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Abstract: Electrochemical regeneration suffers from low regeneration efficiency due to side reactions
like oxygen evolution, as well as oxidation of the adsorbent. In this study, electrically conducting
nanocomposites, including graphene/SnO2 (G/SnO2) and graphene/Sb-SnO2 (G/Sb-SnO2) were
successfully synthesized and characterized using nitrogen adsorption, scanning electron microscopy,
transmission electron microscopy, and Raman spectroscopy. Thereafter, the adsorption and
electrochemical regeneration performance of the nanocomposites were tested using methylene
blue as a model contaminant. Compared to bare graphene, the adsorption capacity of the new
composites was ≥40% higher, with similar isotherm behavior. The adsorption capacity of G/SnO2

and G/Sb-SnO2 were effectively regenerated in both NaCl and Na2SO4 electrolytes, requiring as
little charge as 21 C mg−1 of adsorbate for complete regeneration, compared to >35 C mg−1 for bare
graphene. Consecutive loading and anodic electrochemical regeneration cycles of the nanocomposites
were carried out in both NaCl and Na2SO4 electrolytes without loss of the nanocomposite, attaining
high regeneration efficiencies (ca. 100%).
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1. Introduction

Adsorption is a promising method for the removal of soluble and insoluble organics from
wastewater effluents due to ease of operation, a wide range of applications, and a high level of purity
of the treated water [1]. However, handling of the loaded adsorbent is a challenge because of factors
that constrain disposal, including the toxicity of the adsorbate and the high cost of replacement
adsorbent [2,3]. Electrochemical regeneration has shown potential for effectively recovering the
adsorptive capacity of the loaded adsorbents [4–7].

Early studies of electrochemical regeneration with an activated carbon adsorbent showed that
although it has a high adsorptive capacity, it requires long regeneration times, resulting in high
energy consumption. This is mainly due to the porous surface and low conductivity of the activated
carbon [8–10]. Brown et al. [11–13] studied an alternative material, graphite intercalation compound
(GIC), which is nonporous and has high electrical conductivity. This material demonstrated high
regeneration efficiency but low adsorptive capacity. In the previous study [14], reduced graphene
oxide (rGO)/magnetite was chosen as an adsorbent since it has a nonporous surface, high surface
area, and high electrical conductivity. The findings revealed that rGO/magnetite has satisfactory
adsorptive capacity which can be completely regenerated. However, the electrochemical regeneration
process caused oxidation and corrosion of the adsorbent. Similar adsorbent oxidation was also seen by
Nkrumah-Amoako et al. [15] for a GIC adsorbent. Graphitic materials display behaviors of both active
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and inactive electrodes, but the dominant mechanism for organic oxidation is believed to be direct
electron transfer [16]. This is likely the main reason for oxidation of the graphene as well.

It is essential to tackle the problem of adsorbent oxidation, and this can be done by changing the
dominant mechanism from direct electron transfer to mediated degradation using electro-generated
hydroxyl radicals. One approach would be to coat the surface of the carbon adsorbent, i.e., graphene,
with materials that behave as inactive anodes, such as boron-doped diamond (BDD), SnO2, Sb-SnO2,
or PbO2. Due to the high overpotential of the inactive materials for oxygen evolution, they are
considered good candidates for organic oxidation by means of reactive oxygen species such as
hydroxyl radicals. Extensive research has been conducted on inactive materials to increase the rate of
reactive oxygen species production. Ozone production on Sb-SnO2/Ti, hydroxyl radical generation on
fluoride-doped lead oxide, hydrogen peroxide generation on niobium lead oxide, and hydroxyl radical
generation on BDD and TiO2/Ti are several good examples [17–23]. These materials increase the oxygen
evolution overpotential, minimizing this side reaction, thus increasing the current efficiency for organic
oxidation [21,24,25]. Owing to its large band gap of 5.45 eV, BDD is the best inactive, corrosion-resistant
material [26]; however, due to its high cost, BDD cannot be effectively used for adsorption and
electrochemical regeneration. PbO2 also has a high overpotential for oxygen evolution [27] as well as a
much lower cost than BDD, but leaching of lead from the PbO2 into the solution can contaminate the
treated water [28].

