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Abstract: Ongoing industrialization has deteriorated the global environment. Global warming is a
human-induced issue affecting the environment. The alarming increase in CO2 emissions is among
the major contributors to global warming. The conversion of CO2 to methanol is an economically
viable and environmentally friendly solution to mitigate its concentration. Here, hydrogenation of
CO2 was studied over carbon nanofiber-based Cu/ZrO2 catalysts. Kinetics investigations were carried
out for the reaction. Overall, kinetics data indicated that CO2 conversion follows a pseudo-first-order
reaction. The kinetics studies were further modeled by using an artificial neural network, which
supported the experimental kinetics study.
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1. Introduction

Rapid industrialization to cope with growing population demands has adversely affected the
natural environment. The rise in CO2 concentration as a result of industrialization is considered to
be a major contributor to global warming [1]. CO2 hydrogenation to methanol provides a win–win
situation by diminishing CO2 concentration on the one hand while producing fuel in the form of
methanol on the other [2–5].

CO2 hydrogenation to methanol is given by Reaction 1 [6].

CO2 + 3H2 
 CH3OH + H2O ∆H0
298K = −49.5 kJ/mol (Reaction 1)

To support methanol synthesis on an industrial scale, many kinetics models have been proposed in
the literature for CO2 conversion to methanol. Kinetic investigations of low-temperature CO2 conversion
have a potential impact on designing and controlling the reactor systems for such processes [7]. Several
kinetic models with variant reaction mechanisms have been reported for methanol synthesis by CO2

conversion. The Langmuir–Hinshelwood–Hougen–Watson model was applied over a CuO/ZnO/Al2O3

catalyst by Skrzypek et al. [8]. Similarly, a dual-site mechanism-based kinetic model was developed [9].
Likewise, a kinetic model with three-site adsorption was applied over a copper–zinc catalyst [10].
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Recently, Díez-Ramírez et al. [11] documented the application of a three-site mechanism-based model
over a Pd–Cu–Zn/SiC catalyst.

The early-stage kinetics model assumes that methanol synthesis is only possible from CO, where
CO2 cannot be used in the synthesis of methanol [12–15]. More recently, complex kinetics models have
been introduced based on experimental findings that indicate that methanol is not produced mainly
from CO but in fact from CO2 [8,15–17].

An artificial neural network (ANN) model has been applied for CO2 hydrogenation to methanol.
The application of this model has been found to be very promising for describing the chemistry of
complex reactions. Similarly, the model also helps understanding of the reaction mechanism where exact
mechanisms of reactions are not well comprehended. The application of this model is therefore best
suited in the case of complex CO2 hydrogenation with non-univocal reaction mechanisms. Furthermore,
an ANN model has been recorded as 120–5000 times faster when compared to phenomenological
models, giving extra advantage to this model regarding computation time [18]. Therefore, the ANN
model has found wide application in kinetics investigations in chemical and biological reactors [19,20].
The ANN model was applied to investigate kinetics study over the Al2O3 catalyst for methanol
dehydration by Alamolhoda et al. [21] in using a slurry reactor. The study found that the experimental
kinetics data was significantly matched by ANN model estimations. In this approach, which is
considered to be very effective due to the involvement of computer architecture, the ANN model uses
the numerical input and output values obtained from experimental data.

Carbon nanofibers (CNFs), due to high surface area, are considered to be a good catalyst
support [22,23]. The application of CNFs is further amplified in liquid-phase reactions due to the
complete absence of bottle-like pores which ultimately mitigate mass transfer limitations [24,25].
Therefore, CNF-supported catalysts have been reported to have better catalytic profiles compared to
traditional metal oxide-based catalysts [1]. In the current work, kinetics studies of CNF-supported
Cu/ZrO2 catalysts in terms of CO2 conversion have been undertaken. The significance of the current
study can be comprehended by the fact that it can potentially be applied for the understanding of a
detailed reaction mechanism of CO2 conversion to methanol over CNF-supported Cu/ZrO2 catalysts,
which is one of the hypotheses of the current work.

The goal of the current work is a kinetics study of CO2 conversion. Based on our previous work,
the catalyst with optimum activity (Cu.ZrO2/CNFs with 15 wt.% of Cu and ZrO2 each) was used.
The catalyst was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM)
techniques to assess the phase and morphology of the catalyst, respectively. Furthermore, the reported
kinetics data was supported by the application of an ANN model in the current work.

