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Abstract: Manganese and iron oxides catalysts supported on silicalite-1 and titanium silicalite-1
(TS-1) are synthesized by the wet impregnation method for the selective catalytic reduction (SCR)
of NOx with NH3 (NH3-SCR), respectively. The optimized catalyst demonstrates an increased NOx

conversion efficiency of 20% below 150 ◦C, with a space velocity of 18,000 h−1, which can be attributed
to the incorporation of Ti species. The presence of Ti species enhances surface acidity and redox
ability of the catalyst without changing the structure of supporter. Moreover, further researches based
on in situ NH3 adsorption reveal that Lewis acid sites linked to Mn4+ on the surface have a huge
influence on the improvement of denitration efficiency of the catalyst at low temperatures.
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1. Introduction

Nitrogen oxides (NOx) bring out a series of environmental problems, such as photochemical
pollution, acid rain and haze, which seriously threaten human health [1,2]. Nowadays, selective
catalytic reduction (SCR) with NH3 has been proved to be an effective technology for NOx emission
control, which has been widely used in coal-fired power plants [3–5]. Commercial V2O5-WO3/TiO2

catalysts are very suitable for power plants, mainly due to the flue gas there, with a high temperature
(>300 ◦C), which can satisfy the required reaction temperature of the catalyst. However, there are still a
large number of untreated NOx derived from industrial activities such as cement kilns, steel sintering
and waste incinerators, where the temperature of flue gas is too low (<200 ◦C) to suit for these
commercial catalysts [6,7]. Therefore, it is urgent to develop novel high-efficient catalysts, which have
high catalytic activities at low temperatures.

Manganese-based catalysts are proved to be excellent denitration catalysts at low temperatures
among the commonly used transition metal oxide catalysts [8–10]. Furthermore, numerous metals,
like Fe, Ce and Cu, are used as active components to modify manganese-based catalysts, and for
that purpose, the single manganese oxides can only maintain high denitrification activities in a
narrow temperature window, accompanied by several side reactions [11–14]. In addition, proper
supporters can not only provide a huge surface to disperse the active components, but can also
supply abundant adsorption sites for the heterogeneous reactions [15,16]. Both Al2O3 and TiO2

have been widely investigated as common supporters in the last few decades. However, the limited
specific surface area, as well as poor water and sulfur resistance of the catalysts, hinder their further
developments in industrial applications [17,18]. At the same time, carbon-based materials are also
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applied as supporters of catalysts, because of their large surface area, unique porous structure and
abundant oxygen functional groups. Nevertheless, the poor thermal stability and oxidizability of
carbon-based materials are a potential safety hazard in industrial applications [19–21]. In recent years,
zeolites have gained widespread attention as supporters in SCR studies, due to their high thermal
stability, unique porous structure and absence of harmful substances [22–24]. Wang et al. [25] found
that the optimized Mn-Fe/ZSM achieved 100% NOx conversion efficiencies from 150 ◦C to 250 ◦C. The
excellent catalytic performance can be attributed to the addition of iron, which increases the levels of
Mn4+ and oxygen vacancy. Nevertheless, the presence of Al species in ZSM-5 makes contributions
to its strong hydrophilicity, which hinders its applications in industrial denitration, because the flue
gas is usually humid. However, silicalite-1 is reported to exhibit excellent water resistance in an
NH3-SCR reaction, which can be attributed to the decrease in hydrophilicity due to the absence of
heteroatoms [26,27]. However, compared with ZSM-5, the surface acidity of silicalite-1 is a little bit
weaker, which is the key to the low-temperature denitration. To date, Ti atoms have been reported to
replace a small amount of Si atoms for improving the surface acidity and maintaining excellent water
resistance, which can benefit the low-temperature denitration [28].