In the current study, graphene/SnO2 (G/SnO2) and graphene/Sb-SnO2 (G/Sb-SnO2) nanocomposites
were prepared, characterized, and utilized in an adsorption and electrochemical regeneration process.
Our previous study on electrochemical regeneration of graphene TiO2 adsorbents materials revealed
that the addition of the TiO2 nanoparticles to the surface of the graphene increases catalytic activity,
reducing the required time for complete regeneration, and also protects the graphene surface from
corrosion [29]. However, the prepared adsorbents did not demonstrate good adsorptive capacity due
to loss of amorphous carbon during the calcination, required for synthesis of the TiO2 nanocomposite.

The goal of the present study was to prepare new materials with higher adsorptive capacity and
comparable catalytic activity to the graphene/TiO2 nanocomposite which can be applied in successive
adsorption electrochemical regeneration process. In addition to the methylene blue (MB) adsorption
and electrochemical regeneration behavior of these adsorbents, their electrochemical properties were
also investigated. The effect of the nanomaterial loading on the nanocomposites and the electrolyte
types on the electrochemical regeneration and the durability of the new materials was also assessed.

2. Result and Discussion

2.1. Raman Spectra

The surface chemical composition of the graphene and composite samples was characterized by
Raman spectroscopy, as shown in Figure 1. The peaks observed at 1358 and 1580 cm−1 can be attributed
to the D band and G band of the graphene, respectively [30]. The peak at a Raman shift of 572 cm−1

can be assigned to the cassiterite SnO2 nanoparticles; this peak is only present for nanometer-scale
SnO2 particles [31,32]. The four broad Raman peaks at 458, 566, 720, and 632 cm−1 can be attributed to
SnO2 nanoparticles doped with antimony. The first three peaks are the surface vibration modes [33],
and the last one is the vibration in the plane perpendicular to the c-axis [34]. Thus, the Raman spectra
confirm the presence of SnO2 and Sb-SnO2 on the nanocomposite materials.

2.2. SEM and TEM

The morphology of the G/SnO2 and G/Sb-SnO2 nanocomposites were observed using TEM and
SEM (Figures 2 and 3). A comparison between the SEM image of bare graphene, G/SnO2, and G/Sb-SnO2

reveals that SnO2 nanoparticles have adhered to the surface of the graphene; however, due to the SEM
limitations, it is not possible to make more quantitative comments on the nanoparticle distribution. The
TEM images, Figure 3b,d show that the average sizes of SnO2 and Sb-SnO2 nanoparticles are around
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5 and 30 nm, respectively. It can also be inferred that the nanoparticles have not been distributed
uniformly on the surface; they tend to aggregate due to their high surface energy [35].
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Figure 3. (a) Low magnification TEM image of the G/SnO2 nanocomposite (b) High-magnification
TEM image of the G/SnO2 nanocomposite. (c) Low-magnification TEM image of the G/Sb-SnO2
nanocomposite. (d) High-magnification TEM image of the G/Sb-SnO2 nanocomposite.

2.3. Adsorption Study

Adsorption isotherm studies were carried out to find the adsorptive capacity of the prepared
samples and to determine the adsorption range to be used for adsorbent regeneration studies. The
results obtained are depicted in Figure 4. Table 1 shows the calculated surface area for each sample
using the BET method. It can be seen that G/SnO2 and G/Sb-SnO2 have higher adsorptive capacities
than the bare graphene. As the surface area of the graphene and composite materials are all similar,
we can conclude that the surface area is not responsible for higher uptake capacity of the composite
adsorbents. The difference in the adsorptive capacity can be either due to contribution of the metal
oxide in adsorption or the better dispersion of the nanocomposite in the water (i.e., agglomeration of
the bare graphene particles may lead to a loss of adsorptive capacity).



