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Abstract: Various types of mesoporous silica were used as carriers to synthesize a series of immobilized
imidazolium-based ionic liquids. Their activity was tested in the synthesis of styrene carbonate from
CO2 and styrene. This is one-pot process, whereby two stages are carried out in one reactor and
there is no need to isolate the intermediate product, epoxide. A systematic study on the influence
of parameters such as temperature, the reaction time, CO2 pressure, as well as the amount and
type of catalyst used was carried out. A strong synergistic catalytic effect of ionic liquid and
Lewis acid was observed in promoting this reaction. The addition sequence of regents and amount
of immobilized catalyst were considered crucial for the synthesis of styrene carbonate from CO2

and styrene. The tested silica-supported ionic liquids gave an easily-recyclable system which under
the most favorable conditions ([mtespim]Cl/@SiO2; ZnBr2, 0.1 mol%; 110 ◦C, 4 h, 1 MPa) can be
reused without a significant loss of catalytic activity nor selectivity.
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1. Introduction

Five-membered ring cyclic carbonates are widely used as, among other purposes, polar aprotic
high boiling solvents for natural and synthetic polymers, in the production of polyacrylic fibers,
selective solvents in separation processes, electrolytes in the production of batteries, or starting
materials for the production of polycarbonates and intermediates for many useful chemicals [1,2].
On an industrial scale, these compounds are mainly obtained by the 100% atom-economic reaction
of carbon dioxide with an epoxide. A wide spectrum of compounds have been studied as catalysts
for this synthesis, both homogeneous and heterogeneous, as well as immobilized ones, such as
onium quaternary salts [3–6], metal complexes [7–10], metal-organic frameworks [11,12], and ionic
liquids [13–17]. However, the direct synthesis of cyclic carbonates from CO2 and olefin as raw materials
is of growing interest [18,19]. This process, i.e., an oxidative carboxylation of olefins with CO2, proceeds
in two stages. In the first stage, epoxidation of terminal olefins takes place, and in the second, the in situ
formed epoxide reacts with CO2. The advantage of this method is that both process steps can take
place in one reaction vessel (one-pot synthesis), so there is no need to isolate and purify the resulting
intermediate product, which is the epoxide. However, designing an effective catalyst system to perform
multiple reactions in one reactor is still a challenge for researchers. Great emphasis is placed not only
on the search for active and selective catalysts, but also on those that can be easily separated from
the reaction mixture. In this regard, the immobilization of homogeneous catalysts on the surface of
organic or inorganic supports are of particular interest. Examples of the use of immobilized catalysts
in the direct synthesis of cyclic carbonates can be found in the literature [18,19].
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Mesoporous silicas are convenient and frequently used inorganic catalyst supports [20,21]. The ease
of functionalization, thermal and mechanical stability and also chemical resistance within a certain
pH range are just some of their advantages. They were successfully used to anchor various catalysts
applied in the reaction of obtaining cyclic carbonates from CO2 and olefins. Arai et al. used a ternary
catalytic system consisting of silica-supported gold (Au/SiO2), zinc bromide and tetrabutylammonium
bromide (TBAB) for the synthesis of styrene carbonate (SC) from styrene (ST) and CO2—using tert-butyl
hydroperoxide (TBHP) as an oxidant [22]. Under optimal conditions (80 ◦C, 1 MPa, 4 h), the product
was obtained with a yield of 42%. Recently, the easily recyclable heterobimetalic catalytic system,
consisting of the manganese and chromium metalloporphyrin magnetic nanoparticles MNP@SiO2-8Mn
and MNP@SiO2-4Cr, was used for the oxidative carboxylation of olefins with O2 as an oxidant [23].

Herein, a series of ionic liquids, immobilized on various mesoporous silica carriers,
were synthesized and their catalytic performance was tested in the model reaction of synthesis
styrene carbonate from CO2 and styrene oxide or styrene. To the best of our knowledge, immobilized
ionic liquids on silica were, for the first time, used in the direct synthesis of cyclic carbonates.

