Cu/γ-Al2O3 catalyst added to DBD
plasma while the CO2 conversion slightly decreased from 10 to 6% [95]. It was demonstrated by
different physical methods that weak Cu–CO bonds provided good oxidation properties which elevated
CH4 conversion [96].

Noble and rare earth metals were also used as active metals or as promoters where the bi-metallic
materials demonstrated better activity and stability.

Recently, graphitic carbon nitride (g-C3N4) coupled with TiO2, ZnO and TiO2/ZnO was employed
in DRM reaction. The highest conversion of CH4 (35.5%) and CO2(13%) was achieved due to the
combination of acid and base properties [97]. It was claimed that the basic sites of the catalyst are
responsible for CO2 conversion whereas mild acidic sites improve the conversion of CH4.

Selection of supports such as Al2O3, ZrO2, TiO2, SiO2, mixed-oxides, highly porous materials
including zeolites and metal–organic frameworks, is another field of research. A higher specific surface
area and a larger metal dispersion can contribute to better chemisorption and activation of reacted
species. In the review of Kim et al. [81] diffusion of plasma species in the mesopores and macrospores’
was discussed in detail. The diffusion length for such species as electron and O3 was estimated from
60 up to 1.5 × 105 µm. However, once an atom or a molecule is adsorbed on the surface, the diffusivity
rapidly drops by ca. five orders of magnitude which decreases the estimated diffusion length down
to 190 nm–474 µm. It thus remains to be confirmed that the micropores are involved in the reaction
assisted by the plasma species.

As mentioned above the dielectric constant of the catalyst also affects the properties of the plasma.
Application of a ferroelectric such as BaTiO3 with the highest dielectric constant (Table 3) results in an
increase in the plasma electric field [98].

By studying catalysts with very different surface areas such as α-Al2O3 and γ -Al2O3 with the
same dielectric constant it was concluded [98] that apart from differences in the discharge behavior,
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the catalytic properties related to its structure (e.g., porosity) have a vast impact on the product
formation, leading to different product distribution. It has been noted that γ-Al2O3 exhibited the
highest product selectivity with no detectable fractions of oxygenated products [98]. Despite this,
zeolites with the lowest dielectric constant (Table 7) can give almost the same increase in activity as
ferroelectrics. Thus, the type and composition of the catalysts can affect the properties of the DBD
plasma in different ways, leading to the same result of increasing the CH4 and CO2 conversion.

An overview of different catalysts types used in DBD plasma DMR is given in Table 6 with the
studies sorted according to achieved CH4 conversion. Other detailed summaries can be found in the
reviews of Khoja et al. [61], Puliyalil et al. [13] and especially in the study of Michielsen et al. [98] where
more than 50 catalysts are summarized.

An important note of such comparisons can be that significant differences in conversion and
selectivity were achieved, even for similar catalysts under similar SED. The methane conversion can
vary from 14 up to 82% with H2 selectivity being in the range of 8–73%.

The highest CH4 conversion of 80–82% was obtained in a broad range of process parameters such
as a pulsed power supply or AC, discharge gap 3–8 mm, GHSV 436–53,000 h−1, frequency 7.5–16 kHz
and SED 16–160 J/mL. The result can be explained by differences in the particle size, the reactor setup
and power source parameters which determine the DRM process in DBD plasma to a larger extent
than the catalytic properties per se.

According to calculations of the efficiency on the basis of Equation (14) the highest efficiency of
41% was achieved with 50% CH4 conversion using a relatively large reactor with 330 mL catalyst load
and a 15 mm discharge gap [99].

Another significant issue is coke formation during plasma-assisted DRM for both operation modes,
i.e., thermal-catalytic and plasma-assisted CH4 conversion. In the former case disproportionation
of CO (reaction 4) and CH4 cracking (reaction 5) contribute mostly to coke formation with CO
disproportionation being a more feasible option according to thermodynamic calculations for the
process below 700 ◦C [41].

In the comparison of the spent Ni-based catalysts supported on γ-Al2O3, MgO, SiO2 and TiO2 the
catalyst deposited on Ni/γ-Al2O3 displayed the lowest carbon deposition of 3.8% after 150 min DRM
in a DBD reactor [100]. This sample had the highest strong basic sites concentration together with a
large specific surface area and small NiO crystallites. The highest coke content of 5.3$ was observed
for TiO2 as support. The increase of SED from 36 to 72 J/mL negatively affected the carbon balance
decreasing it from 96.4% to 92% for Ni/γ-Al2O3. This difference in the carbon balance might be also
assigned to adsorption of higher C5+ hydrocarbons and liquid oxygenates on the catalyst [100].