Catalysts 2020, 10, 263 5 of 14

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 13 

 

Freundlich isotherm:         𝑞𝑒 = 𝐾𝑓𝐶𝑒
𝑛 (2) 

where qe is the loading of adsorbate on the adsorbent in equilibrium with a solution concentration of 

Ce, KL and b are the Langmuir isotherm constants, and KF and n are the Freundlich isotherm constants.  

Tables 2–4 show the isotherm constants and the determination coefficient (R2) obtained by 

nonlinear regression for each adsorbent. By comparing the value of R2 for each adsorbent, it can be 

observed that Langmuir isotherm provides a better fit to the experimental data than the Freundlich 

isotherm model. Separation factor (RL) [36] (Equation (3)) and the magnitude of n [37] are important 

parameters in the Langmuir and Freundlich isotherm as they can indicate whether the adsorption is 

favorable or not. Area value of RL or n of less than one indicates favorable adsorption. 

𝑅𝐿 =
1

1 + 𝑏𝐶0
                                                                            (3) 

It can be seen from the RL values in Table 3 that the adsorption process of MB on graphene 

nanocomposites is favorable at all concentrations, particularly at low concentrations. The values of n 

obtained for the Freundlich isotherm are consistent with the with RL values. 

The surface area of the nanocomposite can be estimated using MB. As the adsorption of MB on 

the nanocomposites follows the Langmuir isotherm, it can be concluded that a monolayer of MB has 

been adsorbed on the surface. It has been reported that one molecule of MB can occupy 130 Å 2 on the 

surface of the adsorbent [38,39]. Table 1 shows the surface area for each adsorbent. It can be seen 

surface area calculated using BET and MB are more or less the same. 

 

Figure 4. Equilibrium adsorption of methylene blue (MB) on bare graphene, G/SnO2 7, G/SnO2 13, 

G/Sb-SnO2 7, and G/Sb-SnO2 13. 

  

Figure 4. Equilibrium adsorption of methylene blue (MB) on bare graphene, G/SnO2 7, G/SnO2 13,
G/Sb-SnO2 7, and G/Sb-SnO2 13.

Table 1. Specific surface area of the graphene loaded with metal oxide.

Sample Bare Graphene G/SnO2 7 G/SnO2 13 G/Sb-SnO2 7 G/Sb-SnO2 13

Surface area (BET)
m2 g−1 70 84 89 72 69

Surface area (MB)
m2 g−1 62 88 98 85 85

The Langmuir and Freundlich adsorption isotherm models were fitted to the experimental data
for MB adsorption on bare graphene, G/SnO2 7, G/SnO2 13, G/Sb-SnO2 7, and G/Sb-SnO2 13. The
Langmuir and Freundlich isotherms were used to evaluate the equilibrium conditions, and they can be
expressed by the mathematical Equations (1) and (2), respectively.

Langmuir isotherm qe =
KlbCe

1 + bCe
(1)

Freundlich isotherm : qe = K f Ce
n (2)

where qe is the loading of adsorbate on the adsorbent in equilibrium with a solution concentration of
Ce, KL and b are the Langmuir isotherm constants, and KF and n are the Freundlich isotherm constants.

Tables 2–4 show the isotherm constants and the determination coefficient (R2) obtained by
nonlinear regression for each adsorbent. By comparing the value of R2 for each adsorbent, it can be
observed that Langmuir isotherm provides a better fit to the experimental data than the Freundlich
isotherm model. Separation factor (RL) [36] (Equation (3)) and the magnitude of n [37] are important
parameters in the Langmuir and Freundlich isotherm as they can indicate whether the adsorption is
favorable or not. Area value of RL or n of less than one indicates favorable adsorption.