2. Results

2.1. Synthesis of Immobilized Catalysts

The synthesis of ionic liquids covalently bound to a silica support was performed according
to the procedure described earlier, with some modifications [24]. The first stage of ionic liquid
immobilization on silica supports involved the reaction of (3-chloropropyl)triethoxysilane with
1-alkylimidazole under an inert atmosphere. The obtained ionic liquids were then anchored onto solid
support (Scheme 1). As a carrier, we used macro/mesoporous silica obtained by the sol-gel method
with simultaneous phase separation. In this method, the selection of the appropriate composition
and temperature of the reaction system led to phase separation, induced by the polymerization
reaction. The following hydrolysis and condensation reactions of the silica precursor led to
the freezing/consolidation of the structure [25,26]. As supports, we also used the commercially available
mesoporous silicas: MCM-41 (Mobil Composition of Matter No. 41 or Mobil Crystalline Materials),
MSU-F (mesostructured silica, cellular foam), MSU-H (mesostructured silica, large pore 2D hexagonal).
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Scheme 1. Synthesis of immobilized ionic liquid on SiO2.

The surface area, pore size and pore volume of synthesized silica (@SiO2) and commercial carriers
are summarized in Table 1. The surface area of @SiO2 was lower than the commercial ones, while pore
size and pore volume were comparable as for MSU-H, which has large 2D hexagonal pores. As shown
in Figure 1a, the nitrogen adsorption–desorption isotherm of @SiO2 can be classified as a type IV
isotherm with a H1 hysteresis loop, which is typical for mesoporous materials [27,28]. @SiO2 had
a bimodal pore size distribution (Figure 1a and Figures S1 and S2 in Supplementary Materials). The fine
pore sizes clustered at approximately 3 nm and the mesopores at about 20 nm. The morphology of
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the obtained @SiO2 is shown in Figure 2a (Figures S3 and S4 in Supplementary Materials). The particles
of silica were of irregular shape and different size (Figure 2a).

Table 1. Morphological characterization of silica carriers and IL immobilized catalyst.

Entry Material BET (m2/g) Pore Size (nm) Pore Volume (cm3/g)

1 @SiO2 305 15.0 1.2
2 [mtespim]Cl/@SiO2 154 15.7 0.7

3 1 MSU-F 499 20.0 2.2
4 1 MSU-H 837 12.4 1.2
5 1 MCM-41 930 2.9 0.8

1 Based on the manufacturer’s data.
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Figure 1. (a) Nitrogen adsorption–desorption isotherms; and (b) Size distribution plots of synthesized
silica @SiO2 and the catalyst immobilized on the @SiO2 ([mtespim]Cl/@SiO2) (see also in ESI,
Figures S1–S4).
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Figure 2. SEM images of: (a) @SiO2; (b) Functionalized @SiO2 sample ([mtespim]Cl/@SiO2).

As expected, the surface areas and the pore volume of the immobilized catalyst [mtespim]Cl/@SiO2

were reduced (Table 1, entry 2) compared to the values for the carrier itself. The pore size of large
mesopores at about 20 nm did not change, while the small ones – in the range of 3 nm - practically
disappear (Figure 1b). However, the SEM images prove that the surface morphology of the carrier
remained unchanged (Figure 2). The number of functional groups attached to the supports was
determined based on elemental analysis and ranged from 0.86 to 2.20 mmol/g (Table 2).
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Table 2. The number of functional groups attached to the supports.