Addition of La2O3 as a co-support to Ni/MgAl2O4 catalyst enhanced the nickel−support
interactions and catalyst basicity positively influencing the coke resistance of the catalyst [101].
Prolonged catalyst stability (by 15 h) can be explained by a plausible involvement of carbon deposited
on the support surface with O* species giving CO. In the case of La2O3, formation of an intermediate
compound, La2O2CO3, occurs by a reaction of the oxide with CO2 chemisorption followed by
regeneration of La2O3 through a reduction with carbon. Repetition of three cycles with the catalyst
regeneration by air in-between the cycles did not result in the full catalyst recovery, where in the first
run, lasting 24 h, conversion of methane decreased from 86% to 78% and from 85% to 69% during the
third run with a 20 h duration. The results can be ascribed to the changes in structure and morphology
during regeneration under air [101].
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Table 7. An overview of different DMR catalysts used in DBD reactors.

Catalyst Reactor
Reaction

Conditions
SED

[J/mL]

Conversion [%] Selectivity
EE [%,

(eV/Molecule)] Reference
CH4 CO2 H2

H2/CO
Ratio

Oxygenates and
Hydrocarbons

Cu/γ-Al2O3
DBD AC, lgap = 2.5 mm,

Vd = 25 mL GHSV = 242 h−1 34 90 6 - - 14.5% [95]

LaFeO3

DC pulse DBD,
lgap = 8 mm,

Vd = 0.23 mL

GHSV =
53,000h−1,16 kV,

20 kHz
16 82 0 73.1 1 - 28% [102]

La2O3 Ni/MgAl2O4
DBD AC, lgap = 3 mm, Vd

= 13.2 mL
GHSV = 436 h−1,

7.5 kHz
360 81 48.1 1.01 - 1.2% [103]

NiFe2O4/SiO2 AC DBD. lgap = 2 mm GHSV = 110 h−1 240 80 70 81 0.9 - 1.9 (74) [104]

10%Ni/Al2O3-MgO DBD AC, lgap = 3 mm,
Vd = 13mL GHSV = 436 h−1 300 74 46.0 - - 1.4% [105]

Ferroelectrics
BaFe0.5 Nb0.5O3

DBD AC quasi-pulse
power supply, lg = 6 mm,

Vd = 11.8 mL
GHSV = 202 h−1 34 68 56 66.0 1.81 - 11% (12.5) [82]

LaNi2O3/SiO2 nano
particles lgap = 2 mm GHSV = 176 h−1,

40kV
192 67 72.0 - 1.9% [104]

Na-ZSM-5 AC. cylindrical DBD with
ext. heater, lgap = 3 mm

GHSV = 30 h−1,
240 ◦C, 6 kHz

72 65 21.3

Among the
organic products,

ethane and
propane were

dominant +
alcohols

2.5% [106]

10%Ni/Al2O3 lgap = 0.4 mm GHSV = 21,600 h−1,
40kV

13 63 35.0 - 11.6% [107]

10%Ni/γ-Al2O3
DBD AC, lgap = 3 mm,

Vd = 11.4ml
GHSV = 103 h−1,
40kV, T = 300 ◦C

60 56 30 31 0.6 - 5.1% (32) [56]

Zeolite 4A

AC DBD.
cylinder-wire-type DBD,

lgap = 15 mm,
Vd = 330 mL

GHSV = 109 h−1,
12 kV, 0.9 kHz

7 50 59.6 1.28 - 41% [99]
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Table 7. Cont.

Catalyst Reactor
Reaction

Conditions
SED

[J/mL]

Conversion [%] Selectivity
EE [%,

(eV/Molecule)] Reference
CH4 CO2 H2

H2/CO
Ratio

Oxygenates and
Hydrocarbons

5% TiO2/g-C3N4
DBD AC, lgap = 6 mm, Vd

= 18.4 mL GHSV = 62 h−1 5.4 38.7 9 21 0.45 - 39.5% [97]

glass beads
(zero surface)

DBD AC, lgap = 4.5 mm,
Vd = 18.4 mL

GHSV = 97 h−1, 0.05
kHz

6 29 37.2 0.74 - 25% [108]

BaTiO2

DBD AC, lgap = 4.5 mm,
Vd = 14 mL

GHSV = 210 h−1,
23.5 kHz

120

14 7 8.9 6.9

C2H6 12.9%,
C2H2 2.2%, C3H8

2.9%, DME +
EtOH + CH2O +

MeOH = 1.44

0.6%

[98]γAl2O3 32 14 8.5 8.3

C2H6 15.4%,
C2H2 2%, C3H8

0.4%, DME +
EtOH + CH2O +

MeOH = 3%

1.5%

αAl2O3 33 23 8.0 9

C2H6 12.9%,
C2H2 2.2%, C3H8

2.9%, DME +
EtOH + CH2O +
MeOH = 1.44%

1.5%

Ni/γ-Al2O3
DBD, lgap = 2.5 mm,

Vd = 11.6 ml GHSV = 257 h−1 9 20 9 34.0 1.08 23% C2H6 12% (22.2) [104]

notations: lg is the gap length [mm], Vd is the discharge volume [ml], GHSV is the gas hourly space velocity [h−1].
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The quest for finding an optimal catalyst composition and reaction conditions preventing
significant carbon deposition during plasma-assisted DRM is still ongoing with coke resistant catalysts
remaining a great challenge.

