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Abstract: The Pd-mediated cross-coupling of (hetero)arenes with alkenes may be an effective method
for the formation of a C–C bond from two C–H bonds. Discovered by Fujiwara and co-workers in
1967, this reaction led to a number of reports that we firstly highlighted in 2011 (review with references
till June 2010) and for which, we retained the name “dehydrogenative Heck reaction”. The topic,
especially the reactions of five-membered heteroarenes, has been the subject of intensive research over
the last ten years. The present review is limited to these dehydrogenative Heck reactions published
since 2010, underlining the progress of the procedures.
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1. Introduction

Palladium-catalyzed C–H functionalization has been at the forefront of organic synthesis over the
last half-century [1–4]. Through the multitude of reactions, the coupling leading to a C–C bond from
two C–H bonds is an atom-economical process because any prefunctionalization is required. In the late
sixties, Fujiwara’s team disclosed the PdII-mediated synthesis of stilbene from the cross-coupling of
styrene with benzene [5,6]. This synthesis contrasts with the usual Pd-catalyzed method independently
discovered by the teams of Mizoroki [7], Julia [8], and Heck [9] (The Mizoroki publication, submitted
on 20, October, 1970, was cited by Heck’s team which submitted their report on 13, January, 1972. On 12,
January, 1971, Julia’s team deposited a “Pli cacheté”, i.e., a sealed envelope, to the Société Chimique
de France, which was open on 5, May, 1973.), which requires phenyl halide instead of benzene.
Although the above Fujiwara cross-coupling initially occurred with a very low palladium turnover [6],
such dehydrogenation reactions, which could be named “Dehydrogenative Heck Reactions” (DHRs),
have been the subject of intensive research over the last half century leading to efficient catalytic
procedures. We previously reviewed the corresponding literature with references until sep 2010 [10].
Through the DHRs, those of the five-membered heteroarenes have especially retained our attention,
and are the subject of the present review which is limited to reports of the last ten years (For more
general reviews containing some examples, see [11–15].) The reactions of fused bicyclic heteroarenes
that do not involve the C–H bond of the small hetero ring (See examples in [16–18]) will be discarded.
For convenience, the framework of the text depends on the nature of the aromatic substrate.

The simplified mechanism of DHRs usually admitted implicates the activation of a C–H bond of
the arene by PdII species leading to an arylpalladium intermediate which adds to the alkene to provide
1A or 1A’ (Scheme 1, arene activation). Subsequent β-H elimination delivers the cross-coupling product
and Pd0. The active PdII species are regenerated with an oxidant. Another mechanism involving the
coordination of the alkene to afford a η2-palladium complex susceptible to nucleophilic attack by the
arene has been hypothesized (Scheme 1 alkene activation) [19]. Such a reaction would also afford
intermediate 1A or 1A’. Both catalytic cycles describe dehydrogenative cross-coupling reactions, but a
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reaction via the alkene complex cannot be named DHR. Broggini’s team proposed the term “alkene
activation” for the corresponding catalytic cycle [19]. In fact, coordination of the alkene to palladium
decreased the electron density of the double bond, leading to its activation towards nucleophilic attack,
that is, a Friedel–Crafts reaction. Electrospray ionization mass spectrometry (ESI-MS) [20–26] and
nuclear magnetic resosnance (NMR) [27] studies would favor the arene activation process for the
majority of the dehydrogenative cross-coupling reactions.
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The site selectivity of the heteroarene is governed by the “innate” or “guided” C–H bond
activation [13]. The former relies on the electronic properties of the heterocycle induced by the
heteroatom [28], whereas the latter is relevant to either a directing group or a specific additive.

2. S-Arenes

2.1. Thiophenes

Subsequently to the report by Fujiwara’s team on the cross-coupling of thiophene with styrene
mediated by stoichiometric amounts of Pd(OAc)2 in refluxing AcOH/dioxane [29], Kozhevnikov
disclosed catalytic conditions with Cu(OAc)2 to regenerate active Pd species and CaCl2 as additive in
DMF [30]. The catalyst turnover was low and other reoxidation methods, namely, Cu(OAc)2/air [31,32],
H6PMo9V3O40 [33], HPMo11V/air [34], and AgOAc [35], have been then proposed with various
additives and solvents [10]. A number of procedures have been published since 2010.

Liu’s team carried out the cross-coupling with allyl esters using Pd(OAc)2/Ag2CO3 in
DMSO/dioxane leading to a 88:12-99:1 mixture of linear and branched compounds via β-H elimination
rather than β-OCOR2 elimination (For such competitions, see [36]) (Equation (1)) [37]. Other oxidants
and use of pure solvents greatly depreciated the yields. The reaction also occurred with allyl phenyl
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ether and 1-octene (Equation (2)). The formation of linear/branched products from 1-octene will be
discussed in Sub-chapter 6.3.

Catalysts 2020, 10, x FOR PEER REVIEW 3 of 49 

 

(1) 

 

(2) 

In DMSO/AcOH, thiophenes underwent efficient Pd(OAc)2-catalyzed aerobic DHRs with styrenes 
(Equation (3)) [22]. Under these conditions, we observed that addition of metallic co-oxidants, such as 
AgOAc, Cu(OAc)2, Mn(OAc)n (n = 2 or 3), or MnO2, disfavored the yields. (For the power of DMSO/O2 
to regenerate active PdII species, see [38,39].) 

