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Abstract: Owing to their unique physicochemical properties and comparable size to biomacromolecules,
functional nanostructures have served as powerful supports to construct enzyme-nanostructure
biocatalysts (nanobiocatalysts). Of particular importance, recent years have witnessed the
development of novel nanobiocatalysts with remarkably increased enzyme activities. This review
provides a comprehensive description of recent advances in the field of nanobiocatalysts, with
systematic elaboration of the underlying mechanisms of activity enhancement, including metal ion
activation, electron transfer, morphology effects, mass transfer limitations, and conformation changes.
The nanobiocatalysts highlighted here are expected to provide an insight into enzyme–nanostructure
interaction, and provide a guideline for future design of high-efficiency nanobiocatalysts in both
fundamental research and practical applications.
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1. Introduction

The pursuing of efficient supports to improve enzyme performance has been one of the most
important directions in biotechnology since the first example of enzyme immobilization in 1916 [1–3].
The rapid growth in nanotechnology offers a wealth of opportunities for the successful combination
of enzymes with various nanostructured materials, namely enzyme–nanostructure biocatalysts
(nanobiocatalysts) [4–9]. In contrast to conventional bulk supports, nanostructured supports possess
plenty of advantages, such as large specific surface area, reduced mass transfer limitation, ease of surface
modifications, unique geometry and size/shape-dependent characteristics. Given these aforementioned
advantages, nanobiocatalysts have shown improved stability and recyclability as well as reusability
compared to free enzyme. Although immobilization is usually associated with the distortions in the
enzyme structure and a decrease in enzyme activity due to the support effect and immobilization
methods, nanobiocatalysts have shown a broad spectrum of applications in environmental remediation,
biosensing, biomedicine, and industrial biocatalysis [8,10,11].

To attain the high catalytic activity required for nanobiocatalysts in many applications, considerable
efforts have been devoted to implementing favorable interactions between enzymes and the
nanostructured supports [3,10–13]. Nanobiocatalysts with increased enzyme activity can be obtained
via either covalent binding, adsorption, entrapment, or encapsulation [5,6,14,15]. The structure of
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nanoscale supports, such as nanoparticles, nanowires, microspheres, metal-organic frameworks, and
nanoflowers, has also drawn extensive attention in recent years [5,16–22]. A great deal of effort has
also been made to design nanostructured supports with a variety of components including noble
metal (e.g., Au) [23,24], metal oxides (e.g., Cu2O, Fe3O4, SiO2, Ti8O15, alumina) [16,25–33], polymer
(e.g., Cu2+/PAA/PPEGA matrix, aldehyde-derived Pluronic polymer, polycaprolactone) [34–36],
metal-organic frameworks (e.g., zeolitic imidazolate framework) [37–39], carbon based (e.g., carbon
dots, carbon nanotubes) [40–44], and complex compounds (e.g., Cu3(PO4)2·3H2O, Ca3(PO4)2,
Co3(PO4)2·8H2O, Mn3(PO4)2, Ca8H2(PO4)6, Cu4(OH)6)SO4, CaHPO4, Zn3(PO4)2, Mg-Al layered
double hydroxide, CdSe/ZnS quantum dots) [17,45–59]. These representative supports, which possess
unique chemical and physical properties, such as controllable release of ion activator and synergic
catalysts and response to external stimuli, are able to regulate the enzyme-support interaction and
eventually lead to an unprecedented enhancement in immobilized enzyme activity [7,60,61].

Overall, recent years have witnessed great success in the interactions between artificial
nanostructured supports and natural enzymes for enhanced activity. This review will focus on
recent advances in this field in the past 10 years, with an emphasis on various mechanisms behind
the boosted catalytic activities, including reduced mass transfer limitation, interfacial ion activation,
local heating effect, synergistic effects, conformational changes, substrate channeling and so on.
A better understanding of the relationship between the characteristics of the nanostructured supports
and the enhanced activities of nanobiocatalysts, may provide new insights in designing efficient
nanobiocatalysts for various applications.