Herein, we introduce novel high-efficient denitration catalysts with highly dispersed MnOx and
FeOx nanoparticles supported on silicalite-1 and titanium silicalite-1 (TS-1) respectively. Compared
to the catalyst supported on silicalite-1, the catalyst supported on TS-1 demonstrates superior NOx

conversion efficiencies in the NH3-SCR reaction at low temperatures, which can be attributed to the
incorporation of Ti species, without changing the structure of zeolites. Moreover, further researches on
the surface properties of catalysts including their acidity, redox ability and in-situ adsorption, reveal
that the presence of Ti species promotes the formation of Mn4+ on the surface, thereby increasing the
acidity and redox ability of the catalyst, which are beneficial for the low-temperature denitration.

2. Results and Discussion

2.1. Chemical Compositions and Textural Properties of Samples

The chemical compositions of the catalysts are summarized in Table 1, based on the results of
ICP-OES. The mass ratios of active metal oxides are close to the initial feed ratios. The contents of Mn
and Fe species make no significant difference among all the catalysts.

Table 1. Chemical compositions of samples.

Sample
The Mass Fraction of Metal Elements/wt.%

Mn Fe Ti

Mn3Fe2/Silicalite-1 3.18 1.87 -
Mn3Fe2/TS-1-30 3.17 1.97 2.23
Mn3Fe2/TS-1-20 3.11 1.94 3.56

The X-ray diffraction (XRD) patterns of the supporters are shown in Figure 1a. All of the supporters
display obvious characteristic peaks at 7.9◦, 8.8◦, 23.1◦, 23.8◦ and 24.3◦, which can be attributed to
a typical Mobil Five Instructure (MFI) structure. The pattern of anatase at 25.4◦ does not appear in
TS-1-30, while it is found in TS-1-20, which indicates that the excessive Ti species form a small amount
of anatase in TS-1-20. The existing form of Ti species in the supporters is further confirmed by Fourier
transform infrared (FT-IR). As shown in Figure 2, the bands at 433, 545–546, 799–803, 1074–1075 and
1223–1225 cm−1 can be assigned to the characteristic peaks of MFI structure; the bands at 957–958 cm−1

can be the evidence for the incorporation of Ti species into frameworks [29]. Moreover, it can be seen
from Figure 1b that there is no peak relevant to metal oxides in the supported catalysts, due to the
extremely low metal loading of the catalysts. However, all the supported catalysts possess clear peaks
that are consistent with corresponded supporters, which reveals that the supported catalysts remain
the same structure with the supporters after the impregnation process [25,30].
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Figure 1. X-ray diffraction (XRD) patterns of supporters (a) and catalysts (b).

Figure 2. Fourier transform infrared (FT-IR) spectra of supporters.

N2 adsorption/desorption isotherms of the samples are illustrated in Figure 3, and the
corresponding textural properties of the samples are summarized in Table 2. The isotherms can
be classified as type I, indicating that all the samples have microporous structures [31,32]. The specific
surface area, total pore volume and average pore diameter of Silicalite-1 are 454.31 m2/g, 0.32 cm3/g and
2.85 nm, respectively. When Ti species are introduced into the structure of zeolites, both TS-1-30 and
TS-1-20 show an increase of 10% in specific surface area, total pore volume and average pore diameter,
which can be attributed to the difference of atom size between Ti and Si [29]. After loading MnOx and
FeOx, both specific surface area and total pore volume have a decrease of 10%, while average pore
diameter remains constant, indicating that most of MnOx and FeOx species coexist on the surface,
without changing the textural properties of supporters, as proposed in XRD analysis [30].

Figure 3. N2 adsorption/desorption isotherm of supporters (a) and catalysts (b).
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Table 2. Textural data of samples.

Sample BET Surface Area (m2/g) Pore Volume (cm3/g) Pore Diameter (nm)

Silicalite-1 454.31 0.32 2.85
TS-1-30 485.43 0.37 3.08
TS-1-20 471.39 0.37 3.16

Mn3Fe2/Silicalite-1 393.64 0.27 2.76
Mn3Fe2/TS-1-30 422.14 0.32 3.08
Mn3Fe2/TS-1-20 423.22 0.31 2.96