 

(3) 

Xu and co-workers reported the Pd(OAc)2-catalyzed C2-substitution of thiophenes with 
allylamines using Ag2CO3/Cu(OAc)2/air as reoxidant (Equation (4)) [40]. Yields diminished with other 
Pd catalysts. The method led to C3-substition from 2,5-dimethylthiophene (Equation (5)). 

 

(4) 

 

(5) 

(1)

Catalysts 2020, 10, x FOR PEER REVIEW 3 of 49 

 

(1) 

 

(2) 

In DMSO/AcOH, thiophenes underwent efficient Pd(OAc)2-catalyzed aerobic DHRs with styrenes 
(Equation (3)) [22]. Under these conditions, we observed that addition of metallic co-oxidants, such as 
AgOAc, Cu(OAc)2, Mn(OAc)n (n = 2 or 3), or MnO2, disfavored the yields. (For the power of DMSO/O2 
to regenerate active PdII species, see [38,39].) 

 

(3) 

Xu and co-workers reported the Pd(OAc)2-catalyzed C2-substitution of thiophenes with 
allylamines using Ag2CO3/Cu(OAc)2/air as reoxidant (Equation (4)) [40]. Yields diminished with other 
Pd catalysts. The method led to C3-substition from 2,5-dimethylthiophene (Equation (5)). 

 

(4) 

 

(5) 

(2)

In DMSO/AcOH, thiophenes underwent efficient Pd(OAc)2-catalyzed aerobic DHRs with styrenes
(Equation (3)) [22]. Under these conditions, we observed that addition of metallic co-oxidants, such
as AgOAc, Cu(OAc)2, Mn(OAc)n (n = 2 or 3), or MnO2, disfavored the yields. (For the power of
DMSO/O2 to regenerate active PdII species, see [38,39].)

Catalysts 2020, 10, x FOR PEER REVIEW 3 of 49 

 

(1) 

 

(2) 

In DMSO/AcOH, thiophenes underwent efficient Pd(OAc)2-catalyzed aerobic DHRs with styrenes 
(Equation (3)) [22]. Under these conditions, we observed that addition of metallic co-oxidants, such as 
AgOAc, Cu(OAc)2, Mn(OAc)n (n = 2 or 3), or MnO2, disfavored the yields. (For the power of DMSO/O2 
to regenerate active PdII species, see [38,39].) 

 

(3) 

Xu and co-workers reported the Pd(OAc)2-catalyzed C2-substitution of thiophenes with 
allylamines using Ag2CO3/Cu(OAc)2/air as reoxidant (Equation (4)) [40]. Yields diminished with other 
Pd catalysts. The method led to C3-substition from 2,5-dimethylthiophene (Equation (5)). 

 

(4) 

 

(5) 

(3)

Xu and co-workers reported the Pd(OAc)2-catalyzed C2-substitution of thiophenes with
allylamines using Ag2CO3/Cu(OAc)2/air as reoxidant (Equation (4)) [40]. Yields diminished with other
Pd catalysts. The method led to C3-substition from 2,5-dimethylthiophene (Equation (5)).

Catalysts 2020, 10, x FOR PEER REVIEW 3 of 49 

 

(1) 

 

(2) 

In DMSO/AcOH, thiophenes underwent efficient Pd(OAc)2-catalyzed aerobic DHRs with styrenes 
(Equation (3)) [22]. Under these conditions, we observed that addition of metallic co-oxidants, such as 
AgOAc, Cu(OAc)2, Mn(OAc)n (n = 2 or 3), or MnO2, disfavored the yields. (For the power of DMSO/O2 
to regenerate active PdII species, see [38,39].) 

 

(3) 

Xu and co-workers reported the Pd(OAc)2-catalyzed C2-substitution of thiophenes with 
allylamines using Ag2CO3/Cu(OAc)2/air as reoxidant (Equation (4)) [40]. Yields diminished with other 
Pd catalysts. The method led to C3-substition from 2,5-dimethylthiophene (Equation (5)). 

 

(4) 

 

(5) 

(4)



Catalysts 2020, 10, 571 4 of 48

Catalysts 2020, 10, x FOR PEER REVIEW 3 of 49 

 

(1) 

 

(2) 

In DMSO/AcOH, thiophenes underwent efficient Pd(OAc)2-catalyzed aerobic DHRs with styrenes 
(Equation (3)) [22]. Under these conditions, we observed that addition of metallic co-oxidants, such as 
AgOAc, Cu(OAc)2, Mn(OAc)n (n = 2 or 3), or MnO2, disfavored the yields. (For the power of DMSO/O2 
to regenerate active PdII species, see [38,39].) 

 

(3) 

Xu and co-workers reported the Pd(OAc)2-catalyzed C2-substitution of thiophenes with 
allylamines using Ag2CO3/Cu(OAc)2/air as reoxidant (Equation (4)) [40]. Yields diminished with other 
Pd catalysts. The method led to C3-substition from 2,5-dimethylthiophene (Equation (5)). 

 

(4) 

 

(5) (5)

The aerobic DHR with allylic alcohols disclosed by Jiang’s team (In contrast to the captions of the
publication tables [41], oxygen was the sole oxidant. Personal communication from H. Jiang, 24, April,
2020.), led to aldehydes or ketones (Equation (6)) through hydrogen migration [41] as that occurs from
the Heck reaction of such substrates [42].
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Scheme 2. Carrow’s regiodivergent Dehydrogenative Heck Reactions (DHRs).