RL =
1

1 + bC0
(3)
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Table 2. Langmuir constants for adsorption of MB on Bare graphene, G/SnO2 7, G/SnO2 13, G/Sb-SnO2

7, and G/Sb-SnO2 13.

Langmuir Parameters: qe=
KbCe
1+bCe

Sample Maximum Adsorption
(mg g−1)

K b R2 RL = 1
1+bC0

Bare graphene 25 24.3 2.28 0.92 0.017
G/SnO2 7 36 34.53 11.92 0.97 0.003

G/SnO2 13 40 37.02 8.16 0.94 0.005
G/Sb-SnO2 7 35 33.82 8.87 0.97 0.005
G/Sb-SnO2 13 35 33.47 5.19 0.94 0.008

Table 3. Dimensionless Langmuir constants (RL) for adsorption of MB on bare graphene at low and
high concentrations for different adsorbents.

RL = 1
1+bC0

at Two Different Initial Concentrations

10 50
Bare graphene 0.04 0.009

G/ SnO2 7 0.008 0.002
G/ SnO2 13 0.012 0.002

G/ Sb-SnO2 7 0.011 0.002
G/ Sb-SnO2 13 0.019 0.004

Table 4. Freundlich constants for adsorption of MB on bare graphene, G/SnO2 7, G/SnO2 13, G/Sb-SnO2

7, and G/Sb-SnO2 13.

Freundlich Parameters: qe=KCn
e

Maximum Adsorption
(mg g−1)

K n R2

Bare graphene 25 14.90 0.17 0.92
G/SnO2 7 36 26.44 0.09 0.83

G/ SnO2 13 40 26.63 0.12 0.89
G/Sb-SnO2 7 35 25.01 0.11 0.88

G/ Sb-SnO2 13 35 23.39 0.13 0.91

It can be seen from the RL values in Table 3 that the adsorption process of MB on graphene
nanocomposites is favorable at all concentrations, particularly at low concentrations. The values of n
obtained for the Freundlich isotherm are consistent with the with RL values.

The surface area of the nanocomposite can be estimated using MB. As the adsorption of MB on
the nanocomposites follows the Langmuir isotherm, it can be concluded that a monolayer of MB has
been adsorbed on the surface. It has been reported that one molecule of MB can occupy 130 Å2 on
the surface of the adsorbent [38,39]. Table 1 shows the surface area for each adsorbent. It can be seen
surface area calculated using BET and MB are more or less the same.

2.4. Electrochemical Regeneration

Figure 5a,b and Figure S1a,b demonstrate the evolution of the regeneration efficiency with the
charge passed through the electrolytic cell using NaCl and Na2SO4 electrolytes. For all of the adsorbents
in both electrolytes, the regeneration efficiency shows a steep increase as the charge was increased
from 0 to 1000 C g−1, and then it slowly increases until it reaches complete regeneration. The findings
reveal that the adsorptive capacity of all of the adsorbents can be completely restored.
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13, and G/Sb-SnO2 13. (a) NaCl electrolyte and (b) Na2SO4 electrolyte (current density of 10 mA cm−2).

In previous studies, it has been reported that the utilization of NaCl instead of Na2SO4 as the
electrolyte in the regeneration cell leads to higher regeneration efficiency [8,40]. However, the results
of this study suggest that the choice of electrolyte has minimal impact on the regeneration efficiency.
Moreover, with sodium sulfate as the electrolyte, if more charge is passed through the cell after complete
regeneration of the spent adsorbents, the adsorptive capacity increases less compared to regeneration
with a sodium chloride electrolyte. Previous studies have indicated that electrochemical regeneration
efficiencies of greater than 100% are associated with oxidation of graphite adsorbent surfaces [12,15].
Thus, the previous studies suggest that with sodium sulfate, less oxidation of the adsorbent’s surface
occurs, allowing it to remain almost intact. A secondary benefit of using the sodium sulfate electrolyte
is that it can hinder the formation of toxic chlorinated hydrocarbons [11].