6.2. Post-Plasma Catalysis Mode

The purpose of post-plasma catalysis (PPC) is slightly different from that of in-plasma catalysis
and, as such, it requires a different reactor design. The species involved are less reactive and the
process must include multiple steps. The reaction system contains a plasma reactor in series with a
downstream catalytic reactor placed after the plasma discharge region.

The plasma provides chemically reactive species for catalysis or pre-converts reactants into the
easier-to-convert products to accelerate catalysis [109].

The presence of the catalyst pellets in the part of the discharge gap has been found to induce
plasma physical effects, such as the enhanced local electric field by 10% due to the polarization of the
catalytic materials, which increases the electron temperature and produces more energetic electrons
and reactive species [110].

Due to the separation of plasma and the catalyst, both thermal and non-thermal plasma can be
utilized. Because excited species generated in plasma have very short lifetimes, plasma mainly plays
the role to preconvert the gas followed by feeding the preconverted mixture into the second reactor.

In the NTP- catalysis system, the long-lived reactive species produced by plasma,
e.g., vibration-excited species, radicals, and ionized molecules, can react with the catalyst to induce
catalytic reactions via either the Eley-Rideal or Langmuir-Hinshelwood mechanism [111].

For example, Wang et al. [48] illustrated such synergy for plasma catalysis of dry reforming
methane in the single-stage system with Ni/Al2O3 catalyst but did not observe this synergy in the
two-stage system or when the catalyst is only placed at the end of the plasma zone.

The use of a NiO/Al2O3 catalyst, placed in the afterglow of the discharge in a gliding arc reactor,
was found to increase energy efficiency by over 20% in comparison to the utilization of plasma
only [112]. H2 yield, along with CO2 and CH4 conversions, was also increased.

The geometry of the packing can also affect the interactions between plasma and the catalyst. In the
DBD reactor, the partial packing of Ni/γ-Al2O3 catalyst in the discharge gap led to an improvement in
the reaction characteristics as compared to a completely packed reactor [56,113]. This is due to the fact
that a discharge in a partially packed reactor retains a strong fibrous discharge, while a decrease in the
discharge volume in a fully filled reactor changes the discharge mode to a surface discharge and a
spatially limited microdischarge [56].

Ozone-assisted catalysis is another type of PPC (2-stage plasma-catalysis) [114,115] The optimal
position of a catalyst is an important parameter determining its performance. For example, several
separate studies indicate that some catalysts (MnO2–CuO/TiO2, MnOx/Al2O3) [116,117] are better as
the second rather than in the first stage.

Kim et al. [118] compared direct O2 plasma and O3 injection for catalyst regeneration in CO
oxidation. The authors applied plasma to neat oxygen in a separate line, and then generated O3 was
mixed with the main gas stream before entering the catalyst bed. The O2 plasma treatment as well as
ozone injection were found to be efficient in the regeneration of Au/TiO2 deactivated by adsorption of
volatile organic compounds.

It is known that plasma can generate UV in an air-like gas mixture, but its photon flux is too low
to make any significant contribution to a catalytic reaction [119]. A combination of DBD plasma with a
photocatalyst (BaTiO3 and TiO2) enhanced the conversion of CO2 and energy efficiency by 2.5 fold
at low temperatures (~150 ◦C) compared to the plasma only case [120]. Meng et al. obtained CH4

conversion of 15% over Ti−Ga/UZSM-5 catalyst. The photocatalyst significantly increased the energy
efficiency generated during application of plasma [121].
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7. Time-Resolved Characterization of Plasma Intermediates

7.1. Optical Emission Spectroscopy (OES)

Plasma produced by several methods has been characterized by optical emission spectroscopy
(OES) [122]. This method is a sensitive and non-evasive in-situ technique to probe different
constituents of plasma providing useful information on different excited states in the plasma [123].
The instrumentation associated with the OES study of plasma is very simple and straightforward
which mainly involves simple optics to collect light emission from the plasma and a spectrometer to
record the emission spectra. A detailed analysis of the emission lines observed at different spectral
positions in the optical emission spectra reveals some important characteristics of the investigated
plasma, among others the ion present and the electron temperature. Bashir et al. [123] measured
spectroscopic parameters of the argon–ethylenediamine vapors inside discharge and also determined
electron, excitation and rotational temperatures.

OES was also applied to determine the concentration of ozone and nitrogen oxides [94].
The emission spectra of the generated plasma are measured with a resolution of 0.5 nm.