Jia, Xi, and coworkers prepared a heterogeneous catalyst from deposition of PdCl2 onto the
surface of MoS2 nanosheets [47]. Small amounts of this catalyst mediated the effective C5 alkenylation
of 3-ethylthiophene in DMF with Cu(OAc)2 as oxidant (Equation (15)). The authors did not comment
on the catalyst recyclability. Recently, De Vos’ team prepared a palladium–organic framework (noted
Pd@ MOF-808-L1) from Pd(OAc)2 and a metal–organic framework (noted MOF-808-L1) containing
S,O-moieties, the latter increasing the catalytic activity of PdII [48]. DHR of 2,6-dimethylanisole with
n-butyl acrylate showed that the catalytic power of Pd@ MOF-808-L1 was superior to Pd(OAc)2 (63%
instead of 22%) and similar to a mixture of Pd(OAc)2 and MOF-808-L1 added separately. Consequently,
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the mixture was used for alkenylation of five-membered heteroarenes (Equation (16)), but the method
was also lacking of recyclability.

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 49 

MOF-808-L1) from Pd(OAc)2 and a metal–organic framework (noted MOF-808-L1) containing S,O-
moieties, the latter increasing the catalytic activity of PdII [48]. DHR of 2,6-dimethylanisole with n-butyl 
acrylate showed that the catalytic power of Pd@ MOF-808-L1 was superior to Pd(OAc)2 (63% instead of 
22%) and similar to a mixture of Pd(OAc)2 and MOF-808-L1 added separately. Consequently, the 
mixture was used for alkenylation of five-membered heteroarenes (Equation (16)), but the method was 
also lacking of recyclability. 

 

(15) 

 

(16) 

The team of Lin and Yao studied the regiodivergent cross-coupling of 4-arylthiophene-3-
carboxylates or 4-phenyl-3-acetylthiophene using different metal catalysts [49]. The reaction mainly 
occurred at C5 under Pd(OCOCF3)2 catalysis, while [RhCp*Cl2]2, [RuCl2(p-cymene)]2 and [IrCp*Cl2]2 
catalysts led to C2 products with high regioselectivity (Equation (17)). According to the authors, “the 
palladium-catalyzed system led to electronic palladation at the more electron-rich C-5 position”, while 
a five-membered metallacycle formed via coordination of COR2 group and C2-H activation is the 
intermediate leading to C2 products with other catalysts. 

 

(17) 

A Catellani-type reaction [50–52] was related by Dong’s team, leading to both 5-ethylenation and 
4-arylation of 1-substituted thiophenes (Equation (18)) [53]. Sequential stepwise reactions were 
hypothesized by the authors. That led us to consider the steps of Scheme 3. Insertion of amide-based 
norbornene NB into the C-Pd bond of heteroarylpalladium intermediate 3A affords 3B. Use of the weak 
and π-acidic ligand AsPh3 would prevent formation of 3C by intramolecular coordination, and allows 
access to palladacycle 3D. Reaction of 3D with ArI provides 3E via a putative PdIV intermediate [50,54]. 
β-C elimination liberates NB, giving 3F, this step being favored by the size of NB. 3F undergoes reaction 
with the alkene to deliver the difunctionalized compound.  

(15)

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 49 

MOF-808-L1) from Pd(OAc)2 and a metal–organic framework (noted MOF-808-L1) containing S,O-
moieties, the latter increasing the catalytic activity of PdII [48]. DHR of 2,6-dimethylanisole with n-butyl 
acrylate showed that the catalytic power of Pd@ MOF-808-L1 was superior to Pd(OAc)2 (63% instead of 
22%) and similar to a mixture of Pd(OAc)2 and MOF-808-L1 added separately. Consequently, the 
mixture was used for alkenylation of five-membered heteroarenes (Equation (16)), but the method was 
also lacking of recyclability. 

 

(15) 

 

(16) 

The team of Lin and Yao studied the regiodivergent cross-coupling of 4-arylthiophene-3-
carboxylates or 4-phenyl-3-acetylthiophene using different metal catalysts [49]. The reaction mainly 
occurred at C5 under Pd(OCOCF3)2 catalysis, while [RhCp*Cl2]2, [RuCl2(p-cymene)]2 and [IrCp*Cl2]2 
catalysts led to C2 products with high regioselectivity (Equation (17)). According to the authors, “the 
palladium-catalyzed system led to electronic palladation at the more electron-rich C-5 position”, while 
a five-membered metallacycle formed via coordination of COR2 group and C2-H activation is the 
intermediate leading to C2 products with other catalysts. 

 

(17) 

A Catellani-type reaction [50–52] was related by Dong’s team, leading to both 5-ethylenation and 
4-arylation of 1-substituted thiophenes (Equation (18)) [53]. Sequential stepwise reactions were 
hypothesized by the authors. That led us to consider the steps of Scheme 3. Insertion of amide-based 
norbornene NB into the C-Pd bond of heteroarylpalladium intermediate 3A affords 3B. Use of the weak 
and π-acidic ligand AsPh3 would prevent formation of 3C by intramolecular coordination, and allows 
access to palladacycle 3D. Reaction of 3D with ArI provides 3E via a putative PdIV intermediate [50,54]. 
β-C elimination liberates NB, giving 3F, this step being favored by the size of NB. 3F undergoes reaction 
with the alkene to deliver the difunctionalized compound.  