Previous work has shown that complete regeneration of graphene TiO2 nanocomposite loaded
with MB dye could be achieved by passing a charge of 21 C mg−1 through the cell [29]. The two
main problems associated with this nanocomposite compared to bare graphene were lower adsorptive
capacity and a higher cell voltage required for electrochemical regeneration. As explained previously,
G/SnO2 and G/Sb-SnO2 showed higher adsorptive capacity compared to bare graphene.

Table 5 shows the specific charge required for complete regeneration of the loaded adsorbents.
The prepared nanocomposites had a required charge for complete oxidation as low as 21 C mg−1

for G/SnO2 using NaCl as an electrolyte and for G/Sb-SnO2 using Na2SO4 as an electrolyte, which is
comparable to the graphene TiO2 nanocomposite results previously reported. Energy consumption for
100% regeneration of the loaded adsorbents is calculated by multiplying the required charge by the cell
voltage. As shown in Table 5, the G/SnO2 and G/Sb-SnO2 nanocomposites demonstrate lower charge
requirements for complete regeneration than bare graphene using NaCl or Na2SO4 as the electrolyte,
with similar cell voltages (≈2.6 V). Thus the G/SnO2 and G/Sb-SnO2 adsorbents require less energy for
complete regeneration. These results confirm the higher electrocatalytic activity of the G/SnO2 and
G/Sb-SnO2 nanocomposites for regeneration compared to bare graphene.

Table 5. Specific charge required for 100% regeneration efficiency of bare graphene, G/SnO2 7, G/SnO2

13, G/Sb-SnO2 7, and G/Sb-SnO2 13 adsorbents loaded with MB, (regeneration at 10 mA cm−2).

Adsorbent: Bare Graphene G/ SnO2 7 G/ SnO2 13 G/Sb-SnO2 7 G/Sb-SnO2 13

Charge passed
NaCl (C mg−1) 39 21 21 27 27

Charge passed
Na2SO4 (C mg−1) 35 23 23 21 21

Cell Voltage (V) ≈2.6 ≈2.6 ≈2.6 ≈2.6 ≈2.6
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2.5. Adsorption/Regeneration Cycles

Multiple loading and electrochemical regeneration cycles were carried out to investigate the
reusability of the G/SnO2 and G/Sb-SnO2 nanocomposites. The adsorbents were utilized to adsorb
MB and regenerated for five successive cycles using either 2 wt. % NaCl or Na2SO4 as electrolytes
and 10 mA cm−2 current density. For each adsorbent, the required electrochemical treatment time for
100% regeneration was estimated based on the data plotted in Figure 5a,b and Figure S1a,b Table 6
shows the mass of adsorbent recovered after each cycle for the five different adsorbent materials. For
the G/SnO2 and G/Sb-SnO2 nanocomposites, only around 10% of the mass of adsorbent was lost over
five cycles of adsorption and regeneration. The loss was within 1% to 2% of the loss observed from a
control experiment to determine the physical losses associated with the recovery of the adsorbent after
filtration. In contrast, with the bare graphene adsorbent, around 30% of the mass was lost over the five
cycles of adsorption and regeneration, confirming that significant corrosive oxidation of the graphene
was occurring during regeneration.

Table 6. Mass of the adsorbent recovered after five consecutive cycles of adsorption and regeneration.