Entry Catalyst IL/SiO2 (mmol/g) 1

1 [mtespim]Cl/@SiO2 1.02
2 [mtespim]Cl/@SiO2 0.77 2

3 [btespim]Cl/@SiO2 0.93
4 [mtespim]Cl/MSU-F 1.64
5 [mtespim]Cl/MCM-4 2.20
6 [mtespim]Cl/MSU-H 1.53
7 [otespim]Cl/MSU-H 0.86

1 Based on elemental analysis. 2 After the fourth recycle.

2.2. Catalytic Tests

First, the immobilized ionic liquids were tested in the model reaction between CO2 and styrene
oxide (SO) which is the second stage in one-pot synthesis of cyclic carbonate. All preliminary reactions
were conducted under the same conditions (100 ◦C, 1 MPa, 6 h, 700 rpm) using [mtespim]Cl/@SiO2 as
the catalyst together with a cocatalyst, namely Lewis acid. Zinc bromide was chosen as it is known to
exhibit high activity in the cycloaddition reactions of CO2 [29]. The use of a two-component catalytic
system resulted in obtaining of styrene carbonate (SC) with yield of 72% (Table 3, entry 5). This result
shows the strong synergistic effect of this binary catalyst system, as a reaction in the presence of zinc
bromide itself practically did not occur while using only [mtespim]Cl/@SiO2, SC was obtained with
yield of 16% (Table 3, entries 3, 4). For comparison, a control experiment without any catalyst showed
that no reaction took place (Table 3, entry 1).

Table 3. Choice of catalytic system for the reaction of CO2 with SO. Reaction conditions: Reaction
conditions: SO, 0.13 mol; 100 ◦C; CO2 pressure, 1 MPa; 6 h; 700 rpm.

Entry Catalyst Amount of
Catalyst (mol%)

Amount of
ZnBr2 (mol%) SO Conversion (%) SC Yield (%)

1 - - - 0 0
2 [mtespim]Cl 0.50 - 27 7
3 [mtespim]Cl/@SiO2 0.50 - 27 16
4 - - 0.10 0 0
5 [mtespim]Cl/@SiO2 0.50 0.10 83 72
6 [mtespim]Cl/@SiO2 1.00 0.10 89 74
7 [mtespim]Cl/@SiO2 0.25 0.10 58 24
8 [mtespim]Cl/@SiO2 0.25 0.02 21 13

Studies on the effect of the amount of catalyst showed that a two-fold increase in the amount of
[mtespim]Cl/@SiO2 from 0.25 to 0.5 mol% using the same amount of cocatalyst caused a three-fold
increase in SC yield (Table 3, entries 5 and 7). However, a further increase in the amount of immobilized
catalyst (from 0.5 to 1.0 mol%) did not affect the yield of styrene carbonate, while the conversion of
styrene oxide increased. Most likely, styrene oxide undergoes side reactions leading to the formation of
SO or SC dimers and oligomers [30]. In turn, the use of a five-fold increase in the amount of cocatalyst
(0.10 mol% instead of 0.02 mol%) resulted in only a two-fold higher yield of SC. This outcome confirms
the synergistic effect of the catalytic system, consisting of ionic liquid and Lewis acid, in promoting
the studied reaction.

The effect of temperature in the range of 90 to 120 ◦C and reaction time (from 2 to 6 h) on
the synthesis of styrene carbonate was investigated (Figure 3a). It can be seen that as the temperature
increased up to 100 ◦C, the SC yield also increased. Above this value, the product yield remained
practically unchanged for the reactions carried out for 4 and 6 h. However, the conversion of styrene
oxide increased and reached almost 100% for the reactions conducted at a temperature above 110 ◦C
for 6 h. GC-MS revealed that apart from benzaldehyde, phenyl glycol was observed at elevated
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temperatures. In addition, dimers and oligomers of styrene oxide and styrene carbonate also formed
during the process. Therefore, further experiments were carried out at 110 ◦C for 4 h. The SC yield
increased from 58% to 75% with increasing pressure from 0.5 MPa to 1.0 MPa (Figure 3b). A further
pressure increase did not affect SO conversion and SC yield.
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Figure 3. The effect of: (a) the temperature and reaction time; (b) CO2 pressure; on the synthesis of
styrene carbonate from CO2 and styrene oxide. Reaction conditions: SO, 0.13 mol; [mtespim]Cl/@SiO2,
0.5 mol%; ZnBr2, 0.1 mol%; 700 rpm.