Ma et al. [122] have conducted OES measurements to investigate the microwave activated
Ar/H2/CH4 plasma during the chemical vapor deposition of polycrystalline diamond. The authors
have monitored the emissions from electronically excited H and Ar atoms, and C2 and CH radicals as
a function of Ar and CH4 flow rates, input power and pressure, and proposed that different species
have different formation mechanisms since they exhibit different behavior. Zhou et al. [124] performed
OES study and reported the existence of abundant C2 and CH radicals in CH4/Ar plasma along with
C3 radicals and/or 4-carbon clusters.

The emission bands in the Ar/H2/CH4 plasma were observed at the wavelengths between 387 and
619 nm [125]. The C2 Swan system corresponding to the vibration sequences ∆υ = +2, +1, 0, −1, −2
of the d3∏

g −a3∏
u electronic transitions dominate the spectrum. These corresponding bands are

observed at 436, 468, 516, 563, and 619 nm, respectively. The emissions at 387 and 431 nm were
observed from CH species (B2∑−

−X2∏) and (A2∆ −X2∏) [126]. The emission bands at 399 and
405 nm were attributed to transitions in C3 radicals (1∏

u −
1∑+

g ) [127]. Due to decomposition of CH4,
atomic hydrogen is produced and excited, as was evidenced by the appearance of Hα (656.5 nm) [124].

In plasma at local thermodynamic equilibrium (LTE), a single temperature characterizes all
internal energy modes (electronic, rotational, and vibrational). This temperature can be determined
from the absolute intensity of any atomic or molecular feature, or from Boltzmann plots of vibrational
or rotational population distributions. However, when considering non-equilibrium plasma flows,
the three temperatures should be distinguished and determined from OES spectra.

7.1.1. Excitation and Electron Temperatures

While the value of excitation temperature is not always the same as the electron temperature
(Te), they follow a similar trend providing useful information about the excitation or de-excitation of
atomic systems. For collision-dominated atmospheric pressure plasma, it was assumed that the upper
energy levels of the atomic transitions are in local thermodynamic equilibrium (LTE) and hence that
the population density of these levels obeys the Boltzmann law. The Boltzmann method for evaluating
excitation temperature is [128]:

ln (
Ii jλi j

giAi j
) = −

Ei
kText

+ C, (18)

where Iij is the relative intensity (in arbitrary units) of the emission line between the energy levels i and
j. λij, Ei, and gi represent the wavelength, excitation energy and the statistical weight of the emitted
upper level i, Aij is the transition probability of spontaneous radiative emission from the upper level
i to the lower level j and C is a constant. The main source of error when using expression (18) for
obtaining Texc come from using inaccurate Aij values [129].
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Bashir et al. [123] used relative intensities of the lines emitted by excited argon atoms to measure
excitation temperature (Texc) in the argon–ethylenediamine plasma. The authors used lines in the
range 516.2–750.4 nm and obtained an excitation temperature of 0.79 ± 0.071 for neat Ar plasma and
0.77 ± 0.061 eV for argon–ethylenediamine plasma in a DBD reactor.

The electron temperature (Te) of plasma in a non-thermodynamic equilibrium is obtained by the
modified Boltzmann equation, Equation (19):

ln (

Ii j
∑
i> j

Ai j

hυi jAi jbi
) = −

Ei
kTe

+ D, (19)

where hυi j is the energy difference between two excited states and D is a constant. The summation of∑
i> j

Ai j represents the sum of transition probabilities for spontaneous radiative emission from level i to

the lower level j. Coefficients bi = Ea
i × Pb

i should be known. Here, a and b the fitting parameters taken
from Gordillo et al. [128]. Pi is the effective principal quantum number for the excited argon species.

Applying Equation (19), Bashir et al. [123] obtained an electron temperature of 0.92 ± 0.16 for neat
Ar plasma and 0.84 ± 0.14 eV for argon–ethylenediamine (Ar/EDA) plasma in a DBD reactor. The value
for neat Ar plasma is in good agreement with the maximum value of the numerically calculated electron
temperature. The electron and excitation temperatures were increased by increasing the plasma power,
which was attributed to an increase in the electron energy provided by the enhanced electric field at a
higher discharge power.

Using Equation (18), Sohbatzadeh et al. [130] reported an excitation temperature of 1.36 eV in an
RF atmospheric pressure Ar/CH4 plasma jet reactor (RF-APPJ) operated in the open air. The RF-APPJ
was driven by a radio frequency (RF) power supply at 13.56 MHz. The gases (CH4 and Ar) were fed
via an alumina ceramic tube with a length of 100 mm, and an internal diameter of 10 mm.