Sample G/SnO2 7 G/SnO2 13 G/Sb-SnO2 7 G/Sb-SnO2 13 Bare Graphene

Mass 0.91 0.88 0.89 0.90 0.70

As shown in Figure 6a,b, the electrochemical oxidation resulted in no reduction of regeneration
efficiency, even after five cycles. Figure 6a,b also shows that the change in regeneration efficiency of
the bare graphene was much more than the G/SnO2 and G/Sb-SnO2 nanocomposites. This increase
in the regeneration efficiency was due to the oxidation of the bare graphene during electrochemical
regeneration, which led to the creation of more adsorption sites, either by increasing the surface area
or the number of functional groups [15,41]. The adsorptive capacity and consequently regeneration
efficiency of the nanocomposites changed less than for bare graphene, which suggests that the addition
of the SnO2 and Sb-SnO2 provides some protection of the surface of the graphene from oxidation.
By comparing Figure 6a,b, it is evident that the regeneration efficiency of the adsorbents in sodium
sulfate increased less than that observed with sodium chloride. This result is consistent with the charge
loading results (Figure 5a,b, and Figure S1a,b and confirms that there is a greater tendency for surface
oxidation of the graphene using NaCl electrolyte.
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Figure 6. Regeneration efficiency for a series of adsorption and electrochemical regeneration cycles of
MB adsorption on bare graphene, G/SnO2 7, G/SnO2 13, G/Sb-SnO2 7, and G/Sb-SnO2 13 nanocomposites
in (a) NaCl electrolyte and (b) Na2SO4 electrolyte. Adsorption was carried out under conditions that
give close to the maximum loading of MB on the adsorbent. Regeneration of the bare graphene, G/SnO2

7, G/SnO2 13, G/Sb-SnO2 7, and G/Sb-SnO2 13 adsorbents were carried out for 14, 10, 10, 12, and 12 min,
respectively, at a current density of 10 mA cm−2.
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A common major problem associated with using NaCl in an electrochemical water treatment
process is the formation of chlorinated compounds, which may be more toxic than the primary
pollutants [42]. Thus, in addition to reduced oxidation of the graphene, sodium sulfate can
be a lower-risk alternative to sodium chloride for regeneration of G/SnO2 and G/Sb-SnO2

nanocomposite adsorbents.

2.6. Electrochemical Characterization of the Adsorbents

2.6.1. Linear Sweep Voltammetry

In order to assess the electrochemical characteristics of the nanocomposites, linear sweep
voltammetry (LSV) was carried out. Figure 7a shows the results for bare graphene, G/SnO2, and
G/Sb-SnO2 nanocomposites, in which the current flow was measured as the applied potential was
increased. The experiments were performed in 0.5 M Na2SO4 at a scan rate of 100 mVs−1, with
Ag/AgCl and platinum wire used as reference and counter electrodes respectively. Onset potentials of
1.65, 1.87, 1.87, 1.9, and 1.87 V were measured for bare graphene, G/SnO2 7, G/SnO2 13, G/Sb-SnO2

7, and G/Sb-SnO2 13 adsorbents, respectively, for the oxygen evolution reaction. The delay in the
onset potential indicates the suppression of this side reaction and increasing the charge efficiency for
generating reactive oxygen species. Such a trend has also been observed by different researchers for
SnO2 and Sb-SnO2 electrocatalyst materials [21,25,43,44].
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Figure 7. (a) Linear sweep voltammograms of (a) bare graphene, (b) G/SnO2 7, (c) G/SnO2 3, (d)
G/Sb-SnO2 7, and (e) G/Sb-SnO2 13. Experiments were conducted using 0.5 mol L−1 sodium sulfate at a
scan rate of 100 mV S−1 (b) Cyclic voltammetry of (a) bare graphene, (b) G/SnO2 7, (c) G/SnO2 13, (d)
G/Sb-SnO2 7, and (e) G/Sb-SnO2 13 at a scan rate of 10 mV S−1 using a solution containing 25 ppm MB
and 0.5 mol L−1 sodium sulphate.