2. Results and Discussions

2.1. XRD and TEM Investigations

The XRD spectrum and transmission electron microscopy (TEM) image of the CZC450 catalyst
are displayed in Figure 1. Hexagona graphitic planes of CNFs are confirmed by two prominent XRD
diffraction peaks at 2θ values of 26◦ and 44◦ (JCPDS No. 41-1487) [25]. Similarly, small diffraction lines
at 36◦, 50◦, 54◦, 63◦, and 78◦ indicate the presence of CuO. TEM investigation revealed the successful
deposition of zirconia and copper on the surface of the support. The existence of individual metals is
identified by arrows based on their shapes.
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Figure 1. (a) X-ray diffraction (XRD) spectrum; and (b) transmission electron microscopy (TEM) 
image of CZC450 catalyst. 
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Figure 1. (a) X-ray diffraction (XRD) spectrum; and (b) transmission electron microscopy (TEM) image
of CZC450 catalyst.

2.2. Kinetics Study

A slurry reactor was employed to evaluate the kinetics study for CO2 hydrogenation to methanol.
To evaluate the rate of CO2 conversions, the concentrations of H2 and H2O were neglected.

For the concentration ratio M =
CCH3OHO

CCO2
O

, the reaction rate is given as follows:

dCCH3OH

dt
= −

dCCO2

dt
= CCO2O

dXCO2

dt
= k1CCO2−k2CCH3OH

= k1(CCO2O −CCO2O XCO2) − k2(MCCO2O + CCO2O XCO2)

(1)

where CCO2O , CCH3OHO and XCO2 is the initial concentration of CO2, initial concentration of CH3OH
and CO2 conversion fraction, respectively.

kc =
CCH3OHe

CCO2e
=

M + XCO2e

1−XCO2e
(2)

XCO2e , CCO2e and CCH3OHe and are equilibrium CO2 conversion, equilibrium CO2 concentration and
equilibrium CH3OH concentration, respectively.

The equilibrium constant (kc) is given by

kc =
k1

k2
(3)

Combining Equations (1)–(3) CO2 conversion at equilibrium is obtained as

dXCO2

dt
=

k1(M + 1)
M + XCO2e

(XCO2e −XCO2 ) (4)

Integration of Equation (4) gives

− ln(1−
XCO2

XCO2e
) = −ln

CCO2 −CCO2e

CCO2O −CCO2e
=

M + 1
M + XCO2e

k1t (5)

A graph plotted between −ln(1−
XCO2
XCO2

e ) against reaction time for the kinetics data obtained at

different reaction temperatures resulted in a straight line as depicted in Figure 2, therefore supporting
a pseudo-first-order kinetics hypothesis for CO2 conversion.
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The magnitudes of k1, obtained from slope are documented in Table 1.

Table 1. Rate constants at different reaction temperature.

Reaction Temperature (K) Rate Constant k1

453 0.0015
473 0.0033
493 0.0055
513 0.008

2.3. Activation Energy

The Arrhenius equation was used to calculate activation energy as depicted in Equation (6).

k1 = Ae−
Ea
RT (6)

where k1 shows rate constant, representing effective collisions between the reactants. R represents the
universal gas constant, while Ea stands for activation energy.

Integrating Equation (6), we get the linearized Arrhenius Equation (7),

lnk1 = lnA−
Ea
R
·
1
T

(7)

lnk1 was plotted versus 1/T to measure the activation energy as shown in Figure 3. A value of 54 kJ/mole
activation energy was found in the current case, very close to the reported data in Table 2.
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Table 2. Activation energy of CO2 hydrogenation.

Catalyst Activation Energy (kJ/mole) Reference

Cu/ZrO2/CNFs 54 This work
Cu/ZnO/Al2O3 68 [26]
Cu/ZnO/ZrO2 52 [10]

Cu/ZnO/ZrO2/Al2O3/SiO2 32 [18]
Ga3Ni5/SiO2 64 [27]

Cu–Zn–Al 65 [9]

2.4. Application of Artificial Neural Networks

An ANN model with a feed-forward back-propagation network was employed in the current
study. Four algorithms, namely trainbr, trainlm, traingdm, and traingda, were used to evaluate the
experimental data.