2. Mechanisms behind Enhanced Activities of Nanobiocatalysts

An overview of recently reported nanobiocatalysts with increased activities is listed in Table 1.
Among these, the activity enhancement mechanism is attributed to a favorable interaction between
the enzyme and the nanostructured support, which can be roughly categorized into the following
strategies: metal ion activation, morphological effects, temperature effects, enhanced electron transfer,
conformational modulation, and multi-enzyme cascade reaction (Figure 1). Representative work on
each aspect will be discussed here.
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Table 1. Recent nanobiocatalysts with increased activities, constructed by various nanostructure
supports and enzymes.

Enzymes Supports
Increased
Activities

(Folds)
Ref.

Laccase Cu3(PO4)2 nanoflower 6.50 [48]
Horseradish peroxidise Cu3(PO4)2 nanoflower 5.06 [62]

Laccase Cu3(PO4)2 nanoflower 1.50 [49]
Lipase Polycaprolactone nanofiber 14.00 [36]
Laccase Au nanoparticle 1.91 [23]
Laccase Carbon dots 1.92 [41]
Laccase Cu2+/PAA/PPEGA 4.47 [34]
Laccase Single-walled carbon nanotube 6.00 [42]
Laccase Cu3(PO4)2 hybrid microsphere 3.60 [50]
Laccase Membrane/nanoflower 2.00 [63]
Laccase Mesoporous silica nanoparticle 1.20 [64]
Laccase Cu2O nanoparticle 4.00 [25]

α-amylase CaHPO4 nanoflower 37.5 [17]
β-galactosidase Mg-Al layered double hydroxide 30.00 [58]
α-chymotrypsin Ca3(PO4)2 nanoflower 2.66 [52]

Horseradish peroxidase,
Glucose oxidase Cu3(PO4)2·3H2O nanocrystal 1.40

3.10 [65]

Cytochrome c ZIF-8 metal-organic framework 10.00 [37]
Lipase,

Cytochrome c Pluronic polymer 67.00,
670.0 [35]

L-2-HADST dehalogenase Fe3O4 nanoparticles/hydrogel 2.00 [26]
Lipase Cu3(PO4)2 nanoflower 4.60 [66]

Organophosphorus hydrolase Co3(PO4)2·8H2O nanocrystal 3.00 [53]
Amylase,
Cellulase,

Lipase
Ti8O15 nanoparticle

13.00,
5.00,
12.00

[32]

Glucose oxidase CdSe/ZnS quantum dot 2.00 [59]

Carbonic anhydrase Cu3(PO4)2 nanoflower,
Ca8H2(PO4)6 nanoflower

2.86,
1.49 [54]

D-psicose 3-epimerase Co3(PO4)2 nanoflower 7.20 [67]

Lipase Carbon nanotube,
Cu3(PO4)2 nanoflower

68.00,
51.00 [40]

Laccase Cu2O nanowire mesocystal 10.00 [16]
Laccase Cu(OH)2 nanocage 18.00 [68]

β-galactosidase Fe3O4 nanoring 1.80 [27]
Lipase Polyacrylamide nanogel 2.00 [69]
Lipase Pluronic polymer 11.00 [70]
Lipase siliceous mesocellular foam 25.00 [71]

Horseradish peroxidase DNA scaffold >3.00 [72]
Horseradish peroxidase Magnetic nanoparticle 10.00 [28]

Cytochrome c Copper hydroxysulfate 143.00 [55]

Laccase Fe3O4-NH2-PEI
Fe3O4-NH2

101.33
74.45 [30]

Glucose oxidase Anodic alumina nanochannel 80.00 [33]
Lipase Zn3(PO4)2 hybrid nanoflower 1.47 [56]

Invertase CaHPO4 hybrid nanoflower 2.03 [57]
Urease Cu3(PO4)2·3H2O nanoflower 40.00 [73]

L-arabinitol 4-dehydrogenase,
NADH oxidase Cu3(PO4)2·3H2O nanoflower 2.46,

1.44 [74]

Laccase Copper alginate 3.00 [75]
Hydroxylase Cu3(PO4)2·3H2O nanoflower 1.62 [76]

Pyruvate kinase/lactate
dehydrogenase Semiconductor quantum dot >50.00 [77]

Alkaline protease Hollow silica nanosphere 2.40 [78]
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2.1. Morphology Effect of Nanoscale Support