For the sake of comparison, we carried out the reactions using supported ionic liquids on various
silica carriers (Table 4). Immidazolium ionic liquids with an alkyl chain of different lengths were
immobilized on solid support. It can be observed that the styrene carbonate yield increased with
the lengthening of the alkyl chain in ionic liquid. Probably due to the increased lipophilicity of these
ionic liquids, substrates such as SO and CO2 dissolve better in the ILs, which facilitates their contact
with the active sites of the catalyst [31]. Similar phenomenon was observed in the literature [16,31].
In turn, the immobilization of the same ionic liquid on different carriers showed that the best results
were obtained for the synthesized @SiO2. The order of their activities was as follows: @SiO2 > MSU-F >

MSU-H > MCM-41. These results may indicate that the specific surface area had no significant
effect on catalyst activity. The key factor affecting its activity seems to be the pore size. The reaction
with [mtespim]Cl immobilized on MCM-41, which is characterized by the largest surface area and
the smallest pore size among tested supports, proceeded with the lowest efficiency. Despite the large
surface area, access to pores is limited.

Table 4. Reaction of CO2 with SO using various catalysts. Reaction conditions: SO, 0.13 mol;
immobilized catalyst, 0.5 mol%; ZnBr2, 0.1 mol%; 110 ◦C; 4 h; 700 rpm.

Entry Catalyst SO Conversion (%) SC Yield (%)

1 [mtespim]Cl/@SiO2 82 75
2 [btespim]Cl/@SiO2 87 78
3 [mtespim]Cl/MCM-41 66 48
4 [mtespim]Cl/MSU-F 81 66
5 [mtespim]Cl/MSU-H 76 52
6 [mtespim]Cl/MSU-H 78 61

The activity of the immobilized catalyst in consecutive reaction cycles was examined. After reaction,
the catalyst was recovered by simple filtration, washed with ethyl acetate, and dried in the air. Recycling
studies showed that the supported catalyst can be used in up to three cycles without significant loss
in its catalytic activity and selectivity (Figure 4). A decrease in styrene carbonate efficiency was observed
in the fourth cycle. Styrene carbonate yield dropped to 53%. Based on the results of elemental analysis,
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it can be stated that after the fourth cycle the amount of nitrogen decreased, which suggests partial
release of the catalyst (Table 2). Thermogravimetric analysis of the supported catalysts revealed that
weight loss in the range 130 to 1000 ◦C was slightly higher for the catalyst after the third reaction cycle
(24.20%) than for a fresh one (20.47%). However, much higher weight loss (30.79%) was observed for
the catalyst after the fourth cycle (Figure 5 and Figures S5–S7 in Supplementary Materials). This might
indicate that contaminants were retained on the catalyst surface. Most likely they were by-products,
such as dimers or oligomers that might not have been wash out after the reaction cycle. A slight change
in the surface roughness of the catalysts after consecutive runs can be observed (Figure 6).
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The one-pot process of oxidative carboxylation of olefins with carbon dioxide can be carried out
in two different ways: in a single-step approach or a two-step approach [18,19]. Both methods are
one-pot processes differing in that, in the first case, all the reactants and catalysts for the two subsequent
reactions are added at one time, in the second, after the first stage, the regents are added to carry
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out the subsequent reaction. However, in both cases, the process is carried out in one vessel without
isolating and purifying the intermediate. Therefore, the research began with determining the impact of
the reaction method on styrene carbonate yield. A solution of TBHP in decane was used as an oxidant
while molybdenyl acetylacetonate (MoO2(acac)2) was chosen for the epoxidation step. Molybdenum
complexes next to tungsten and titanium, are among the most active transition metals used as catalysts
for epoxidation using alkyl hydroperoxide as an oxidant [32]. The reaction conditions for the first step
were chosen on the basis of literature report [33] and our previous experience [34]. The second stage
was carried out under the best conditions, as detailed above.