(16)

The team of Lin and Yao studied the regiodivergent cross-coupling of 4-arylthiophene-3-
carboxylates or 4-phenyl-3-acetylthiophene using different metal catalysts [49]. The reaction mainly
occurred at C5 under Pd(OCOCF3)2 catalysis, while [RhCp*Cl2]2, [RuCl2(p-cymene)]2 and [IrCp*Cl2]2

catalysts led to C2 products with high regioselectivity (Equation (17)). According to the authors,
“the palladium-catalyzed system led to electronic palladation at the more electron-rich C-5 position”,
while a five-membered metallacycle formed via coordination of COR2 group and C2-H activation is
the intermediate leading to C2 products with other catalysts.
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A Catellani-type reaction [50–52] was related by Dong’s team, leading to both 5-ethylenation
and 4-arylation of 1-substituted thiophenes (Equation (18)) [53]. Sequential stepwise reactions were
hypothesized by the authors. That led us to consider the steps of Scheme 3. Insertion of amide-based
norbornene NB into the C-Pd bond of heteroarylpalladium intermediate 3A affords 3B. Use of the weak
and π-acidic ligand AsPh3 would prevent formation of 3C by intramolecular coordination, and allows
access to palladacycle 3D. Reaction of 3D with ArI provides 3E via a putative PdIV intermediate [50,54].
β-C elimination liberates NB, giving 3F, this step being favored by the size of NB. 3F undergoes
reaction with the alkene to deliver the difunctionalized compound.

Subsequent studies of the kinetic profile indicated “that the difunctionalization product was
formed immediately at the beginning of the reaction and there was no accumulation of the C4-arylation
intermediate during the course of the reaction” [53]. This “coupled” difunctionalization which also
occurs for the Catellani diarylation of six-membered aromatic substrates [50,54], led us to suggest an
alternative pathway. Exchange of ligand produces 3G from 3E, which undergoes β-C elimination
leading to 3H. Subsequent intramolecular insertion of the alkene followed by reductive elimination
affords the compound. According to this pathway, the coordination of the alkene prior to the β-C
elimination precludes the release of the C4-arylation product.
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to the mechanism and catalytic cycle of substrates with a directing group (Scheme 9).

Catalysts 2020, 10, x FOR PEER REVIEW 9 of 49 

 

(19) 

2.2. Benzothiophenes 

Some of the above procedures have been used for DHRs of benzothiophenes (Equations (20) [37], 
(21) [40], (22) [45], and (23) [46]). A mixture of C-2 and C-3 cross-coupling products was obtained with 
allyl acetate and allyl amines, the 2 position being the most reactive (Equations (20) and (21)). 

 

(20) 

 

(21) 

+

(2 equiv.)

Pd(OAc)2 (0.01-0.03 equiv.)

BQ (1.52 equiv.)
CO2t-Bu

AcOH, air, 60 °C, 3 h

S
Et

Me2N
(0.01-0.03 equiv.)

X

R

X

R

CO2t-Bu

X = S, R = H (79%), Cl (75%)
X = O, R = H (86%)  

(22) 

 

(23) 
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2.2. Benzothiophenes

Some of the above procedures have been used for DHRs of benzothiophenes (Equations (20) [37],
(21) [40], (22) [45], and (23) [46]). A mixture of C-2 and C-3 cross-coupling products was obtained with
allyl acetate and allyl amines, the 2 position being the most reactive (Equations (20) and (21)).
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Yu’s team disclosed the promotion of DHR’s by monoprotected amino acids [56,57].
Such an additive led however to modest yields for the cross-coupling of benzothiophenes with
ethyl acrylate, as reported by Huang, Lin, and co-workers, using Pd(OAc)2 combined with
11-molybdovanadophosphoric acid and N-acetylglycine under oxygen [58]. The regioselectivity
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depended on the substituents of the six-membered ring (Equation (24)). The procedure was nevertheless
effective for benzofurans (see Equation (32)).
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In contrast to the above example, the presence of N-acetylvaline allowed high yields of the
Pd(OAc)2-catalyzed DHR of 1-(benzo[b]thiophen-2-yl)ethanone O-methyl oxime with acrylates
(except butyl acrylate) using AgOCOCF3/air as oxidant (Equation (25)) [59]. Under these conditions,
the cross-coupling with styrenes led to domino reactions giving annulation products, in improved
yields with pyridine instead of N-acetylvaline (Equation (26)). According to Xia, Ji, and co-workers,
the DHR product 4A undergoes reaction with the simultaneously formed Pd0, giving 4B via oxidative
addition to N-O bond [60,61] (Scheme 4). Subsequent amino-Heck reaction provides 4C, which endures
β-H elimination, affording the annulation product and MeOPdH. Under the reaction conditions,
the latter leads to PdII via, possibly, Pd0.
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2.3. Thieno[3,2-b]thiophene

The best results of the Pd(OAc)2-catalyzed DHR of thienothiophene with styrenes were obtained
with AgOAc in CF3CH2CO2H, while the coupling with acrylates and N,N-dimethylacrylamide was
best carried out with AgOCOCF3 in EtCO2H (Equation (27) [62].
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2.5. Sub-Conclusion

The 2-position of thiophenes and benzothiophenes is the most reactive towards the DHR.
Regiodivergent reaction of thiophenes occurs when the 2- and 5-positions are already substituted or in
the presence of a directing substituent. Regioselectivity may also depend on the ligand.