The morphology of nanoscale supports has a great impact on the enhancement of enzyme
activities and the stability of nanobiocatalysts (Figure 2) [12]. Continuous efforts have yielded many
nanostructured supports with various morphologies to provide a large surface area for increased
enzyme loading and reduced diffusion resistance [21,79]. Many enzyme immobilization strategies
have been developed in consideration of the optimal morphology of supports for minimizing the
effect of conformation distortions and the deactivation of immobilized enzymes. As shown in Figure 2,
nanobiocatalysts with increased activity are constructed through insertion of nanoparticles into enzyme
molecules [23], immobilization of enzymes on the surface of nanoparticle/nanorod/2-dimensional
nanomaterials [27,28,34], encapsulation of enzymes in porous supports [37,39], embedding/enveloping
enzymes on/in 3-dimensional nanostructured supports [16,48,80]. Horseradish peroxidase was
immobilized on a nanoscale DNA scaffold with three addressable sites [72]. The enhanced enzyme
activity (>300%) of this nanobiocatalyst was ascribed to preferential binding of the substrates to the
minor groove of the double DNA helix. Cytochrome c was encapsulated into spindle-like copper
hydroxysulfate nanocrystals, which exhibited a 143-fold increase in catalytic efficiencies (kcat/Km) [55].
The spindle-like nanostructured support with rough surface provided large specific surface area,
resulting in an apparent decrease in Km. Therefore, more substances can be accumulated around and
within the nanostructured supports for efficient catalytic reactions. Jiang et al. immobilized glucose
oxidase on a porous anodic alumina nanochannel membrane [33]. In this case, the O2 molecules
can easily go through the nanochannels and participate in the catalytic reaction in an aqueous
solution, giving rise to a significant increase in catalytic efficiency (by 80-fold). The construction of
a gas-nanochannel-liquid system was shown to boost gas-involving reactions, which introduces a
brand-new idea to enhance the activity of immobilized enzymes using gas substrates. Manganese
peroxidase was encapsulated in vault nanoparticles, by which the obtained nanobiocatalysts exhibited
an enhanced phenol degradation capability three times larger than that of the unpackaged enzymes [80].
The vault nanoparticles with hollow structures were also reported to contribute to an increased catalytic
activity of the encapsulated enzymes towards harsh conditions.
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Figure 2. Representative morphologies of nanobiocatalysts with increased activities. (A) Insertion
of nanoparticles into enzyme molecules. (B–D) Immobilization of enzymes on the surface of
nanoparticle/nanorod/2 dimensional nanomaterial. (E) Encapsulation of enzymes in porous supports.
(F–H) Embedding/enveloping enzymes on/in 3-dimensional nanostructured supports.