2.6.2. Cyclic Voltammetry

Figure 7b shows the cyclic voltammogram of the bare graphene, G/SnO2, and G/Sb-SnO2

nanocomposites in 0.5 mol L−1 Na2SO4 solution containing 25 mg L−1 of MB. The current density
was normalized by the graphene loading for all of the adsorbents. Unlike the bare graphene, G/SnO2

and G/Sb-SnO2 demonstrate a well-defined pair of redox peaks for MB oxidation and reduction. In
addition, the peak separation, ∆Ep, was smaller for G/SnO2 and G/Sb-SnO2 nanocomposites relative
to bare graphene, demonstrating that the electron transfer was faster for these nanocomposites. It
can be seen that the SnO2 and Sb-SnO2 nanoparticles-coated graphene show a higher oxidation peak
than that of bare graphene. This implies that the addition of SnO2 and Sb-SnO2 nanoparticles to the
graphene increases the electrocatalytic activity, apparently due to synergic effects of the presence of
both an n-type semiconductor with a large band gap and graphene [45,46]. It can also be seen that by
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increasing the nanoparticles loading from 7 to 13 wt. %, the current density increased for both G/SnO2

and G/Sb-SnO2 nanocomposites. Furthermore, at the same loading of the nanoparticles, G/Sb-SnO2

shows better catalytic activity compared to G/SnO2 nanocomposites, as the Sb-SnO2 acts similar to
a metal electrocatalyst and exhibits a high overpotential of oxygen evolution, which can increase its
electrocatalytic activity [47–49].

3. Experimental

Nanocomposite preparation: a known volume of as-received sol of SnO2 (15 wt. %) or Sb-SnO2

(20 wt. %) (Nyacol Inc., Ashland, MA, USA) was added to 150 mL of a suspension of graphene (GNPs
25 M, XG sciences Inc., Lansing, MI, USA) in DI water (containing 1 g L−1 of graphene) and mixed
for 24 h. The mixture was dried at 70 ◦C for 12 h. In this paper, the nanocomposites are named with
respect to their composition: thus G/SnO2 7 corresponds to a graphene/SnO2 composite with a loading
of 7 wt. % SnO2. Similarly, G/SnO2 13 has a loading of 13 wt. % SnO2, and G/Sb-SnO2 7 and G/Sb-SnO2

13 have loadings of 7 wt. % and 13 wt. % Sb-SnO2, respectively.
Characterization: The morphologies of the prepared nanocomposites were characterized using

scanning electron microscopy (SEM) on a Zeiss Supra55 field-emission SEM (Carl Zeiss Microscopy
LLC, White Plains, NY, USA) and transmission electron microscopy (TEM) using a Tecnai TF20 G2
FEG-TEM (FEI, Hillsboro, OR, USA) with a 200−kV acceleration voltage. A Witec alpha 300 R Confocal
Raman Microscope (Witec GmbH, Ulm, Germany) was utilized to obtain Raman spectra using a 532 nm
laser. The surface area was measured with N2 physisorption (TriStar 3000, Micromeritics Instrument
Corp., Norcross, GA, USA) at −196 ◦C. Before measurement, all samples were degassed at 150 ◦C for
12 h. The specific surface area was calculated using the Brunauer¬–Emmett–Teller (BET) method in
the relative pressure (P/Po) range of 0.01 e 0.99. The concentration of MB in the synthetic wastewater
was measured using UV-Visible absorption spectroscopy (UV-2600, Shimadzu, Columbia, MD, USA)
at a wavelength of 664 nm [50].

Adsorption study: to obtain the adsorption isotherm, experiments were carried out via a ‘bottle
point’ method. Briefly, 0.1 g of adsorbent was mixed for 30 minutes with 150 mL of the MB solution
with different concentrations at room temperature. Synthetic wastewater was prepared using deionized
water and MB only. The treated water was filtered, and the filtrate concentration was measured using
UV-Visible spectrophotometer.