In contrast to thiophenes and benzothiophenes, thienothiophene and thienofuran react in
the 3-position.
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3. O-Arenes

3.1. Furans

Subsequently to the reports by Kasahara’s and Fujiwara’s teams on the cross-coupling of furans
with activated alkenes mediated by stoichiometric amounts of Pd(OAc)2 in refluxing AcOH [63] or
AcOH/dioxane [29], Kozhevnikov disclosed catalytic conditions with Cu(OAc)2 to regenerate active
Pd species [30]. Increased catalyst turnovers were subsequently reported with Cu(OAc)2/O2 [31,64],
Cu(OAc)2/air [32], benzoquinone (BQ), Cu(OAc)2/BQ/O2 [65], H6PMo9V3O40/air [33], HPMo11V/air [34],
BQ/t-BuOOH [66], AgOAc [35], or PhCO3t-Bu [67] as oxidants with various additives and solvents [10].

Most of the above DHR methods of thiophenes were also used for the reaction of furans (Equation
(1) [37], Equation (3) [22], Equations (4) and (5) [40], Equation (6) [41], Equation (7) [24], Equation (12) [44],
Equation (13) [45],Equation (14) [46], Equation (15) [47], Equation (16) [48], Equation (17) [49], and
Equation (29) [46]). The difunctionalization of 2-butylfuran was also carried out (Equation (18)) [53].
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3.2. Benzofurans

In most cases, reports of the DHRs of benzothiophenes also provided DHRs of benzofurans
(Equation (20) [37], Equation (22) [45], Equation (25), and Equation (26) [59]). Although N-acetylglycine
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was not effective for the DHR of benzothiophenes using Pd(OAc)2/H4PMo11VO40/O2 (Equation (24)),
this additive may mediate fair to high yields from benzofurans (Equation (32)) [58].
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absence of particular substituents.

4. N-Arenes

4.1. Pyrroles

In 1973, Fujiwara’s team disclosed the synthesis of 2- and 3-styryl-N-methylpyrroles from
stoichiometric amounts of N-methylpyrrole, styrene, and Pd(OAc)2 in refluxing AcOH/dioxane [29].
Various catalytic conditions are related in our 2011 review [10].

The regioselectivity of the alkenylation of 4-aryl-1H-pyrrole-3-carboxylates is highly dependent
on the solvent (Scheme 5) [69,70]. In benzene, assisted chelation by the carboxylate would favor the
formation of 6A (Scheme 6). DMSO which is a strong coordinating solvent would add to Pd(OAc)2 to
afford 6B [71]. That overrides the chelation with the carboxylate and promotes the palladation at C5
position giving 6C as intermediate. Subsequent reaction of 6A and 6C with the alkenylating agent
affords the two DHR products (Scheme 1).
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could have a directing effect but “should not be dominant for this C5-alkenylation”. We suspect a C5
selectivity favored by coordination of the nitrile moiety to Pd-intermediates.
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The thioether previously used as additive (Scheme 2) also participated in the DHR of N-protected
pyrroles (Equation (36)), directing the reaction to the 5-position of 2-phenyl-pyrroles (Scheme 8) [45].
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Reaction of N-(2-(1H-pyrrol-1-yl)phenyl)-4-methylbenzenesulfonamide with butyl acrylate
provided a quinoxaline derivative (Equation (37)) [74]. According to Xiao, Wang, and co-workers,
the reaction pathway begins with the palladation of the secondary nitrogen giving 9A (Scheme 9,
this scheme differs from that proposed by the authors [74], and also by Youn’s team [55]). Selective
activation of the α-C–H bond of the pyrrole provides palladacycle 9B. Coordination of the alkenating
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agent followed by insertion into the C-Pd bond affords 9C. Nitrogen-assisted β-hydrogen elimination
leads to 9D. Subsequent hydroamination gives the product.
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PdII-catalyzed DHRs of boron dipyrromethene derivatives were carried out with either styrenes and
AgOAc [75] or acrylates and AgOCOCF3 (Equation (38)) [76], affording dyes with improved properties.
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Our 2011 review [10] contains a great number of DHRs of indoles. The topic continued to retain
the attention of researchers resulting into papers with different N-protecting groups and experimental
conditions. Reviews not limited to palladium catalysis and DHR have been published [77–79].
As pointed in the introduction chapter, we will limit the examples to the DHRs of the heterocycle
(For reactions at C4, C5, C6, and C7 positions of the benzenoid ring, see [18]).

Before presenting the results of the ten last years, it is necessary to remember the important
communication of Gaunt and co-workers who, in 2005, disclosed the selective 2- or 3-alkenylation of
free (NH) indoles, depending on the experimental conditions, especially the solvent (Scheme 10) [80].
The optimum conditions also allowed the selective 3-alkenylation of N-methyl indole but were
ineffective for the C2. According to the authors, the reaction starts with palladation at C3. Acidic
conditions would allow migration of the C3-Pd bond leading to C2-Pd bond, hence the observed results.
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Some of the above procedures have been used (Equations (39) [22], (40) [47], (41) [45], and (42) [41]).
Surprisingly, the addition of metallic co-oxidants may have a negative effect on the aerobic DHR [22].
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TsOH was ineffective for the PdX2/acid/DMSO method (Equation (44)), this acid was retain for the
DHR in the presence of a thioether ligand (Equation (45)) [45].
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indoles led mainly to annulation products, like those of Equation (61)) [85]. Note that yields may
depend on the DMF/DMSO ratio [85].
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group such as L1* and L2* were particularly effective providing aldehydes and ketones in good yields
with e.e. up to 92% (Equation (51)).
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The domino C3 styrenation/annulation with the benzothiophene with an O-methylketoxime group
depicted in Chapter 2.2 also occurred with the corresponding indoles (Equation (26)) [59].