A single-step approach for conducting the synthesis of styrene carbonate turned out to be
inappropriate for conducting a one-pot reaction using the proposed catalytic system (Table 5, entry 1).
A fairly large amount of unreacted styrene oxide in the post-reaction mixture might indicate that
when the catalyst system for the second stage was introduced at the beginning of the process it may
have been deactivated under the reaction conditions. Therefore, the catalytic system for the second
stage together with carbon dioxide were charged after the first reaction stage. This solution enabled
the obtainment of styrene carbonate with yield of 8% (Table 5, entry 2). It should be emphasized
that the second step of styrene carbonate synthesis use was conducted under solvent-free conditions
and truly catalytic amounts of immobilized ionic liquid (0.5 mol%) was required to obtain good
results. However, in a direct one-pot reaction the system was diluted because together with TBHP,
the solvent (decane) was introduced and during the reaction the by-product tert-butanol was formed.
Thus, the influence of the concentration of immobilized catalyst on the reaction course was investigated.
With an increase in the amount of catalyst increased yield of styrene carbonate (Table 5, entry 3–6).
Increasing the amount of catalyst from 5 mol% to 6 mol% resulted in a slight increase in styrene
carbonate yield from 46% to 49%. A slight catalytic activity drop was observed when the recycled
immobilized catalyst was used (Table 5, entry 7).

Table 5. Synthesis of styrene carbonate from CO2 and styrene.

Entry [mtespim]Cl/@SiO2
(mol%) ST Conversion (%) SO Yield (%) BA Yield (%) SC Yield (%)

1 1 0.5 79 29 4 1
2 2 0.5 95 5 6 8
3 2 3.0 99 3 5 22
4 2 4.0 99 8 3 35
5 2 5.0 99 5 3 46
6 2 6.0 99 6 3 49
7 3 5.0 99 5 4 43
8 4 3.0 99 1 5 16

1 Styrene, 52.0 mmol; TBHP, 52.0 mmol; [mtespim]Cl/@SiO2; MoO2(acac)2, 0.05 mol%; ZnBr2, 0.1 mol%; 100 ◦C;
5 h; 1 MPa. CO2—dosed from the beginning. 2 Stage I: styrene, 52.0 mmol; TBHP, 52.0 mmol; MoO2(acac)2, 0.05
mol%; 100 ◦C; 1 h. Stage II: [mtespim]Cl/@SiO2; ZnBr2, 0.1 mol%; 110 ◦C, 4 h, 1 MPa. CO2 dosed only in this
stage. 3 The same conditions as in 2, but in entry 7 with reused [mtespim]Cl/@SiO2. 4 The same conditions as in 2,
but in entry 8 without MoO2(acac)2.

The outcome is comparable with the results obtained for styrene carbonate synthesis in the reaction
of CO2 and styrene using TBHP as an oxidant and in the presence of immobilized catalysts.
As mentioned above, in the presence a ternary catalytic system consisting of Au/SiO2, ZnBr2 and
TBAB (80 ◦C, 1 MPa, 4 h), styrene carbonate was obtained with yield of 42% [22]. A similar catalytic
system but using Au/Fe(OH)3 allowed to obtain styrene carbonate with yield of 53%, but higher CO2

pressure and longer reaction times were required (4 MPa, 10 h) [35]. Styrene carbonate was obtained
in a higher yield of 60% using another three-component catalytic system in which a gold immobilized
on the multi-walled carbon nanotubes was the catalyst of the epoxidation stage (80 ◦C, 4 h) while
1-butyl-3-methylimidazolium bromide ([bmim]Br) along with zinc bromide catalyzed CO2 addition to
epoxide (1.2 MPa at 120 ◦C) [36]. In our previous work, we obtained styrene carbonate with a yield of
67% using of immobilized tributylammonium chloride [34]. Sun et al. used a nano-gold supported on
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basic R201 resin and after the first stage which was carried out at 80 ◦C for 3 h, and the second stage at
150 ◦C, under CO2 pressure of 4 MPa for 4h, yield of styrene reached 51% [37].