Zeng et al enveloped α-amylase on nanoflowers, nanoplates, and parallel hexahedrons
(Figure 3A–C), with their reaction rate constants (k) reported to be 16.5 × 10−3, 8.0 × 10−3, and
1.2 × 10−3 s−1, respectively [17]. It was shown that the α-amylase-nanoflowers possess the highest
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catalytic activity, likely due to their higher surface-to-volume ratios and dramatically reduced mass
transfer limitations, as enzymes rested on the surface of a flower petal have much more possibility
to react with the substrate. While this is promising, the presence of dead areas in these nanoflowers
may hinder their activity enhancement. For a fair comparison of the catalytic activities of various
nanobiocatalysts, Fan et al. proposed the use of “specific nanobiocatalyst activity” [16]. The specific
enzyme activity is calculated by A = U/P, where P is mg of enzyme. One unit of enzyme activity
(U) is the amount of enzyme required to oxidize 1 µmol substrate per minute (or second). The
specific nanobiocatalyst activity is defined as A’ = U/B, where B is mg of both enzyme and support.
It was reported that the immobilized enzymes with a high specific enzyme activity will actually
have a low specific nanobiocatalyst activity. In this work, laccae–Cu2O nanowire mesocrystal hybrid
materials exhibited a 2.2-fold increase in specific nanobiocatalyst activity, the highest among the
previously reported examples. The nanowire mesocrystal supports display an open octahedra
morphology, which is assembled using well-organized anisotropic nanowires as building blocks
(Figure 2H). Compared with the compact nanostructured supports, the nanowire mesocrystal has a
much larger surface-to-volume ratio and interpenetrating inner channels, which significantly minimize
mass transfer limitation (Figure 3F). The 3D ordered spatial arrangement of laccases (Figure 2H)
eliminated the phenomena of overlapped nanostructures and provided abundant accessible active sites
to substances. In comparison, the laccase–nanowire mesocrystal system attained the highest specific
enzyme activities, about 10 and 8 times higher than that of laccase–nanocube and laccase–nanowire
systems, respectively (Figure 3D,F). The nanocubes and nanowires were considered to have a greater
likelihood to form temporary and permanent aggregations. After that, the disastrous aggregation may
exert serious steric hindrance and lead to a significant diffusion resistance, leading to the different
diffusion pathways of the substrates, as illustrated in the insets of Figure 3D,F. However, it is worth
noting that these 3-dimensional porous supports actually have some disadvantages in increasing the
activity of immobilized enzymes. For instance, the immobilized enzymes inside porous supports
cannot interact with external substances. The porous support may generate a pH inside the pore that
may differ from the optimal pH in the bulk. The enzymes inside the pore are far from optimal pH,
causing a decrease in catalytic activity.
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Figure 3. SEM images of CaHPO4-α-amylase nanobiocatalysts, (A) nanoflowers, (B) nanoplates, and
(C) parallel hexahedrons. Reconstructed with permission from Ref. [17], Copyright (2013) American
Chemical Society. SEM images of Cu2O–laccase nanobiocatalysts, (D) nanocubes, (E) nanowires, and
(F) nanowire mesocrytal, insets are the schematic illustrations of the plausible substrate diffusion
pathways for these hybrid materials. Reconstructed with permission from Ref. [16], copyright (2018)
American Chemical Society.
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2.2. Metal Ions Activation

Metal ions may bind to enzymes and serve as cofactors. About one third of enzymes are known
to be metalloenzymes [81]. The metalloenzyme-based nanobiocatalysts have been the most studied
because their activities can be activated by the presence of the corresponding metal ions. In such
systems, the nanostructured supports can undergo an inherent dissolution–crystallization dynamic
process in solution to release the required metal ions, including copper, cobalt and manganese. Metal
ions activation of immobilized enzymes has been summarized in Table 2. Ge and the co-workers
prepared a laccase-Cu3(PO4)2·3H2O hybrid nanoflower through a facile and general coprecipitation
method, which exhibits a 6.5-fold increase in enzyme activity (Figure 4A) [48]. In this design, Cu2+

ions form complexes with enzyme molecules during the crystal growth process and play an important
role in the activation of laccase. Such an activation effect has also been employed to achieve a 5-fold
enhancement in the activity of horseradish peroxidase–Cu3(PO4)2·3H2O hybrid nanoflowers [62].
Liu et al. covalently bound laccase on a Cu2+ adsorbed [poly(acrylic acid)/poly(poly-(ethylene
glycol) acrylate)]. The immobilized laccase exhibited both enhanced activity (4.47-fold) and thermal
stability [34]. Apart from the Cu2+ activation effect, the Cu2O nanowire mesocrystal support was
found to serve as a Cu+/Cu2+ self-sustainable reservoir, which contributed to the remarkably increased
enzyme activity, as shown in Figure 4B [16]. The enhancement in activity was mainly due to two factors:
the Cu+ can be incorporated into the active center of laccase and the Cu2+ can enhance intramolecular
electron transfer. Additionally, cytochrome c was incorporated into the metal-organic frameworks
(ZIF-8), in which Zn2+ was considered an important factor for the 10-fold increase in activity [37].
Taken together, the strategy of metal ion activation can provide a vital method in the designing of
metalloenzyme-based nanobiocatalysts with efficient catalytic activities.
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Figure 4. (A) Formation process of enzyme-incorporating Cu3(PO4)2·3H2O nanoflowers, comprising
three steps: nucleation and formation of primary crystals, growth of crystals, formation of nanoflowers.
Reprinted with permission from Ref. [48]. Copyright (2012) Nature Publishing Group. (B) Bioinspired
fabrication of enzyme–nanowire mesocrystal hybrid materials by mimicking natural rough endoplasmic
reticulum. Reconstructed with permission from Ref. [16], copyright (2018) American Chemical Society.