Using Pd(OCOCF3)2/Cu(OAc)2/H2O in DMF/DMSO, enol ethers, and enamides underwent
reaction with indoles at their α-position to afford the branched adduct, which, under the reaction
conditions, led to 3-acylindoles (Equation (52)) [91]. The team of Li and Xiao proposed a mechanism
involving alkene activation as depicted in Scheme 1. Nevertheless, a DHR mechanism cannot be
discarded, since the Heck reaction of acyclic enol ethers and enamides could also occur at the
α-position [92–94].
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4.2.2. C2 Alkenylations

Most reports of selective C2 alkenylations are due to substrates already C3 substituted,
as exemplified with Equation (54) [96], Equation (55) [97], Equation (56) [98], and Equation (57) [99].
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C2 alkenylation may be followed by annulation with the C3 substituent (Equations (56) [98] and
(57) [99]). The lactonization depended on the N-substituent of the indole and did not occur with
N,N-dimethylacrylamide as the alkenylating reagent (Equation (56)). The aza-heterocycle (Equation (57))
would be formed as depicted in Scheme 4. Regarding the lactone (Equation (56)), Liu, Zeng, and
co-workers proposed the activation of an olefinic C−H bond of the DHR product 11A, leading to
the seven-membered palladacycle intermediate 11B (Scheme 11). Subsequent reductive elimination
gives the lactone. We rather suspect a Wacker-type reaction [100]: activation of the double bond by
coordination to PdII mediating the nucleophilic addition leading to 11C. The latter would endure β-H
elimination affording the lactone.
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Wang’s team effectively carried out various 2-alkenylation of N-(2-pyridyl)sulfonylindoles
(Equation (59)) [101]. The cross-coupling with 2,5-dihydrothiophene 1,1-dioxide was followed
by migration of the C=C bond (Equation (60)). Comparison of the rate of alkenylation of
N-(2-pyridyl)sulfonylindoles bearing either a C2 or C3 methyl group indicated that the protecting
group activates the 2-alkenylation.
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The annulation depicted in Equation (61) [102] differs from those of Equations (56) and (57).
Indeed, the reaction of the exocyclic C=C bond with the unsaturated reagent was one of the key
intermediates. Plausible intermediates were proposed by Verma’s team. According to Scheme 12,
the cyclization step is Pd-catalyzed. Similar annulations were reported [85,95,103], but, differing from
the DHRs, they will not be more commented.
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Increasing the indole/maleimide ratio provided indolopyrrolocarbazoles (Equation (62)) under
experimental conditions previously used in Equation (47) [84]. The mechanism proposed by Zhao
and co-workers involves the DHR leading to C3 alkenylation product 13A (Scheme 13). Activation
of the C2-H bond of 13A affords 13B which reacts with indole to afford 13C. Subsequent thermal
electrocyclization gives the product. In agreement with this proposal, the carbazole was also obtained
from the reaction of C3 alkenylation product with maleimide.
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The cross-coupling of N-methyl and N-benzylindoles with methyl acrylate afforded a mixture
of two isomeric carbazoles (Scheme 14, path a) [104]. The process became selective with others
N-substituents, (path b) arising from a double DHR reaction followed, according Equation (63), thermal
electrocyclization. The annulation was not observed from free (NH) indole (path c).
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4.3. 7-Azaindoles

7-Azaindoles underwent aerobic C-3 alkenylation at room temperature using catalytic amounts
of Pd(OAc)2, PPh3, and Cu(OTf)2 (Equation (64)) [105]. The yields were very sensitive to the solvent
and oxidant.
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4.4. Indolizines

The DHR of indolizines preferentially occurred at the 3-position (Equations (65) and (66) [27] and
Equation (67) [106]. When the 3-position was already occupied, the cross-coupling arose in C1 position
(Equation (68)) [107].
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4.5. Sub-Conclusion

The regioselectivity of the DHR of pyrroles depends on solvent, N protective group, and, if present,
electron-withdrawing substituents. Indoles react in 3 position in the absence of directing substituent.

Under DHR conditions, the C3 position of 7-azaindoles and indolizines is the more reactive.
It seems however necessary to note that the C3 position relative to the N atom is β for the former and
α for the latter.
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5. Se-Arenes

Although Fujiwara’s team disclosed, in 1973, the synthesis of 2-styrylselenophene and
2,5-distyrylselenophene from stoichiometric amounts of selenophene, styrene, and Pd(OAc)2

in refluxing AcOH/dioxane [29], the DHRs of Se-arenes under catalytic conditions have been
seldom reported.