The morphologies of the catalysts are further investigated by SEM and transmission electron
microscopy (TEM), with the results illustrated in Figure 4. The SEM images of catalysts present a
typical MFI structure with a particle size of about 150 nm. However, the incorporation of Ti species
results in some nanoscale folds on the surface of the catalysts, which can be attributed to the difference
of atom size between Ti and Si. The active metal oxides are highly dispersed on the surface of catalysts
in the form of small particles from the TEM images. As shown in Figure 5, the element mapping by
energy-disperse X-ray spectroscopy (EDS) is applied to further identify the compositions of these small
particles on the surface of the catalysts (EDS mappings of the supporters are shown in Figure S1). It can
be found from Figure 5 that Mn, Fe and Ti species are all uniformly dispersed around the supporters.
Besides, the results of Mn and Fe species are similar, indicating that Mn and Fe species may coexist
in the form of FeMnOx, due to a strong interaction between metal oxides [33–35]. In summary, the
introduction of Ti species does not change the textural properties of catalysts, but the surface of the
catalysts is wrinkled, due to the difference of atom size between Ti and Si, which may provide better
active sites for the catalytic reaction.

Figure 4. SEM and transmission electron microscopy (TEM) images of catalysts: (a,d) Mn3Fe2/Silicalite-1;
(b,e) Mn3Fe2/TS-1-30; (c,f) Mn3Fe2/TS-1-20.
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Figure 5. STEM images and energy-disperse X-ray spectroscopy (EDS) mappings of catalysts:
(a) Mn3Fe2/Silicalite-1; (b) Mn3Fe2/TS-1-30; (c) Mn3Fe2/TS-1-20.

2.2. Surface Constituent and Chemical States of Samples

Figure 6 displays the XPS spectra of Mn 2p, Fe 2p and O 1s for different catalysts, and the results
are summarized in Table 3. It can be seen from Figure 6a that the Mn 2p spectra consist of two major
peaks that are assigned to Mn 2p3/2 (peak around 642 eV) and 2p1/2 (peak around 654 eV). The Mn
2p3/2 peak can be fitted by three peaks (around 642 eV, 643 eV and 645 eV), which can be assigned to
Mn2+, Mn3+ and Mn4+, respectively [36,37]. Figure 6b displays the spectra of Fe 2p, which contains
two main peaks relevant to Fe 2p3/2 (peak around 710 eV) and 2p1/2 (peak around 725 eV). The Fe 2p3/2

can be separated into two independent peaks (around 713 eV, 710.7 eV), which can be assigned to Fe2+

and Fe3+ [13,38,39]. Regarding the oxygen species, O 1s spectra are shown in Figure 6c. The spectra
can be separated into two peaks that related to the lattice oxygen (peak around 530 eV, labeled as Oα)
and surface adsorbed oxygen (peak around 533 eV, labeled as Oβ) [40,41], respectively.

Figure 6. XPS spectra of catalysts: (a) Mn 2p; (b) Fe 2p; (c) O 1s.

Table 3. Surface atom concentrations of samples.

Sample
Atomic Concentration/at%

Si O Mn Fe Ti

Mn3Fe2/TS-1-20 37.37 61.78 0.53 0.13 0.19
Mn3Fe2/TS-1-30 37.33 61.86 0.50 0.15 0.16

Mn3Fe2/Silicalite-1 37.07 62.22 0.52 0.19 -

It is broadly reported that Mn4+ species play a major role in low-temperature NH3-SCR
reactions [37,42]. Hence, the ratios of Mn4+/(Mn4+ + Mn3+ + Mn2+) over the catalysts are calculated
and listed in Table 4, together with the ratios of Fe3+/(Fe3+ + Fe2+) and Oβ/(Oα+Oβ), which are
related to the catalytic performance of catalysts [30,43,44]. The Mn4+/(Mn4+ + Mn3+ + Mn2+) ratio of
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Mn3Fe2/TS-1-30 is 34.6%, which is a significant increase compared to that of Mn3Fe2/Silicalite-1 (25.0%).
The increase of the Mn4+ ratio can be attributed to the redox reactions between Mn and Ti species such
as Mn3+ + Ti4+ = Mn4+ + Ti3+, Mn2+ + 2Ti4+ = Mn4+ + 2Ti3+ [40]. However, the ratio of Mn4+ remains
unchanged in Mn3Fe2/TS-1-20, which can be attributed to the formation of anatase on the supporter.
As mentioned above, the excessive Ti species generate anatase on the surface of the supporter, which is
reported to inhibit the electron transfer between Mn species and the supporter [42]. The Fe3+/(Fe3+