The reaction in the presence of a binary catalytic system involving only immobilized catalyst and
ZnBr2 allowed to obtain the styrene carbonate with yield of 16% (Table 5, entry 8).

3. Materials and Methods

3.1. Materials

Carbon dioxide (99.2%, from Air Liquide Polska Sp., Cracow, Poland) was used without further
purification. Bis(acetylacetonato)dioxomolybdenum(VI) (molybdenyl acetylacetonate, MoO2(acac)2),
1-methylimidazole (99%), hexadecyltrimethylammonium bromide, and tetraethoxysilane (98%) were
provided by Acros Organics (Waltham, MA, USA). Further, 1-Octyl-1H-imidazole (96%) was obtained
from AmBeed, Inc. (Arlington Hts, IL, USA). Mesostructured MSU-F (cellular foam), mesostructured
MSU-H (large pore 2D hexagonal), (3-chloropropyl)triethoxysilane (95%), MCM-41, 1-butylimidazole
(98%), anhydrous toluene (99.8%), octane (>99%), ~5.5 M solution of tert-butyl hydroperoxide (TBHP)
in decane, styrene oxide (97%), styrene (>99%), and polyethylene glycol 35 000 were purchased from
Sigma Aldrich (St. Louis, MO, USA).

3.2. Apparatus

EM60-100-HC pressure reactor (100 cm3) placed in EasyMax 102 thermostat system (Mettler-Toledo,
GmbH., Greifensee, Switzerland) was used for the reactions under pressure.

Gas chromatography analyses (GC) were performed on a Shimadzu chromatograph GC-2010
Plus (Shimadzu Corp., Kyoto, Japan) equipped with flame ionization detector (FID) and capillary
column Zebron ZB-50: 30 m × 0.25 mm × 0.25 µm (Phenomenex, Torrance, CA, USA).
GC-MS analyses were carried out using a gas chromatograph Agilent Technologies GC 7890A
(Agilent Technologies, Santa Clara, CA, USA) coupled with mass spectrometer Agilent Technologies
MS 5975C MSD, Triple-AxisDetector (Agilent Technologies, Santa Clara, CA, USA) and a capillary
column (Zebron ZB-5HT: 30 m × 250 µm × 0.25 µm).

Scanning electron microscopy was performed on Phenom Pro Desktop SEM (Thermo Fisher
Scientific, Waltham, MA, USA) equipped with EDS detector.

Nitrogen adsorption/desorption isotherms were recorded at −195.8 ◦C using a Micrometrics ASAP
2420 instrument (Micromeritics Instrument Corporation, Norcross, GA, USA). Samples were degassed at
200 ◦C. The surface area of synthesized silica support was determined using the Brunauer-Emmett-Teller
(BET) method and pore sizes by the Barret-Joyner-Halenda (BJH) method.

Elemental analyses were performed on Vario MACRO elemental analyzer (Elementar Analysesysteme
GmbH, Langenselbold, Germany).

Thermogravimetric analyses (TGA) were conducted using a Mettler-Toledo termobalance
(Mettler-Toledo, GmbH., Greifensee, Switzerland). Sample mass: 9–11 mg, corundum crucible
(70 µL), temperature range: 25–1000 ◦C, heating rate: 10 ◦C/min, gas atmosphere: nitrogen, flow rate:
80 cm3/min.

3.3. Synthetic Procedures

3.3.1. Synthesis of Silica Support

In typical procedure polyethylene glycol 35,000 (PEG, 8.67 g) was dissolved in 1M HNO3 (100 cm3).
After that, tetraethyl orthosilicate (TEOS, 82.8 cm3) was added dropwise in an ice bath and then
hexadecyltrimethylammonium bromide (CTAB, 3.8 g) was introduced. The solution was mixed left to
gel at 40 ◦C and aged for 7 days at 40 ◦C. Next, the white aclogels obtained were impregnated in a 1 M
NH4OH solution for 9 h at 90 ◦C, washed with deionized water, dried for 4 days at 60 ◦C and then
calcined at 550 ◦C for 8 h under air. The size and shape of the monoliths were determined by the size
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and the shape of the vessel used. Composition led to the formation of a macroporous, interconnected,
open network with a bimodal system of macropores of micrometer size. Apart from macropores,
the material also exhibited textural mesopores [25,26].

