Natural variation in the 'control loop' of BVMO_{AFL210} and its influence on regioselectivity and sulfoxidation

Carmien Tolmie ¹, Rodolpho do Aido-Machado ¹, Felix Martin Ferroni ^{1,2}, Martha Sophia Smit ¹ and Diederik Johannes Opperman ^{1,*}

- ¹ University of the Free State, Department of Biotechnology, Bloemfontein, 9300, South Africa; <u>tolmiec@ufs.ac.za</u> (C.T.); <u>machador@ufs.ac.za</u> (R.d.A-M.); <u>fferroni@fbcb.unl.edu.ar</u> (F.M.F); <u>smitms@ufs.ac.za</u> (M.S.S.)
- ² Universidad Nacional del Litoral/CONICET, Departamento de Física, Santa Fe, S3000ZAA, Argentina

* Correspondence: <u>opperdj@ufs.ac.za</u> (D.J.O); Tel.: +27-51-401-2714

Supporting Information

Data Collection			
X-ray source	Beamline i04-1, Diamond Light Source		
Wavelength (Å)	0.91587		
Resolution (Å)	129.64 - 2.09 (2.36 - 2.09)1		
Space group	<i>P</i> 2 ₁		
Unit cell parameters			
a/b/c (Å)	87.89 117.31 133.34		
α/β/γ (°)	90.00 103.52 90.00		
Unique reflections	72127 (3606)		
Completeness (%) ²	87.5 (73.7)		
Rmerge	0.120 (0.644)		
Average $I/\sigma(I)$	6.6 (1.8)		
Multiplicity	3.3 (3.1)		
CC (1/2)	0.994 (0.620)		
Refinement			
Rwork / Rfree	0.206/0.261		
Molecules in ASU	4		
Average B factor (Å):			
Protein	37.48		
Ligand	46.96		
Solvent	22.22		
RMSD:			
Bond length (Å)	0.0127		
Bond angle (°)	1.65		
Ramachandran distribution (%)	94.15/ 5.06/ 0.80		
(favoured/allowed/outlier)			
Molprobity score	2.01		

Table S1. Data collection and refinement statistics for BVMOAFL210.

¹ Values in parentheses are for the highest resolution shell. ² Ellipsoidal

Figure S1. Electron density (2Fo-Fc) of the FAD and NADP moieties bound to BVMO_{AFL210} in the 'open' (**a**, chain A) and 'closed' (**b**, chain B) conformation, contoured to 1 σ .

Figure S2. SDS-PAGE analysis of soluble expression of BVMO_{AFL210} and mutants in *E. coli* cell free extracts (**a**). Lane M: molecular weight marker, 1: WT, 2: T513G, 3: T513Y, 4: T513W. Purified BVMO_{AFL210} WT (**b**, lane 5), T513G (**c**, lane 6), T513Y (**d**, lane 7) and T513W (**e**, lane 8).

Scheme S1. Substrates screened.

- n = 1 cyclopentanone
- n = 2 cyclohexanone
- n = 4 cyclooctanone
- n = 8 cyclododecanone

$$\begin{split} n &= 0; \ R^1 \ R^2 \ R^3 = Me \ H \ H \ \textbf{2-methylcyclopentanone} \\ n &= 1; \ R^1 \ R^2 \ R^3 = Me \ H \ H \ \textbf{2-methylcyclohexanone} \\ n &= 1; \ R^1 \ R^2 \ R^3 = H \ Me \ H \ \textbf{3-methylcyclohexanone} \\ n &= 1; \ R^1 \ R^2 \ R^3 = H \ H \ Me \ \textbf{4-methylcyclohexanone} \\ n &= 1; \ R^1 \ R^2 \ R^3 = H \ H \ Me \ \textbf{4-methylcyclohexanone} \\ n &= 1; \ R^1 \ R^2 \ R^3 = H \ H \ Et \ \textbf{4-ethylcyclohexanone} \\ n &= 1; \ R^1 \ R^2 \ R^3 = H \ H \ Et \ \textbf{4-ethylcyclohexanone} \\ n &= 1; \ R^1 \ R^2 \ R^3 = H \ H \ H \ t \ \textbf{4-ethylcyclohexanone} \\ n &= 1; \ R^1 \ R^2 \ R^3 = H \ H \ H \ t \ \textbf{4-ethylcyclohexanone} \\ n &= 1; \ R^1 \ R^2 \ R^3 = H \ H \ R^2 \ \textbf{4-ethylcyclohexanone} \\ n &= 1; \ R^1 \ R^2 \ R^3 = H \ H \ R^2 \ \textbf{4-ethylcyclohexanone} \\ n &= 1; \ R^1 \ R^2 \ R^3 = H \ H \ R^2 \ \textbf{4-ethylcyclohexanone} \\ n &= 1; \ R^1 \ R^2 \ R^3 = H \ H \ R^2 \ \textbf{4-ethylcyclohexanone} \\ n &= 1; \ R^1 \ R^2 \ R^3 = H \ R^2 \ \textbf{4-ethylcyclohexanone} \\ n &= 1; \ R^1 \ R^2 \ R^3 = H \ R^2 \ \textbf{4-ethylcyclohexanone} \\ n &= 1; \ R^1 \ R^2 \ R^3 = H \ R^2 \ \textbf{4-ethylcyclohexanone} \\ n &= 1; \ R^1 \ R^2 \ R^3 = H \ R^3 \ R^3 = H \ R^3 \ R^3 \ R^3 = H \ R^3 \$$