+ Fe2+) ratio displays a slight decrease when the Ti species are introduced into the supporter, which
can be attributed to redox equilibrium between Fe and Ti species like Fe3+ + Ti3+ = Fe2+ + Ti4+ [45].
According to the previously reported literature, surface adsorbed oxygen species (Oβ) show more
reactive than lattice oxygen (Oα) in the low-temperature NH3-SCR reaction, due to their outstanding
mobility [46,47]. As shown in Table 4, the incorporation of Ti species increases the Oβ/(Oα + Oβ) ratio,
while the excessive Ti species consume the surface oxygen mainly because of the formation of anatase.
In summary, Mn3Fe2/TS-1-30 tends to show the optimal catalytic performance, due to its highest ratio
of Mn4+ and surface adsorbed oxygen species.

Table 4. The chemical states and relative concentration ratios for different elements.

Samples
Atomic Ratio/%

Mn4+/(Mn4+ + Mn3+ + Mn2+) Fe3+/(Fe3+ + Fe2+) Oβ/(Oα + Oβ)

Mn3Fe2/TS-1-20 25.6 59.1 94.37
Mn3Fe2/TS-1-30 34.6 62.9 95.01

Mn3Fe2/Silicalite-1 25.0 65.5 93.01

2.3. Redox Properties of Samples

The redox properties of the catalysts are closely related to the catalytic performance in the NH3-SCR
reaction. Therefore, H2 temperature-programmed reduction (H2-TPR) is performed to characterize the
redox properties of the catalysts and the results are exhibited in Figure 7 and Table 5. All the catalysts
display three reduction peaks between 400 and 700 ◦C. The reduction peaks centered at 430 ◦C can
be correlated with the simultaneous reduction of MnO2 and Fe2O3 (i.e., MnO2→Mn2O3, Mn2O3→

Mn3O4 and Fe2O3 → FeO) [25,48]. The peaks centered at 580 ◦C can be assigned to the reduction
of Mn3O4, while the peaks above 660 ◦C can be relevant to the reduction of FeO [48]. As shown
in Table 5, when Ti species are introduced into the catalysts, the total area of the reduction peaks
reaches 776 a.u., which has an increase of 20% compared to that in Mn3Fe2/Silicalite-1. Since the area
of the reduction peak corresponds to the H2 consumption, the redox properties of the catalysts are
significantly enhanced after the incorporation of Ti species, which is beneficial to promote the NH3-SCR
reaction at low temperatures.

Figure 7. H2 temperature-programmed reduction (H2-TPR) profiles of catalysts.
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Table 5. The peak temperature and H2 consumption of samples from H2-TPR.

Samples
Peak Temperature/◦C H2 Consumption/a.u.

TI TII TIII SI SII SIII Stotal

Mn3Fe2/TS-1-20 432 574 662 356 231 150 737
Mn3Fe2/TS-1-30 439 585 669 400 236 140 776

Mn3Fe2/Silicalite-1 436 608 667 436 96 119 651

2.4. Surface Acidity of Samples

The surface acidity is another important factor in low-temperature SCR reaction. Hence, NH3