3.3.2. Synthesis of 1-alkyl-3-(triethosysilylpropyl) Imidazolium Chloride [atespim]Cl

An equimolar mixture of 1-alkylimidazole (freshly distilled) and (3-chloropropyl)triethoxysilane
was heated to 90–95 ◦C and stirred at 1000 rpm for 24 h under an inert gas atmosphere. Then, after
cooling the reaction mixture, the volatile substances were removed under reduced pressure. The crude
ionic liquid was washed with diethyl ether (5 × 10 cm3) and dried under vacuum. The products were
obtained as viscous liquids [24].

3.3.3. Immobilization of 1-alkyl-3-(triethosysilylpropyl) Imidazolium Chloride on Silica

Briefly, 2 g of silica, 25 cm3 of anhydrous toluene and 2.7 mmol of [atespim]Cl were introduced to
a round-bottom flask. The reaction mixture was heated at a temperature of 90 ◦C for 16–24 h under
reflux under an inert atmosphere of Ar. The mixture was then filtered and washed with methylene
chloride (4 × 25 cm3). The resulting product was extracted in a Soxhlet apparatus with CH2Cl2 for
24 h. The obtained catalyst was dried under reduced pressure [24].

3.3.4. Reaction of Styrene Oxide with CO2

Typical procedure is as follow: 0.50 mol% of immobilized catalyst, 0.13 mol of styrene oxide and
0.10 mol% of 77% aqueous solution of ZnBr2 were introduced into a pressure reactor. The reactor
was sealed, purged twice with CO2 and pressurized with CO2 to a constant pressure. The mixture
was heated to the desired temperature and stirred at 700 rpm. From this moment, the reaction was
carried out for 4 h. Afterwards, the reactor was cooled to 25 ◦C and depressurized. The catalyst was
removed by filtration and washed with 35 cm3 of ethyl acetate. The sample was analysed by GC.
Octane was used as an internal standard. Purification of styrene carbonate was achieved by column
chromatography (hexane:ethyl acetate 3:1 v/v). Styrene carbonate was obtained as a solid.

3.3.5. One-Pot Synthesis of Styrene Carbonate

Briefly, 0.052 mmol of styrene, 0.052 mmol of TBHP, 0.05 mol% of MoO2(acac)2 were charged
into the reactor. The reactor was sealed and heated to 100 ◦C. The reaction was carried out for 1 h.
Then the reactor was cooled to 25 ◦C and the appropriate amount of immobilized catalyst and ZnBr2

were added. Then, the reaction was carried out according to the described-above procedure.

3.3.6. Recycling of the Immobilized Catalyst

After completion of the reaction, the immobilized catalyst was filtered off and washed with
methylene chloride (10 mL) and ethyl acetate (3 × 10 mL). Then, the catalyst was dried under vacuum
on a Schlenk line and used in the next reaction cycle. The fresh 77% aqueous solution zinc bromide
was added to each run.

4. Conclusions

Mesoporous silicas were used as supports for the immobilization of the ionic liquids.
These catalysts have proven to be active in the synthesis reaction of styrene carbonate with CO2. The most
important feature of silica carriers affecting a catalyst activity was the pore size. Styrene carbonate
was obtained in high yield in the reaction of carbon dioxide and styrene oxide (second step of one-pot
reaction of synthesis of cyclic carbonates) and in moderate yield in direct synthesis from CO2 and
styrene under mild reaction conditions. The immobilized catalyst retained its activity and stability
in two cycles, but a loss of catalytic activity in the fourth cycle was observed most likely due to
the partial release of the catalyst and the deposition of side-products on the catalyst.
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