7.1.2. Rotational Temperature

The plasma rotational temperature was estimated based on the rotational fine structure of the
electronic band B2∑+

u −X2∑+
g for N+

2 (so-called first negative system, the adsorption bands in the
range 388.74–390.49 nm). Depending on the rotational energy states the rotational spectrum is resolved
into branches of different wavelengths (R and P branches) that are closely spaced. In the R branch, the
rotational quantum number in the ground state is one more than that in the excited state. In the P
branch, the quantum number in the ground state is one less than that in the excited state. The rotational
temperature can be determined either using the P or the R branch. The intensity of rotational line
for a transition J′–J′′ is represented as a function of oscillator strength SJ [131]. The latter is equal to
(K′′ + 1)(K′′ + 2), where K′′ represents the quantum number assigned to the lower state. Equation (20)
is used to find the rotational temperature (Trot) for R-branch

ln (
I

2(K′′ + 1)
) = −

Bυhc
kTrot

(K′′ + 1)(K′′ + 2) + E, (20)

where I is the line intensity, Bυ is the rotational constant associated with the vibrational quantum
number υ, h is Planck’s constant, c is the velocity of light and E is a constant.

Collisions involving electrons do not change the rotational temperature of the molecules due
to a comparatively low mass of electrons. The major contribution to the rotational temperature
comes from collisions between heavy particles. Hence, the rotational temperature is considered to
be an estimation of the plasma gas temperature due to a fast rotational relaxation at atmospheric
pressure [132]. The rotational temperatures for neat Ar and Ar/EDA plasma were reported to be
338 ± 24 K and 320 ± 28 K, respectively [123]. The Ar plasma value was in a good agreement with the
one reported by Yuan et al. [133] who employed emission bands at 431.41 nm (CH) and 516.53 nm (C2)
to study the analytical characteristics for detection of organic species in Ar plasma. Stere et al. [134]
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calculated a rotational gas temperature of 91 ◦C in NTP-activated hydrocarbon selective catalytic
reduction in a DBD reactor operated at 6 kV. The temperature was slightly higher (102 ◦C) when
the discharge voltage was increased to 7 kV. The authors used the second positive system (SPS) of a
molecular band N2 (377–381 nm) for the calculation of rotational temperature.

7.1.3. Vibrational Temperature

Plasma vibrational temperature (Tvib) can be estimated using the first negative system of the
molecular ion of nitrogen, N+

2 , described in Section 7.1.2, or from the second positive system (SPS)
of a molecular band N2 which has multiple bands in the range of 367.06–380.37 nm. The second
positive system of the molecular band N2 is one of the most intense band of the plasmas containing
nitrogen and is found at a wide range of plasma conditions where dinitrogen is added to the gas
mixture. Using this system, the rotational temperature can be calculated from the emission process:
B2+

u −X2+
g + hυ, where the molecular ionic state X2∑+

g occurs as a result of the direct ionization by an
electronic impact of the basic N2 state, X1∑+

g . The vibrational temperature is calculated following [132]

ln (
Iν′ν′′ λν′ν′′

Aν′ν′′ hc
) = −

Gνhc
kTvib

+ F, (21)

where λν′ν′′ Iν′ν′′ is the wavelength (nm) and the relative intensity of line (a.u), respectively. Gν is the
energies of the vibrational levels (m−1), Aν′ν′′ the transition probabilities (s−1) of the N2 vibrational
band and F is a constant. The vibrational temperature for Ar/EDA plasma was reported to be
0.124 eV [123]. An error of about 10% is incurred in the OES vibrational temperature measurement.
Sakamoto et al. [135] used the N2 SPS to determine the vibrational temperatures of N2 in microwave
plasma at low pressure. They reported a vibrational temperature of 0.5–0.7 eV at an output power of
600 W at 2.45 GHz. These authors observed a large contribution form from the upper electronic states
to the vibrational state as their theoretical results were not in line with their OES experiments.

Kinoshita et al. [136] studied the influence of the airflow velocity and ambient pressure on the
vibrational and rotational temperatures in a spark-discharge plasma using OES. At the center of the
spark plug gap, the vibrational temperature was 4000 K, whereas the rotational temperature was 2000 K.
However, at a position of 3 mm downstream from the spark plug gap, the vibrational and rotational
temperatures increased to 4500 and 4000 K, respectively, approaching each other. These results showed
that the plasma state undergoes a transition from non-thermal equilibrium to thermal equilibrium
along the flow direction (Figure 8). The collision frequency between the plasma and the neutral
molecules increases downstream from the spark plug gap. As a result, energy relaxation occurs [137].
The electronic energy is transformed to vibrational energy, and as a result, the vibrational temperature
increases because of the energy relaxation by the electrons. Furthermore, the rotational temperature
also increases because of the collision relaxation between the vibration excitation molecules.