temperature-programmed desorption (NH3-TPD) is used to analyze the surface acidity of the catalysts,
and the results are exhibited in Figure 8. For Mn3Fe2/Silicalite-1, it displays two desorption peaks
labeled as I and II, which correspond to weak (<200 ◦C) and medium-strong (200~400 ◦C) acid
sites, respectively [43,49]. However, more desorption peaks can be observed in Mn3Fe2/TS-1-30 and
Mn3Fe2/TS-1-20, which are related to medium-strong acid sites [43,49], indicating that the new Lewis
acid sites are related with the incorporation of Ti species and thus benefit the adsorption of NH3. The
total acid amounts of these catalysts are calculated from TPD results and listed in Table 6. It shows that
the acid amounts of Mn3Fe2/TS-1-30 and Mn3Fe2/TS-1-20 are larger than that of Mn3Fe2/Silicalite-1.
Mn3Fe2/TS-1-30, especially, exhibits a remarkable increase (about 50%) in the acid amount, compared
to that of Mn3Fe2/Silicalite-1. In summary, Ti species improve the surface acidity of the catalysts,
which is beneficial for the adsorption of NH3, and finally enhances the catalytic performance in the
low-temperature SCR reaction.

Figure 8. NH3 temperature-programmed desorption (NH3-TPD) profiles of catalysts.

Table 6. The peak temperature and acid amount of samples from NH3-TPD.

Samples
Peak Temperature/◦C Acid Amount/a.u.

TI TII TIII TIV SI SII SIII SIV Stotal

Mn3Fe2/TS-1-20 130 308 368 - 373 65 88 - 526
Mn3Fe2/TS-1-30 131 314 406 490 399 126 123 11 659

Mn3Fe2/Silicalite-1 128 317 - - 259 213 - - 472

Figure 9 displays the in situ diffuse reflectance infrared Fourier transform (in situ DRIFTS) of NH3

adsorption in a temperature range between 60 and 330 ◦C, to further distinguish the Brønsted acid sites
(labeled as B acid) and Lewis acid sites (labeled as L acid) on the surface of the catalysts. It is widely
reported that the bands at 1602–1605 cm−1, 1225–1227 cm−1, 1142–1163 cm−1 and 1059–1064 cm−1 can
be attributed to asymmetric and symmetric bending vibrations of the coordinated NH3 linked to L acid
sites [50,51]. The bands at 1428–1448 cm−1 and 1737–1748 cm−1 can be assigned to the NH4

+ species on
B acid sites [52]. The bands at 1550–1554 cm−1 and 1302–1324 cm−1 can be attributed to NH2 species,
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which are transformed from the coordinated NH3 [53,54]. Moreover, with the increase of temperature,
the bands linked to B acid sites are found to decrease more noticeable than these linked to L acid
sites, indicating that the bands assigned to L acid sites are more stable at a higher temperature [37].
Besides, by comparing the spectra of Mn3Fe2/TS-1-30 (20) with that of Mn3Fe2/Silicalite-1, the intensity
of bands at 1602–1605 cm−1 and 1428–1448 cm−1 is enhanced after the incorporation of Ti species,
which indicates that Mn3Fe2/TS-1-30 (20) can provide more adsorbed NH3 for SCR reaction than
Mn3Fe2/Silicalite-1, which can benefit the catalytic activities.

Figure 9. In situ diffuse reflectance infrared Fourier transform (in situ DRIFTS) of NH3 adsorption of
depending on reaction temperatures from 60 to 330 ◦C: (a) Mn3Fe2/Silicalite-1; (b) Mn3Fe2/TS-1-30;
(c) Mn3Fe2/TS-1-20.

2.5. Catalytic Performance of Samples

Figure 10a shows the catalytic activities of the catalysts under different reaction temperatures.
It can be seen from the figure that Mn3Fe2/TS-1-30 exhibits a NOx conversion efficiency of 90% at 120 ◦C,
which has an increase of almost 30% compared to that of Mn3Fe2/Silicalite-1 at the same temperature.
In addition, both Mn3Fe2/TS-1-30 and Mn3Fe2/TS-1-20 show an obvious improvement in catalytic
activities at low temperatures, especially below 150 ◦C. The optimized catalysts, Mn3Fe2/TS-1-30 can
maintain steady NOx conversion efficiencies above 80% in the temperature range between 110 and
230 ◦C, with a space velocity of 18,000 h−1. Based on the characterization of the catalysts’ physical
and chemical properties mentioned above, the improvement of low-temperature denitration activity
is mainly attributed to the incorporation of Ti species, which enhances the redox properties of the
catalysts and provides more surface acid sites for the adsorption of NH3.