Table 2. The effects of metal ion and temperature on the enhanced activities of immobilized enzymes.

Enzymes Effects
Increased
Activities

(Folds)
Ref.

Laccase,
carbonic anhydrase Cu2+ 6.50

2.60 [48]

Laccase Cu2+ 4.47 [34]
Laccase Cu2+ 3.60 [50]
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Table 2. Cont.

Enzymes Effects
Increased
Activities

(Folds)
Ref.

Laccase Cu2+ 4.00 [25]
α-amylase Ca2+ (Allosteric Effect) 37.5 [17]

β-galactosidase Mg2+ (Allosteric Effect) 30.00 [58]
Cytochrome c Zn2+ 10.00 [37]

Organophosphorus hydrolase Co2+ (Allosteric Effect) 3.00 [53]

Carbonic anhydrase Cu2+,
Ca2+

2.86,
1.49 [54]

Urease Cu2+ 40.00 [73]
D-psicose 3-epimerase Co2+ 7.20 [67]

Laccase Cu+ and Cu2+ 10.00 [16]
Laccase Cu2+ 18.00 [68]
Lipase,

Cytochrome c
Temperature responsiveness

in organic solvents
67.00,
670.0 [35]

L-2-HADST dehalogenase Magnetothermal effect 2.00 [26]

Laccase Increased temperature by local
surface plasma resonance effect 1.91 [23]

Amylase,
Cellulase,

Lipase
Solar-to-thermal conversion

13.00,
5.00,
12.00

[32]

β-galactosidase Magnetothermal effect 1.80 [27]

Lipase Temperature responsiveness
in organic media 11.00 [70]

2.3. Electron Transfer Effect

Enzymatic redox reactions are closely related to the charge transfer process, especially during
oxidoreductase-catalyzed processes [42]. Conductive nanostructured supports have been demonstrated
as promising candidates to enhance charge transport of redox enzymes. The representative
nanomaterials include Au nanoparticles [23], CdS nanorods [82], carbon dots [41], carbon tubes [42],
etc. Especially, Au nanoparticles have recently emerged as one of the most prominent supports due to
excellent biocompatibility, high specific surface area, and quantum size effects. Au nanoparticles were
inserted into laccase, which showed a 1.91-fold enhancement in catalytic activity. The insertion can lead
to a looser protein structure and help enzymes to extract electrons from the substrates (Figure 5A) [23].
Kang et al. bound laccase with the -PO3 groups on the surface of carbon dots, and found the groups can
combine with the T1 Cu site of laccase, offering increased electron transfer and substrate affinity [41].

2.4. Temperature Effects

The rate of enzymatic reactions is known to be influenced by the temperature of the reaction
solution both for general and thermophilic enzymes. Activity measurement of an immobilized enzyme
at temperature above the optimal conditions may bring up a significant enhancement in enzyme
activity [2]. Adjusting the temperature for improving enzymatic performances has been elaborately
investigated in the past decades. Some nanostructured supports can absorb light/electromagnetic
waves and convert them into heat for promoting activities of nanobiocatalysts. The effect of temperature
on the enhanced activities of immobilized enzymes has been summarized in Table 2 [27,44]. Zhu et
al. reported the first example of a temperature-responsive enzyme-polymer nanobiocatalyst, which
showed markedly enhanced catalytic activities in organic media at 40 ◦C [35]. Controlled activation of
non-photosensitive enzymatic reactions using a light-to-thermal strategy was also achieved with the
help of photosensitive nanostructured supports such as noble metal nanoparticles and semiconductor
nanomaterials [83,84]. Blankschien et al. prepared a thermophilic enzyme–Au nanorod nanobiocatalyst
that showed an improvement of enzymatic reaction rate of about 60% upon photothermal activation [24].
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Although encouraging achievements have been made in light activation of immobilized enzymes, it is
important to protect enzymes from deactivation by excessive temperatures and photogenerated holes,
as well as reactive oxygen species, especially for constructing a nanobiocatalyst using semiconductor
nanomaterials as supports [85].
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Figure 5. (A) Schematic of the Au–laccase hybrids with enhanced electron transfer. Reconstructed
with permission from Ref. [23], Copyright (2015) American Chemical Society. (B) Illustration of
the FVIO-β-Gal hybrids and the experimental set-up, the activities were tuned by AFM-triggered
local heating. Reprinted with permission from Ref. [27]. Copyright (2019) RSC Pub. (C) The
α-amylase-CaHPO4 nanoflower nanobiocatalyst Ca2+ binds to allosteric sites in inactive α-amylase
and generates active α-amylase. Reproduced with permission from Ref. [17], copyright 2013, American
Chemical Society. (D) Diagram of the GOX/HRP–CdSe/ZnS QDs system with enhanced coupled
enzymatic activity. Reconstructed with permission from Ref. [59], copyright (2017) RSC Pub.