In non-equilibrium plasma, it can be assumed that the rotational temperature is close to the gas
temperature because rotational relaxation is fast at atmospheric pressure. However, no assumption
holds regarding the vibrational and electronic population distributions. An assumption that the
electron temperature and vibrational temperature are approximately equal to the electron temperature
is not always valid in non-equilibrium plasmas. In fact, it has been shown that such an assumption is
incorrect in CH4/Ar DBD and plasma jet at atmospheric pressure. The temperature in these cases obey
the classical sequence of non-thermal plasma (Te > Texc > Tvib > Trot).
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7.2. FTIR-Spectroscopy

FTIR spectroscopy is used to monitor the progress of the reaction and identify the various
intermediate species that are formed during the course of the reaction. Majority of molecules in
NTP-plasma absorb mid-infrared light, making FTIR a highly useful tool. However in-situ studies on the
catalyst surface in contact with plasma have started to appear only very recently. Rodrigues et al. [138]
used operando DRIFT spectroscopy characterization of intermediate species on the catalyst surface
during NTP assisted catalysis. Jia and Rousseau demonstrated a new reactor cell to monitor adsorption
and surface oxidation of pollutants under direct plasma exposure. The principle was based on FTIR
spectroscopy operating in a transmission mode [139]. A thin catalyst pellet can be inserted in a holder
and then exposed to DBD plasma. The time resolution of the method is limited to that of the FTIR
spectrometer (Nicolet 5700) being ca. 30 s.

Stere et al. [134] developed a DRIFTS-MS system to investigate the surface changes during an
NTP activated selective catalytic reduction of NOx with hydrocarbons. A dome was designed to
allow a sufficient space for the plasma volume to be positioned within the cell and interact with
the catalyst bed directly and at the same time allowing a line of sight for the infrared signal to pass
through the windows and reflect on and off the catalyst bed. The spectra were taken when the NTP
was in contact with the catalyst surface. The IR bands between 3100 and 2800 cm−1 were attributed
to adsorbed and gas-phase n-octane, which was used as a reducing agent. Upon application of
5 kV voltage, nitrate species, acetate-based species and carboxylates were observed. After 10 min,
further increases in the acetate, nitrate, and carboxylate bands were observed and the n-octane bands
decreased, indicating hydrocarbon transformations. However, the flow configuration within this
reactor was different from that of a fixed bed reactor typically employed for studies of plasma-catalyst
interactions. In a subsequent study, these authors improved the original cell design by using a fixed
bed plasma DRIFTS cell coupled with mass spectrometry, allowing in-situ DRIFTS analysis [140].
The measurements were performed using a Bruker Vertex 70 FTIR spectrometer, equipped with a
liquid N2-cooled mercury–cadmium–telluride detector. The plasma was generated at a frequency of
27 kHz with an applied voltage of 5 or 6 kV.

Nair et al. developed a DBD plasma catalytic reactor placed inside a demountable gas cell with a
cell path length of 5 cm [141]. A glass plate of 27 mm × 32 mm × 2 mm was used as the dielectric layer
and the gap distance was 4–5 mm. The gas cell was closed on the ends by infrared (IR) transparent
windows. The optical path length inside the reactor was 6.5 cm. The plasma was generated at a
frequency of 700–1200 Hz with an applied voltage of 4–6 kV. The experiments were performed at room
temperature and at low energy inputs of 50 kJ/mol CH4 in a gas mixture containing CH4 (90 vol.%), O2,
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and N2. In the absence of oxygen, alkanes, alkenes, and alkynes were formed as the main products.
With increasing oxygen content, a gradual shift to aldehydes was observed.

While FTIR analysis provides many useful insights on the reaction dynamics and the intermediates
formed on the catalyst surface, it also encounters the problems of frequent calibrations and transient
errors due to the limited time resolution. Therefore real-time monitoring of short-living plasma
species is not possible in the plasma-catalytic process. This approach is either not appropriate for the
measurement of temperature and concentration fields, i.e., the distributions of temperature and gas
concentration of key plasma intermediates. On the other hand, there were several studies applying
laser technology. It has been proven that tunable diode laser absorption spectroscopy (TDLAS) is able
to measure the temperature and concentrations at a fast response time [142,143].

7.3. Tunable Diode Laser Absorption Spectroscopy (TDLAS)

Since the plasma species are short-living, it is necessary to measure their concentrations and
temperature with a kHz frame rate. Among all optical techniques, TDLAS is currently the most robust,
convenient and economic one in real industrial environments [144]. The principle of TDLAS is based on
the Beer–Lambert law. When the light permeates an absorption medium, the strength of the permeated
light is related to the absorber concentration according to the Beer–Lambert s law. The main features of
the TDLAS technique are its ultra-fast response and high sensitivity. TDLAS is commonly divided into
two categories: direct absorption spectroscopy (DAS) in which the parameters are inferred from the
direct absorption signal, and wavelength modulation spectroscopy (WMS) in which the parameters are
coupled in the harmonics of the high-frequency (>100 kHz) wavelength-modulated absorption signal.