Figure 10. The NH3-selective catalytic reduction (SCR) activity of catalysts at the variation of
temperature (a); H2O resistance performance of catalysts at 180 ◦C (b).

Since zeolites are reported to be sensitive to water vapor [26,28], the H2O resistance of the catalysts
is further studied at the temperature of 180 ◦C. As shown in Figure 10b, when 10 vol.% H2O is
introduced into the reaction, Mn3Fe2/Silicalite-1 displays a decrease of about 5% in NOx conversion
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efficiency, while Mn3Fe2/TS-1-30 remains unaffected by water vapor. It is widely accepted that the water
deactivation is mainly because of the competitive adsorption between NH3 and water vapor [16,55],
and the presence of Ti species further strengthens the hydrophobicity of the catalyst [29,56], thereby
improving the H2O resistance of the catalysts.

3. Materials and Methods

3.1. Preparation of Samples

Silicalite-1 and TS-1 were synthesized by a hydrothermal template method, according to
the previous literature [57,58]. The tetrapropylammonium hydroxide (TPAOH, 25 wt.% aqueous
solution, Beijing Innochem Technology Co., Ltd., China) was served as a microporous template,
while ethyl silicate (TEOS, Tianjin Guangfu Fine Chemical Research Institute, China) and tetrabutyl
titanate (TBOT, Beijing Tongguang Fine Chemical Company, China) were served as the source
of silicon and titanium, respectively. The molar composition of the synthesis solution was:
SiO2:TiO2:TPAOH:H2O = 1:(0~0.05):0.2:7. Firstly, TEOS was added dropwise into 12.8 g aqueous
solution of TPAOH at 40 ◦C with constant magnetic stirring while TBOT was dissolved in 10 g
isopropanol. Secondly, the hydrolysis solutions of TEOS and TBOT were mixed and then heated up to
80 ◦C to distill off isopropanol. Then, the mixture was transferred into a stainless steel autoclave and
then kept in an oven at 160 ◦C for 48 h. Afterwards, the white precipitation was washed by deionized
water and ethanol for three times, respectively. Finally, the products were dried at 80 ◦C overnight,
followed by calcination at 550 ◦C in the air for 6 h. The prepared samples without titanium labeled as
Silicalite-1, while others with feeding n (Si/Ti) of 30, 20 were labeled as TS-1-30 and TS-1-20, respectively.

MnOx-FeOx catalysts were synthesized through the wet impregnation method. Manganese nitrate
(Mn (NO3)2, 50 wt.% aqueous solution, Saen Chemical Technology (Shanghai) Co., Ltd., China) and
iron nitrate nonahydrate (Fe (NO3)3·9H2O, 99.9%, Beijing Tongguang Fine Chemical Company, China)
were dissolved in deionized water as precursors and zeolites including Silicalite-1 and TS-1 were
immersed into solution as supporters. The mass ratio of the mixture was: Mn:Fe:supporter (Silicalite-1
or TS-1) = 3:2:100, which is favorable for NH3-SCR reaction according to the previous-reported
researches [25,30]. After magnetic stirring at room temperature for 2 h, the mixture was transferred
into an oven at 110 ◦C overnight, and followed by calcination at 500 ◦C in the air for 4 h. The samples
were labeled as Mn3Fe2/Silicalite-1, Mn3Fe2/TS-1-30 and Mn3Fe2/TS-1-20, respectively.