Electrochemical regeneration: an electrolytic cell was used to regenerate the spent adsorbents
using a graphite plate as the anode and a stainless-steel plate as the cathode, as described in an earlier
study [14]. Sodium chloride and sodium sulfate (VWR, Radnor, PA, USA) were used as electrolytes. A
constant current density of 10 mA cm−2 was applied to the cell using a Metrohm Autolab PGSTAT
potentiostat (Metrohm AG, Herisaum, Switzerland). The regeneration efficiency was calculated as the
ratio of the adsorptive capacity after regeneration to the initial adsorptive capacity, each measured
under the same adsorption conditions [51,52].

Electrochemical properties: electrochemical measurements, including cyclic voltammetry (CV)
and linear sweep voltammetry (LSV) were performed using the Autolab PGSTAT potentiostat. A
volume of 100 mL of a 0.5 mol L−1 Na2SO4 containing 25 ppm MB (VWR, Radnor, PA, USA) was used
as an electrolyte. Modified glassy carbon with nanocomposites, Ag/AgCl, and platinum wire were
used as working, reference, and counter electrodes, respectively. The modified glassy carbon was
prepared by drop-casting a suspension of the nanocomposites (1 mg of adsorbent in 1 mL of Nafion
solution, from IonPower, New Castle, DE, USA, with a Nafion-to-adsorbent mass ratio of ~0.1) on a
glassy carbon electrode and drying at 70 ◦C. CV was carried out in a potential range of −1.0 V to +1.0
V at a scanning rate of 10 mV S−1.

4. Conclusions

This study reported the application of G/SnO2 and G/Sb-SnO2 nanocomposites in an adsorption
and electrochemical regeneration process, using both the high conductivity of the graphene and the
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large band gap of the tin oxide to improve regeneration efficiency. The adsorptive capacity obtained
for the nanocomposites was ≥35 mg g−1, which is approximately 1.4- and 1.75-fold higher than the
bare graphene and previously reported graphene titanium oxide [29], respectively.

All the prepared nanocomposites showed the ability to attain 100% regeneration efficiency in
both NaCl and Na2SO4 electrolytes. With the assistance of SnO2 and Sb-SnO2, the charge efficiency
of the process was significantly improved. The results indicate that the required charge passed for
complete oxidation of the MB decreased by 50% and 30% for G/SnO2 and G/Sb-SnO2 in an NaCl
electrolyte and 35% and 40% for G/SnO2 and G/Sb-SnO2 in an Na2SO4 electrolyte. The reason could be
the higher oxygen evolution onset potential along with the higher activity of the SnO2 and Sb-SnO2.
Although the cyclic voltammetry results suggested that G/Sb-SnO2 has higher catalytic activity than
G/SnO2, the regeneration results show similar charge requirements for complete regeneration for
both G/SnO2 and G/Sb-SnO2 nanocomposites. The higher catalytic activity of the Sb-SnO2-modified
graphene observed is consistent with previous studies that have demonstrated the suitability of this
for electrocatalysis for advanced oxidation combined with a high oxygen overpotential [46,47,50]. An
advantage of G/SnO2 and G/Sb-SnO2 over TiO2/graphene nanocomposites is that they have less of an
impact on the electrical conductivity of the graphene, minimizing the ohmic losses during regeneration,
reducing the energy required.

In addition to the nanocomposites having better performance if Na2SO4 is used as the regeneration
electrolyte, using a chloride-free electrolyte reduces the risk of creating toxic breakdown products.
This makes sodium sulfate a good electrolyte substitute for sodium chloride.

The possibility of formation of breakdown products that may be released into the treated water
was not investigated in this study, and further work is needed to explore this aspect. In addition, the
effect of the multiple cycles of regeneration on the structure and surface properties of the nanocomposite
adsorbent and the lifetime of the adsorbent should also be investigated.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/2/263/s1,
Figure S1. Effect of charge passed on regeneration efficiency of MB adsorption on bare graphene, G/SnO2 7 and
G/Sb-SnO2 7, and (a) NaCl electrolyte and (b) Na2SO4 electrolyte (current density of 10 mA cm2).
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