In comparison with light, magnetic fields can induce the conversion of electromagnetic energy into
thermal energy and produce a significant amount of heat around magnetic nanoparticles. The use of
magnetic nanostructured supports can also allow for the convenient recovery of nanobiocatalysts [86].
Several interesting examples have successfully harnessed this heating effect in enzyme activation. For
example, Knecht et al. prepared a Fe3O4 nanoparticle–enzyme hydrogel network and demonstrated
that the thermophilic enzymes could be activated 2-fold via elevated temperature from magnetic
actuation [26]. Notably, Xiong et al. developed a ferrimagnetic vortex-domain nanoring-enzyme
hybrid and showed that the reaction rate of immobilized enzymes can be boosted up to 1.8-fold
without heating up the solution and in a real-time manner (Figure 5B) [27]. This work, for the first
time, provides direct biochemical evidence that the localized heating effect from remote magnetic
stimulation can be utilized to specifically modulate enzymatic reactions, and may spark future research
in spatiotemporally manipulation of intracellular catalysis in living organisms.

Localized heating of enzyme can be produced by the above-mentioned nanostructured supports
when exposed to light or alternating magnetic field. The temperature increase at the nanoparticle
surface with a sub-nanometer resolution was found to scale down linearly [87]. High local heating
may lead to significant damage in enzyme conformation and activity. Hence, it is necessary to weigh
the pros and cons of temperature effects on enzyme activity. It may be useful to adjust the distance
between enzyme and support or use thermosensitive coupling molecules for enzyme binding.
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2.5. Conformational Changes of Immobilized Enzymes

Favorable conformational changes of enzymes induced by either an allosteric effector or
nanostructure supports can contribute to improved catalytic activity of nanobiocatalysts [88,89].
Some metal ions have been used to transform the conformation of enzymes to an active form by
binding with certain amino acid residues outside enzyme active sites. The so-called allosteric effect is a
striking example and a powerful tool to improve the activities of nanobiocatalysts [53]. For example,
Zeng et al. reported CaHPO4-α-amylase nanoflowers which have dramatically (38-fold) increased
enzyme activities [17]. In this system, Ca2+ ions serve as effectors to bind at an allosteric site, leading
to the activation of the enzyme molecules (Figure 5C). It was also found that Mg2+ may act as an
allosteric effector of β-galactosidase and was shown to be able to change the secondary structures
of enzymes in β-galactosidase/Mg-Al layered double hydroxides [58]. It is clear that every allosteric
enzyme is responsive to certain metal ions; consequently, there is no all-encompassing “one size fits
all” solution to increase the activity of nanobiocatalysts. The allosteric effectors, apart from metal ions,
can be modified on nanostructured supports, which may be a more general and highly effective way to
activate allosteric enzymes. In addition, Li et al successfully immobilized lipase from pseudomonas
cepacia on siliceous mesocelluar foams (MCF) with different hydrophobicity [71]. With the increase in
the surface hydrophobicity of the MCFs, the catalytic activity of lipase was enhanced up to 25-fold.
The lipase activation was attributed to hydrophobic interactions between the alkyl groups of MCF and
the surface loops of enzymes to produce favorable conformational changes. In other examples, surface
modifications of nanostructured supports have been shown to have significant influences not only on
enzyme conformation but also on substrate binding in the nanobiocatalysts [12,64,66,90–92].