3.2. Characterization

X-ray diffraction (XRD) patterns of as-prepared samples were collected by a powder X-ray
diffractometer (Rigaku Dmax-2400, RIGAKU, Tokyo, Japan) with Cu-Kα target. Fourier transform
infrared (FT-IR) spectra were collected on a FT-IR spectrophotometer (Nicolet iS50, ThermoFisher,
Waltham, MA, USA). The textural properties of as-prepared samples were investigated using a
nitrogen adsorption apparatus (ASAP2020, Micromeritics, Norcross, GA, USA) at 77 K. Specific
surface area, pore volume and pore size were calculated by Brunauer-Emmett-Teller (BET), single
point and Barrett-Joyner-Halenda (BJH) methods, respectively. Surface morphologies of as-prepared
samples were carried out on a field emission scanning electron microscope (Merlin Compact, ZEISS,
Oberkochen, Germany) operating at 10 kV. Transmission electron microscopy (TEM) images of
as-prepared samples were screened on a transmission electron microscope (JEM-2100F, JEOL, Tokyo,
Japan) operating at 200 kV. The chemical composition of as-prepared samples was measured by an
inductively coupled plasma-atomic emission spectrometer (Thermo iCAP6000 ICP-OES, ThermoFisher,
Waltham, MA, USA). The surface chemical species of as-prepared samples were characterized by
an X-ray photoelectron spectroscopy (AXIS Supra, Kratos Analytical Ltd., Manchester, UK) with Al
Kα radiation. H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed
desorption (NH3-TPD) experiments were carried out on a chemisorption analyzer (ChemBET Pulsar
TPR/TPD, Quantachrome, Boynton Beach, FL, USA). In situ diffuse reflectance infrared Fourier
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transform (in situ DRIFTS) of NH3 adsorption were obtained from a FT-IR spectrophotometer (Nicolet
6700, Thermo Fisher, USA), by accumulating 32 scans with a resolution of 4 cm−1. The samples were
firstly pretreated under a high purified N2 stream at 400 ◦C for 1 h to remove physicsorbed water and
other impurities. Then the background spectra were obtained at target temperatures during the cooling
procedure. Subsequently, the samples were exposed to a stream of NH3/N2 (1 vol.% NH3) at room
temperature, followed by purging with N2 for 30 min. The desorption of NH3 studies were measured
by heating pre-adsorbed samples, and the spectra were recorded at stepped target temperatures by
eliminating the corresponding background reference.

3.3. NH3-SCR Activity Measurements

The NH3-SCR catalytic performances were tested in a fixed-bed quartz reactor (6 mm of internal
diameter) in the temperature range from 90 to 270 ◦C, with a GHSV of 18,000 h−1. The reaction gas
mixture was consisted of 500 ppm NO, 500 ppm NH3, 3 vol.% O2, 10 vol.% H2O (if applied) and N2 in
balance. Firstly, 200 mg catalyst was pretreated with N2 at 200 ◦C for 30 min to eliminate physisorbed
water. The concentrations of NO and NO2 were obtained through a flue gas analyzer (Testo 350 Pro,
Testo, Black forest, Germany) when the catalytic reaction substantially reached a steady state at every
target temperature. Moreover, H2O resistance of the catalysts for low-temperature NH3-SCR reaction
was evaluated at the target temperature. NOx conversion efficiency was calculated according to the
following formula:

NOx conversion efficiency(%) =

(
1−

[NOx]out

[NOx]in

)
× 100% (1)

[NOx] = [NO] + [NO2] (2)

where [NOx]in and [NOx]out refer to inlet and outlet concentrations of NOx at steady state, respectively.

4. Conclusions

In this work, silicalite-1 and TS-1 were applied as supporters to load MnOx and FeOx nanoparticles
as active components for the low-temperature NH3-SCR reaction. Mn3Fe2/TS-1-30 maintains NOx

conversion efficiencies above 80% when the range of temperature is from 110 to 230 ◦C. Moreover,
Mn3Fe2/TS-1-30 can maintain a denitration efficiency of 94% in the presence of 10 vol.% H2O at 180 ◦C
for over 12 h. Its excellent catalytic performance and H2O resistance can be attributed to having
much more surface acid sites and the stronger redox ability of its active components, which can be
explained by the incorporation of Ti species. Therefore, the superior denitration ability and H2O
resistance of Mn3Fe2/TS-1-30 will make it a practical catalyst for industrial largescale denitration at
low temperatures.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/5/566/s1,
Figure S1: STEM images and EDS mappings of the supporters: (a) TS-1-30; (b) TS-1-20.
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