For molecules such as water, ethylene and methane with dense spectral features, the selection
of appropriate spectral lines for temperature (using two-line thermometry) and concentration
measurements is of large importance. Sur et al. measured the molar CO, CO2, CH4, and H2O
concentrations in the 1–10 vol.% range in the synthesis gas with an accuracy of ±4% using TDLAS [143].
In these experiments, separate lasers were used for each species (CO at 2.326 µm, CO2 at 2.017 µm,
CH4 at 2.290 µm, and H2O at 1.352 µm) and a fiber bundle was utilized to combine all four
beams on a common optical path. Single-sweep laser scanning provided a 20 ms time resolution.
The time-averaged concentrations measured by TDLAS were in good agreement with those obtained
by gas chromatography. The method enabled the identification of a wide range of dynamic behavior.

Extensive research has also been performed on the utilization of TDLAS for the fast system control.
The local mass flow rate is an important parameter in plasma reactors, and is used in calculations
of energy efficiency. A mass flux sensor based on TDLAS of water vapor was tested by Chang et al.
to establish the measurement accuracy at velocities in the range of 2–18 m/s [145]. The line strength,
air-broadening and self-broadening coefficients of two H2O absorption lines at 1.349 and 1.341 µm were
measured by wavelength-scanned direct absorption in a cell [146]. The uncertainties of the measured
line strengths were analyzed to be less than 2%. This allowed to carry out velocity measurements with
a precision of ±0.5 m/s of the set point.

In the case of WMS, the variation of transmitted intensity with the wavelength is compared with
spectral models to determine the gas concentration and the temperature. The most common WMS
technique is the scanned-WMS, which tunes the injection current of diode laser with a low-frequency
scanning signal and a high-frequency sinusoidal modulation (f). Detecting the absorption signal at the
second harmonic of the high-frequency modulation provides a large increase in the signal-to-noise
ratio [147]. The algorithm adopts WMS technique with normalization of the second harmonic (2f)
signal by the first harmonic (1f) signal (WMS-2f/1f), and it can restrain interference caused by circuit,
light path, optical source and other factors [148]. The actual gas-phase temperature and concentration
are calculated by comparing the measured and simulated WMS-2f/1f signal ratio. For these calculations,
the spectrum parameters, such as absorption coefficients and broadening coefficients, have to be
measured in advance by IR spectroscopy. WMS was widely applied to obtain 2D maps of temperature
and concentration in a reactor. To obtain a spatial distribution, eight optical probes for WMS were
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used: five positioned vertically with a spacing of 5 cm and three horizontally with a spacing of 3 cm.
Laser beams across the measured area were collected by multimode fibers and detected by eight InGaAs
detectors at a frequency of 5 MHz. From these measurements, the temperature and water concentration
were reconstructed [147]. The detection system was able to detect fast concentration switches that
occured every 20 ms. These results demonstrated the fast response speed of the WMS method.

2D temperature and the concentration distributions of gas components and temperature between
the electrodes of a plasma reactor play an important role in the plasma structure and the energy
efficiency. Two dimensional (2D) temperature and concentration maps can be obtained by combining
the TDLAS method with a set of individual detectors or a focal planar array (FPA) detector. Kamimoto
et al. obtained 2D CH4 concentration distributions using a 16 path TDLAS measurement cell [149].
In another study from the same group, FB lasers at 1.388 and 1.635µm were used to measure water vapor,
and CH4 concentration, respectively. The laser wavelength was scanned at 1–4 kHz and the absorption
spectra were measured simultaneously to calculate the instant 2D concentration and temperature using
16 path measurement cell [150]. In order to measure several different gas concentrations simultaneously,
the laser light from each laser was directed into a single optical fiber by the time-division-multiplexing.

8. Summary and Outlook

A low selectivity to the desired products (either C2H4 or oxygenates) remains the main challenge
in the DRM reaction. Furthermore, the energy efficiency (currently in the 12–15% range) should
be considerably enhanced. Fast development in the area of non-thermal plasma technology brings
new challenges for the research community. The reactant conversion can be improved by proper
reactor design, i.e., by increasing the number of molecules passing through the active plasma region.
First of all, decreasing the gap size between the electrodes to the submillimeter range results in
very strong interactions between the plasma species and the electrode surface. In the GA reactors,
the plasma arc does not fill the entire plasma reactor volume but is mainly moving along the center
axis. Therefore much gas does not pass through the plasma region. This limits the overall conversion
in the reactor, except for the cases when a significant thermal conversion occurs in the region around
the plasma [151]. The high energy electrons induced by high-voltage discharges in NTP generate
active species (secondary electrons, ions, photons, free radicals, etc.) by electron-molecule collisions.
Addition other gases such as N2 and O2 can also influence the selectivity and the EE of the process.

The plasma can overcome the usual constraints of catalysts to have low activation energy for
CO2 dissociation and at the same time a weak interaction with intermediates, needed for their fast
desorption. While the current review was not focused on modeling of plasma chemistry, as this is a
very broad topic, probably requiring a review of its own, it became apparently clear that the current
models for plasma-catalysis do not address the whole complexity of proceeding chemical reactions.
As a consequence new micro-kinetic models with plasma species adsorbed on the catalyst surface have
to be developed. These models can improve understanding of surface reactions which in turn may
help to control the selectivity. Extended reactor models have to be developed. At present, most efforts
were devoted to the modeling the volumetric plasma chemistry, mainly with zero-dimensional
(time-dependent, or pseudo 1D where time was replaced with residence time) models that did not
account for the actual reactor dimensions. Recently, several groups started modeling plasma reactors
for gas conversion applications, with 2D fluid dynamics models. However, the impact of possible
surface charging, strong electric field and excited species has not been taken into account.