2.6. Multi-Enzyme System

A multi-enzyme system can be obtained by co-immobilizing two or more enzymes, which realize
the micro- and nanoscale compartments and enhance the overall activity of the enzymes. There
are many strategies for constructing multienzyme catalysis, such as co-immobilization of enzymes,
conjugation of natural enzymes with artificial enzymes (i.e. nanozymes), and enhancing the function
of enzymes within cell-free metabolic pathways [59,65,77,93–97]. Encapsulation is a common form to
maintain a high local concentration of enzymes and protect them from biological damage through
proteases. It was reported that five of six encapsulated enzymes inside a DNA nanocage exhibited
increased activity and similar Km in comparison with free enzymes [98]. The negatively charged
phosphate groups and highly structured water surface on the DNA surface may play a key role in
stabilizing the active enzyme conformation.

The activity enhancement phenomenon of multienzyme systems has attracted increasing interest,
especially in designing strategies to achieve favorable substrate channeling in cascade reactions [99,100].
Ge et al. and co-workers reported a spatially co-immobilized GOx–HRP system which exhibited
dramatically enhanced overall catalytic performance [65]. In this case, the compartmentalization of the
two enzymes endow the multi-step cascade reaction with ordered substrate transport, and the formed
intermediate concentration gradients make a great contribution to driving and facilitating the reaction.
Vranish et al. synthesized a multi-enzymatic coupled system by binding HRP and GOx on quantum
dots and for the first time demonstrated a >2-fold improvement in the kcat of the system (Figure 5D) [59].
The challenge is, however, that not all enzymes will manifest activity enhancement when binding
to the same quantum dots. Li et al. reported a bio-inspired nanozyme-based multienzyme system
which consisted of Au nanoparticles with two enzyme-like activities and ATP synthase, by mimicking
mitochondrial oxidative phosphorylation [97]. In this system, the intrinsic glucose oxidase and
peroxidase activities of Au nanoparticles provided favorable proton gradient, driving the oxidative
phosphorylation of ATP synthase as efficiently as natural mitochondria. In conclusion, nanozymes have
been booming in recent years and providing a novel way for designing highly efficient multienzyme
systems [60,101,102].
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Multi-enzyme systems should be designed to minimize the diffusion of intermediates among the
enzymes and increase their overall activity. It is expected that, to create multi-enzyme systems with
synergic functions and spatiotemporal multicompartments [103], considerable attention and effort
should be devoted to realizing control over the spatial arrangement, number, and class of the enzymes.
Some new nanomaterials, such as metal–organic framework nanomaterials, Janus nanoparticles,
mesocrystal nanozymes, and aggregation-induced emission nanoparticles, are considered ideal
nanostructured supports to organize enzymes in confined microscale or nanoscale environments. In
this way, the product of one enzyme can be channeled to act as substrate for the second enzyme.
The obtained multi-enzyme system may enhance the overall activity based on high local substrate
concentrations [104].

3. Conclusions

Nanobiocatalysts, as a result of the fusion of nanotechnology and biotechnology, exhibit remarkably
increased activities, which is a breakthrough in the field of immobilized enzymes. We reviewed the
recent development in design and application of these nanobiocatalysts, and summarized underlying
the mechanisms of favorable interactions between the nanostructured supports and enzymes, including
metal ion activation, enhanced electron transfer, morphological effects, conformational modulation,
temperature effects and multi-enzyme systems. To further promote the applications of nanobiocatalysts,
the following urgent challenges need to be addressed: (1) an evolutional nanobiocatalyst that can
permit the simple recycle and reuse of enzymes; (2) minimizing the “dead areas” of nanobiocatalysts
in catalytic reactions to make the hybrid systems more economically friendly; (3) improving the
biocompatibility and stability of nanobiocatalysts for in vivo and in vitro biomedical applications; (4)
smart nanobiocatalysts that can respond efficiently to remote stimuli for modulating the activities of
nanobiocatalysts on demand. We firmly believed that the rapid development of nanotechnology will
offer great opportunities to construct novel nanobiocatalysts with real-time-adjustable activity, with
widespread applications in biology, medicine and environmental engineering.
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