- $n^1 = 0; n^2 = 3$ 2-heptanone $n^1 = 0; n^2 = 4$ 2-octanone $n^1 = 1; n^2 = 3$ 3-octanone $n^1 = 0; n^2 = 6$ 2-decanone $n^1 = 0; n^2 = 7$ 2-undecanone
- n¹ = 0; n² = 8 **2-dodecanone**
- n = 0; R = H acetophenone
- n = 1; R = H phenylacetone
- n = 2; R = H **4-phenyl-2-butanone**
- n = 2; R = OH 4-(4-hydroxyphenyl)-2-butanone
- n = 2; R = OMe 4-(4-methoxyphenyl)-2-butanone

rac-cis-bicyclo[3.2.0]hept-2-en-6-one

thioanisole

Table S2. Whole-cell biotransformations.

Substrate	Conversion (GC %)				
	WT	T513G	T513Y	T513W	
Cyclopentanone	45.3	80.9	26.8	29.7	
Cyclohexanone	23.4	64.4	11.5	18.0	
Cyclooctanone	-	-	-	-	
Cyclododecanone	-	-	-	-	
2-Methylcyclopentanone	34.5 a / 9.9 b	80.6 a / 7.9 b	22.3 a / 14.5 b	25.1 a / 15.7 b	
2-Methylcyclohexanone	11.1 a / 4.2 b	44.9 a / 9.0 b	20.8 a / <1 b	25.7 a / <1 b	
3-Methylcyclohexanone	22.8 a	44.2 a	16.7 a	15.8 a	
4-Methylcyclohexanone	16.0	49.1	11.6	15.3	
4-Ethylcyclohexanone	32.1	52.1	5.1	7.0	
4-n-propylcyclohexanone	94.3	91.0	46.3	28.3	
2-heptanone	47.7 a	45.5 a	38.5 a	35.5 a	
2-octanone	97.8 a	96.4 a	93.4 a	81.7 a	
3-octanone	>99 a	>99 a	96.9 a	87.2 a	
2-decanone	87.4 a	97.8 a	67.7.4 a	74.4 a	
2-undecanone	81.3 a	94.2 a	60.4 a	62.2 a	
2-dodecanone	59.1 a	93.1 a	46.9 a	53.7 a	
Acetophenone	13.6	14.8	<1	<1	
Phenylacetone	30.7	42.4	27.2	16.2	
4-phenyl-2-butanone	45.0	39.1	30.2	8.4	
4-(4-hydroxyphenyl)-2-butanone	8.8	1.4	1.1	1.6	
4-(4-methoxyphenyl)-2-butanone	42.5	52.6	53.7	24.3	
rac-cis-bicyclo[3.2.0]hept-2-en-6-one	24.7 a / 5.4 b	53.0 a / 17.8 b	23.8 a / 12.6 b	27.0 a / 18.5 b	
Thioanisole	21.8 a / 29.1 b	37.4 a / 5.3 b	31.6 a / 1.5 b	31.9 a / 2.3 b	

Figure S3. Chiral analysis of 2-methylcyclohexanone conversion by BVMO_{AFL210} WT and mutants. *S*-2-methylcyclohexanone (3.59 min); *R*-2-methylcyclohexanone (3.76 min); *R*-"abnormal/distal" lactone (20.9 min), *S*-"normal/proximal" lactone (21.9 min); *S*-"abnormal/distal" lactone (22.2 min); *R*-"normal/proximal" lactone (22.6 min).

Table S3. GC Methods.

Substrates	Program ¹	Retention time (min)	
		Substrate	Products
Cyclopentanone	80/2/15/185	2.45	5.1
Cyclohexanone	60/1/10/220/5	4.28	8.64
Cyclooctanone	60/1/10/220/5	8.03	8.32
Cyclododecanone	60/1/10/220/5	9.79	9.87
2-Methylcyclopentanone	60/1/10/220/5	3.53	7.37 b 7.44 a
2-Methylcyclohexanone	60/1/10/220/5	5.03	9.65 a 9.81 b
3-Methylcyclohexanone	60/1/10/220/5	5.1	10.43 a
4-Methylcyclohexanone	60/1/10/220/5	5.19	10.56
4-Ethylcyclohexanone	60/1/10/220/5	7.04	12.35
4-n-propylcyclohexanone	60/1/10/220/5	9.39	13.34
2-heptanone	80/2/15/250	3.22	3.48 a
2-octanone	80/2/15/250	3.01	3.42 a
3-octanone	80/2/15/250	4.18	4.43 a
2-decanone	80/2/15/250	6.51	6.68 a
2-undecanone	80/2/15/250	7.54	7.68 a
2-dodecanone	80/2/15/250	8.49	8.60
Acetophenone	80/2/8/140/0/15/220/2	6.15	5.91
Phenylacetone	80/2/8/140/0/15/220/2	7.21	7.79
4-phenyl-2-butanone	80/2/8/140/0/15/220/2	9.28	9.45
4-(4-hydroxyphenyl)-2-butanone	60/5/5/160/0/25/250/2	24.63	24.73
4-(4-methoxyphenyl)-2-butanone	80/2/8/140/0/15/220/2	12.7	12.75
rac-cis-bicyclo[3.2.0]hept-2-en-6-one	60/1/10/110/4/25/200/2	3.85	6.6 a 6.56 b

¹ °C/min/min⁻¹/°C/min.