Figure 4 shows good agreement between the experimental and predicted data, indicating the
accuracy of the kinetics data. Such agreement between the experimental data and ANN-predicted data
was reported for Pt–Sn/c-Al2O3 catalyst-based propane dehydrogenation by Amini et al. [28].
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3. Experimental

3.1. Catalysts Synthesis

CNF GNF-100 type, acquired from Carbon Nano-material Technology Co. Ltd., Korea was used
as the catalyst support. Deposition precipitation method was used for catalyst synthesis [25,29,30].
Copper nitrate tri-hydrate (R&M Chemicals, London, UK) and zirconyl nitrate hydrate (Sigma–Aldrich,
St. Louis, MO, USA) were used as starting materials for Cu and ZrO2, respectively. In a typical
experiment, the required quantities of copper nitrate triydrate and zirconyl nitrate hydrate were
dissolved in distilled water. Upon total dissolution of the nitrate salts, the required amount of pH was
adjusted to 8 by urea solution. The slurry was stirred for 18 h at 85–90 ◦C.

Catalyst Cu.ZrO2/CNFs with 15 wt.% each (Cu and ZrO2) with CNFs as a support was synthesized.
The synthesized catalyst was cooled to avoid leaching of active catalyst components, filtered, washed,
and dried overnight at 100 ◦C. The dried catalyst was calcined at N2 flow at 450 ◦C for 3 h and labeled
as CZC450 catalyst. The catalyst underwent reduced H2 flow with rate of 2000 cm3 h−1 for 6 h at
380 ◦C before kinetics investigations.

3.2. Characterization

The PANalytical X-ray diffractometer model Empyrean (Malvern Panalytical Ltd., Malvern, UK)
was employed to investigate phase studies of catalyst. Room-temperature XRD studies were conducted
from 20 to 80 at 2θ Bragg angle.

Zeiss LIBRA 200TEM TEM (A Carl Zeiss SMT AG Company, Oberkochen, Germany) was
employed to investigate catalyst morphology in the current work.
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3.3. Kinetics Study

Slurry reactor model Parr 4593 was used in the current study. A kinetics investigation for CO2

conversion was conducted at 453, 473, 493, and 513 K reaction temperature with constant 40 bar
pressure. 0.5 g of catalyst was placed in a reactor vessel containing 25 mL ethanol, used as the reaction
solvent [31]. The reaction was stirred at 1300 rpm to avoid mass transfer limitations [32,33]. The kinetics
of the process was investigated in a dynamic mode by taking the sample at different time intervals.
The samples were analyzed at reaction times of 20, 40, 60, 80, 100, 120, 140, 160, and 180 min and gas
samples were studied by GC TCD for CO2 conversion. The experiment lasted for 3 h.

3.4. Artificial Neural Networks for Kinetics Estimations

An ANN model with back-propagation method was used as a supporting tool in the current
work (Figure 5). Hence, as predicted, the kinetics data performed at 40 bar constant reaction pressure.
The role of pressure in the reaction helps in the kinetics of the reaction, but higher pressure is usually
not recommended in industry. Therefore, optimum pressure value is adopted in this study and, while
keeping it constant, temperature varies, to find the rate of the reaction. The adopted ANN procedure
replicated our experimental finding and, in comparison with the experimental data, the predicted
results show a reasonable estimate.
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Figure 5. Scheme for application of ANN in kinetics modeling.

In addition, four algorithms were used in a MATLAB platform for CO2 conversion. The “trainlm”
and “trainbr” types are the network training updates bias and weight value of your input and target
data, based on the Levenberg–Marquardt optimization procedure. The algorithm type “trainlm”
is considered to be the fastest back-propagation algorithm and recommended to be the first-choice
supervised algorithm that does not require memory as compared to other algorithms. The algorithm
type “trainbr” curtails the combination of both weights and squared errors; by doing that, it determines
the correct combination so that the network can produce a correct generalization of the input and
output data. This process is known as Bayesian regularization. The type “traingda” is the network
training function, which operates by updating the weight and bias based on output and input data
according to gradient descent with adaptive learning rate procedure. The performance of this algorithm
is sensitive to the proper setting of the learning rate. Setting learning to high creates unstable and
oscillated algorithms, whereas setting the learning rate to low can take the algorithm too long to
converge. The type “traingdm” is the network training function, which updates weight and bias values
using gradient decent with momentum procedure.
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4. Conclusions

In the current work, CO2 conversion has been reported using a CNF-supported Cu/ZrO2 catalyst.
Kinetics investigations were carried out for the title reaction. The overall kinetics studies revealed
that CO2 conversion follows pseudo-first-order kinetics. Similarly, the Arrhenius model was used to
calculate the activation energy of the reaction. The kinetics data were supported using an ANN model.
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