Supporting information

Preparation and performances of ZIF-67-derived FeCo bimetallic catalysts for CO₂ hydrogenation to light olefins

Zichao Dong ^{1,†, *}, Jie Zhao ^{2,†}, Yajie Tian ³, Bofeng Zhang ¹, Yu Wu ²

¹: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China; dzc08@tju.edu.cn

²: SINOPEC Research Institute of Petroleum Process, Beijing 100083, China; zhaojie.ripp@sinopec.com

³:College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; yjtian@henu.edu.cn

* Correspondence: dzc08@tju.edu.cn

Postal address: Peiyang Park Campus, Tianjin University, No.135 Yaguan Road,, Jinnan District, Tianjin, P.R.China

Figure S1. TG and DTG of Fe/ZIF-67

Figure S2. TEM particle size distribution images of (a) FeCo/NC-400; (b) FeCo/NC-500; (c) FeCo/NC-600; (d) FeCo/NC-700

Sample	Total CO2 uptake amount/mmol g ⁻¹			
FeCo/NC-400	0.124			
FeCo/NC-500	0.109			
FeCo/NC-600	0.059			
FeCo/NC-700	0.037			

Catalysts	T ^a	CS (mm/s)	QS (mm/s)	H (kOe)	Area (%)	Assignments
	400	0.30(1)	0.79(2)		29(1)	SP doublet
		0.33(2)	-0.04(2)	499(2)	10(2)	Fe ₃ O ₄ -A
		0.54(7)	0.02(7)	462(5)	5(2)	Fe ₃ O ₄ -B
		0.03(2)	-0.01(2)	354(8)	39(2)	Fe-Co alloys
		0.17(3)	-0.09(3)	207(2)	13(3)	Fe ₅ C ₂ -I
		0.21(3)	-0.01(3)	182(2)	4(2)	Fe ₅ C ₂ -II
	500	0.30(9)	0.77(2)		30(1)	SP doublet
		0.33(4)	-0.02(4)	499(3)	7(2)	Fe ₃ O ₄ -A
		0.34(7)	0.05(6)	461(4)	7(3)	Fe ₃ O ₄ -B
		0.01(2)	-0.01(2)	345(8)	34(2)	Fe-Co alloys
		0.20(4)	-0.06(4)	205(3)	15(3)	Fe ₅ C ₂ -I
		0.17(3)	0.08(3)	178(2)	4(2)	Fe ₅ C ₂ -II
After reaction		0.19(5)	0.12(5)	99(3)	3(1)	Fe ₅ C ₂ -III
FeCo/NC-1	600	0.27(7)	0.81(2)	-	26(1)	SP doublet
		0.27(6)	0.04(6)	499(4)	7 (2)	Fe ₃ O ₄ -A
		0.78(6)	0.04(6)	460(4)	2(1)	Fe ₃ O ₄ -B
		0.04(3)	-0.02(3)	343(1)	23 (2)	Fe-Co alloys
		0.18(4)	-0.02(3)	206(4)	26(5)	Fe ₅ C ₂ -I
		0.31(4)	-0.08(3)	180(2)	8(4)	Fe ₅ C ₂ -II
		0.09(3)	0.02(3)	99(2)	8(1)	Fe ₅ C ₂ -III
	700	0.29(8)	0.70(2)		27(1)	SP doublet
		-0.02(2)	0.02(2)	342(9)	18(1)	Fe-Co alloys
		0.25(1)	-0.03(1)	201(2)	32(4)	Fe ₅ C ₂ -I
		0.25(2)	0.04(2)	179(1)	12(4)	Fe ₅ C ₂ -II
		0.21(3)	0.01(2)	92(2)	11(1)	Fe ₅ C ₂ -III
Before reaction	600	0.12(5)	0.42(9)	-	4.3(9)	SP doublet
FeCo/NC-T	000	0.013(2)	0.00(2)	339.5(2)	95.7(15)	Fe-Co alloys

Table S2 Hyperfine parameters of catalysts FeCo/NC-T obtained from the fittings of 57Fe Mössbauer spectra recorded at room temperature. Numbers in parentheses indicate the statistical uncertainty of the last digit(s).

a: pyrolysis temperature

Figure S3. ⁵⁷Fe Mössbauer spectra recorded at room temperature : (a) FeCo/NC-400 (b) FeCo/NC-500 (c) FeCo/NC-700

Figure S4. XPS spectra of FeCo/NC-600

Figure S5. H₂-TPR spectra of FeCo/NC-600

The result of H₂-TPR is shown in supporting FigS5. Taking FeCo/NC-600 as an example, first of all, it can be seen from the XPS spectra of Fe 2p peak (FigS4) that although the pyrolyzed iron mainly exists in the form of iron-cobalt alloy, there is still a small amount of iron oxide. The two main peaks at 710.8 eV and 724.5 eV correspond to Fe 2p 3/2 and Fe 2p1/2, indicating the presence of Fe³⁺, while the satellite peak at 719.0ev confirms the phase of Fe₂O₃. Typically, Fe₃O₄ is the main active phase of the RWGS reaction. It can be seen from H₂-TPR that there is a main peak around 300 °C, which is generally attributed to the process of reduction of Fe₂O₃ to Fe₃O₄. Therefore, H₂ gas is used to reduce the catalyst at 400 °C before the reaction to obtain the best reactivity.

Sample	Metal content(wt%) ^a			\mathbf{S}_{BET}	S _{micro}	S _{meso}	V _{micro}	V _{meso}
Sumple	Fe	Co	Fe/Co	(m^2g^{-1})	(m^2g^{-1})	(m^2g^{-1})	$(cm^{-3}g^{-1})$	$(cm^{-3}g^{-1})$
FeCo/Al ₂ O ₃	17.5	34.5	0.51	63.7	7.6	56.1	0.003	0.150

Table S3. The physical properties of FeCo/Al₂O₃ sample.

a: Measured by ICP-OES

Figure S6. The basic properties of FeCo/Al₂O₃ sample.

(a) XRD image of FeCo/Al₂O₃ sample; (b): N₂ adsorption–desorption isotherms of FeCo/Al₂O₃ sample; (c): SEM image of FeCo/Al₂O₃ sample.