5.1. Selenophenes

Pd(OAc)2-catalyzed DHR of selenophenes with Ag2CO3 as oxidant in the presence of t-BuCO2H
provided the α-mono or α,α’-diolefination products depending on the olefinating agent/selenophene
ratio (Equations (71) and (72)) [109].
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5.2. Benzoselenophene

Benzoselenophene reacted under conditions of selenophene to yield the C2 substituted product
(Equation (73)) [109].
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template for the purpose (Equation (76)). Interestingly, selective C5-olefination also occurred from
4-chlorothiazole, 2-methylthiazole, and unsubstituted thiazole (Equation (77)).
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6.2. Isothiazoles 

The DHR of 3-methyl-5-phenylisothiazole with butyl acrylate using Pd(OAc)2/Cu(OAc)2 in DMA 
was sluggish at 120 °C, giving the product in a low yield (Equation (78)) [113]. 
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of benzothiazole with acrylates, N-methylacrylamide (Scheme 17) [111], and styrene (Equation (79)) 
[114]. Lower yield was obtained with 1-octene (Scheme 17). Moreover, the formation of the branched 
cross-coupling product led us to suspect a mechanism involving activation of the alkene (Scheme 1). 
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6.2. Isothiazoles

The DHR of 3-methyl-5-phenylisothiazole with butyl acrylate using Pd(OAc)2/Cu(OAc)2 in DMA
was sluggish at 120 ◦C, giving the product in a low yield (Equation (78)) [113].
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6.3. Benzothiazoles

The Pd(OAc)2/1,10-phenanthroline association (Equation (75)) also led to efficient C2 substitution of
benzothiazole with acrylates, N-methylacrylamide (Scheme 17) [111], and styrene (Equation (79)) [114].
Lower yield was obtained with 1-octene (Scheme 17). Moreover, the formation of the branched
cross-coupling product led us to suspect a mechanism involving activation of the alkene (Scheme 1).
Indeed, the Heck reaction of terminal alkenes preferentially occurs at the terminal carbon [115,116],
while nucleophilic addition to Pd-coordinated alkenes arises rather at the internal carbon [117–119].
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Both Cu(OAc)2 and O2 as the oxidation sytem and dioxane as the solvent were used as optimum
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selective 5-alkenylation (Equation (80)) [120]. It seems necessary to point out the absence of reaction at
the 2-position.
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3-Substituted imidazo[2,1-b]thiazoles bearing an aryl group in C6 underwent selective
2-alkenylation (Equation (81)), while change of the aryl group for a methyl led to 2,5-disubstitution
(Equation (82)) [121]. According to Huang, Chen, and co-workers, electronic effects played a more
important role than steric effects in the reaction.
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only traces of the cross-coupling product, especially in DMF/DMSO which is often used for DHR of
five-membered heteroarenes (Equation (83)).
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7.2. Oxazolones

4-Alkenylation of 5-substituted-2-oxazolones mediated with the Pd(OAc)2/Cu(OAc)2 system
was very sensitive to the experimental conditions (Equation (85)) [123]. Unconjugated compounds,
formed via β-H elimination involving the methyl group, were the main cross-coupling products from
α-methylstyrene and methyl methacrylate (Equation (86)).
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7.3. Isoxazoles

The Pd(OAc)2/Cu(OAc)2/DMA association which has a low efficiency for the DHR of isothiazole
(Equation (78)) afforded fair yields from isoxazoles (Equation (87)) [113].
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benzoxazoles (Equation (88)) [114].
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not effective for the DHR of 3-(difluoromethyl)-5-aryl-1H-pyrazoles: addition of BQ was required
(Equation (91)).
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4-Substituted pyrazoles underwent C5 alkenylation using Pd(OAc)2/Cu(OAc)2 in dioxane, in
increased yields with pyridine as additive (Equation (92)) [125].
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different N-substituted pyrazoles, possibly C3-substituted. A third method was optimized for the
4,5-dialkenylation (Equation (93)).
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8.2. Pyrazolones

Substituted 5-pyrazolones led to various 4-alkenylated pyrazolones via DHRs sensitive to the
nature of oxidant and solvent (Equation (94)) [127].
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Su’s team again used the mechanochemical strategy (Equation (50)) [25], but under different 
conditions for the C3-alkenylation of 1-methyl(or benzyl)-1H-indazoles (Equation (97)) [129]. 
Cu(OAc)2.H2O and 1,10-phenanthroline were essential for good reactivity. 
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and N,N-diethylacrylamide (42–72% yields) by Joo’s team under experimental conditions they used
for pyrazoles (Equation (92)) [125].
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8.5. Benzimidazole

C2-styrenylation of 1-methyl-1H-benzo[d]imidazole was also performed using Ong’s procedure
(Equation (99)) [114].
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Mahdavi and co-workers have recently reviewed different C3-functionalization of
imidazo[1,2-a]pyridines [130].

An efficient and highly regioselective PdII-catalyzed C-3 alkenylation of imidazo[1,2-a]pyridines
with acrylates and styrenes was developed by Cao’s team using oxygen as the main oxidant [131].
Catalytic amounts of Ag2CO3 and stoichiometric quantities of both AcOH and Ac2O were required for
optimum results. Acrylates and acrylonitrile tended to form β-products, while styrenes tended to form
α-products (Scheme 19). The authors proposed two different catalytic cycles like those of Scheme 1,
”arene activation” for the β-products and “alkene activation” for the α-products.