The main limitation for energy-efficient CO2 conversion is the backward reaction (of CO with O
atoms) and this recombination reaction becomes faster at a higher temperature. Fast cooling of the
gas in the post-plasma reaction zone can reduce the rate of the backward reaction. Yang et al. [152]
already demonstrated the effects of supersonic quenching for a thermal CO2 plasma. The quenching
was based on the adiabatic expansion of the gas in a nozzle, yielding acceleration to sonic speed and
conversion of thermal energy into kinetic energy. This was followed by a further cooling in a tube
under highly turbulent flow conditions, enhancing the heat transfer rate between the gas and the
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tube surface. It was demonstrated that quenching prevents the reverse reactions, enhancing both the
conversion and energy efficiency and therefore this should be extensively investigated. The same
concept may be valid to GA plasmas, where the hot arc region (usually around 3000 K) is surrounded
by cooler gas. On the equipment design side, the heat which is recovered from quenching can be used
to preheat the inlet gas mixture to reduce the power requirements. This can also increase the overall EE
of the process. Therefore reaction conditions in the post-plasma region outside the plasma zone are the
key for further EE and reactant conversion optimization and those should be extensively investigated.

Plasma is very reactive, but therefore it is not selective in the production of targeted molecules.
So far, a combination of a catalyst with plasma was focused on the application of classical thermal
catalysts, which are not most suitable for combination with plasma. As plasma is also producing
UV-light, the application of photocatalysts in combination with plasma was demonstrated to improve
both the selectivity and EE beyond those observed when the two methods were applied individually.
For CO2 splitting and DRM reactions, the energy efficiency above 60% was shown to be possible.
Very limited literature data are available describing the application of semiconductor-type catalysts
under plasma conditions. This research direction needs to be extended to find more efficient catalysts
that can accommodate very active plasma species on their surface and at the same time be activated by
visible (or UV) light.

Second, application of the ultra-short pulses in the nanosecond range allows us to increase the
efficiency of DBD reactors to the level of other types such as GA, spark and corona. While it is generally
accepted that the runaway electron breakdown theory can be applied to the nanosecond pulsed
discharge, generation of secondary electrons and streamer development require further investigation.
The ultra-short pulse in the nanosecond range generates homogenous plasma under atmospheric
pressure, which is beneficial for many chemical conversions. However, it is difficult to maintain uniform
discharge when increasing the reactor volume. Therefore, the scaling rules for plasma discharge need
further investigation.

Third, the application of new ultra-fast methods with a high temporal and spatial resolution
is required in the area of non-thermal plasma diagnostics, both optical and electrical. The electrical
diagnostic devices should be able to provide faster transient responses, to be protected against severe
electromagnetic interference and allow more precise signal synchronization. To perform real-time
optical monitoring of plasma species, TDLAS with a mid-infrared quantum cascade laser is a promising
method enabling high spatial resolution (15 µm × 15 µm) at a kHz frequency. Rapid developments
in fiber optics and high-speed electronics of focal planar array (FPA) detectors allow currently to
achieve time resolutions already in the millisecond range. However, several major equipment design
limitations inherently associated with optical tomography are still unresolved: (1) so far water vapor
and NO (nitric oxide) were used as tracers, due to their high absorption coefficient, but the applicability
of other gases has not yet been demonstrated, unless a dedicated optical design (enhanced optical
path, higher pressures, etc.) was applied. Therefore, the development of spatially resolved techniques,
with a well-defined methodology enabling highly efficient, selective, and long-term use chemical
transformations remains a paramount challenge.

Additionally to TDLAS, the emission spectra of the plasma species can be measured using
commercial fiber-coupled optical emission spectrometers (OES) with a spectral range of 200–1000 nm
and a resolution of 0.5 nm. This resolution is enough to resolve the electronic temperature and electron
density in plasma. However, a much higher resolution is required to resolve the vibrational and
rotational temperatures of plasma species. FTIR spectroscopy can be used to monitor the progress of
the reaction and identify the various intermediate species that are formed during the course of the
reaction on the catalyst surface.

Thus, we can predict that the replacement of current fossil fuel technologies with those based
on renewable energy sources (electrified methane reforming and processing waste CO2 to fuels and
chemicals), is a key factor in the transition to a circular economy. This transition supports increasing
interests in catalytic plasma technology. While many technical and economic challenges are still to
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be solved, catalytic plasma technology offers many advantages as compared to alternative solutions,
as discussed in this paper.
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