Using oxygen as the sole oxidant, Pd(OAc)2-catalyzed 2-phenylimidazo[1,2-a]pyridine with
styrene in DMSO provided the C3 branched adduct in low yield [132]. Changing the solvent for DMA
with, especially Bu4NBr as additive, led to a fair yield (Equation (100)). Other substituted substrates
and styrenes were reacted under the same conditions. The branched product was also obtained with
1-octene. Hajra and co-workers retained the mechanism of Scheme 1, alkene activation.
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8.7. Purines

C8-olefination of biologically relevant purines occurred (Equations (102) and (103)) under
experimental conditions used for DHRs of indolizines (Equation (67)), leading to fluorescent molecules
with potential role in biological imaging [106].
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9. O,N,N-Arenes

9.1. 1,3,4-Oxadiazoles

The Pd(OCOCF3)2/Ag(OCOCF3)2/1,10 phen would be the optimum association at 130 ◦C in
toluene for the DHR of 2-aryl-1,3,4-oxadiazoles with vinyl(hetero)arenes (Equation (104)) [133].
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9.2. Sydnones

At room temperature, using AgOAc as the oxidant, 3-arylsydnones reacted with acrylates,
acrylamide, allyl acetate, and styrenes leading to cross-coupling products in fair to good yields, while
the 4-vinyl adduct arose with vinyl acetate (Scheme 20) [134]. Yang and Kuang did no comment on
the cleavage mechanism of the C-OAc bond. We propose two plausible pathways based on Scheme 1
(Scheme 21). The DHR mechanism provides 21B and/or 21C through heteroarylpalladium complex
21A. β-H elimination from 21B would afford the cross-coupling adduct while β-HOAc elimination
from 21C would lead to the vinyl adduct4. Another possibility is the formation of alkene complex
21D which underwent nucleophilic attack giving 21B and/or 21C. The addition of Heck reagent to
vinyl acetate may add to α and β positions, with slight preference for the β [135], leading to mixture
of products in a ratio depending on the experimental conditions [36,116,136], while nucleophilic
attack on the alkene complex could prefer the α position [119]. As the 3-arylsydnone/vinyl acetate
cross-coupling product was not observed (Scheme 20), the 4-vinyl adduct would be rather formed via
alkene activation.
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10. N,N,N-Arenes

10.1. 1,2,4-Triazoles

Arylvinyltriazole nucleosides have been synthesized via DHR of the triazole core with a variety
of styrenes (Equation (105)) [137].
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Kuang and co-workers reported the reluctance of 2-(p-tolyl)-2H-1,2,3-triazole towards the DHR
with methyl acrylate under experimental conditions of Scheme 20 [138].

10.2. 1,2,3-Triazole N-Oxides

The Pd(OAc)2/Ag2CO3/pyridine system in t-BuOH/dioxane led to efficient DHRs of
2-aryl-2H-1,2,3-triazole 1-oxides with acrylates and styrene (Scheme 22) [138]. The presence of pyridine
and the 1:4 ratio of t-BuOH/dioxane were essential for yields. The reaction with vinyl acetate provided
a mixture of the cross-coupling and corresponding deacetoxy products, while that of 1-octene led
to three isomers. Kuang and co-workers proposed that the three isomers were issued from the
DHR (Scheme 1, arene activation). The formation of the branched product led us to suspect the
possibility of a nucleophilic attack on the octene-coordinated palladium complex (Scheme 1, alkene
activation). The mixture obtained from vinyl acetate does not allow the prioritization of a catalytic
cycle (see Scheme 21 and discussion of Sub-chapter 9.2).
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11. Conclusions and Remarks

Undeniably, the development of DHRs of five-membered heteroarenes has greatly progressed
in the last ten years. Their exclusive properties have attracted the attention of scientists all over the
world, leading to processes that would be valuable tools for academic and industrial applications.
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A number of Pd(OAc)2-catalyzed methods seem almost identical. In fact, the oxidant, required
for the turnover, and the solvent often varied with the substrate. Additives, which may also be ligands,
have, in most cases, a decisive role on the efficiency. As the range of oxidants, solvent mixtures, and
additives is large, it is not obvious to choose the right combination for a new reaction. Complexity
increases with N-heterocycles because their reactivity may depend on the N-substitution. Even if the
wide published procedures give valuable indications, the chemist should try and see to reach fine
results from a new DHR.

Compared to traditional Heck reactions, the DHR’s have a “green” character, because
prefunctionalization of the starting aromatic partner is avoided, improving step economy, and
also the high atom efficiency gained by formal removal of only the molecular hydrogen. Nevertheless,
the DHR’s are usually performed with an excess of heteroarene or alkenating reagent, and only a few
methods use solely oxygen to regenerate the Pd active species. Consequently, expensive silver salts
are often required as oxidants. Leading to wastes, these conditions decrease the “green” aspect of the
procedures and their compatibility with the atom economy principle [139].

In our opinion, five publications are particularly important [49,69,70,112,126] and complete the
older Gaunt report [80]. One of them revealed a regioselectivity depending on the metal catalyst [49],
while three others related regioselectivity mainly depending on solvent [69,70] or ligand [126]. The fifth
publication disclosed a template directing the regioselectivity [112]. Another important report related
regioselectivity depending on the substitution [72]. Although these reports concern DHRs of only a
few substrates, they represent breakthroughs for researchers involved in the selective synthesis of
regioisomers from the same starting material.
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