ADMET Polymerization of Dimeric Cinchona Squaramides for the Preparation of a Highly Enantioselective Polymeric Organocatalyst

Mohammad Shahid Ullah, Sadia Afrin Chhanda, and Shinichi Itsuno*, \dagger
${ }^{\dagger}$ Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Tempaku-cho, 441-8580, Toyohashi, Aichi, Japan

[Table of contents]

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 1}$ S2
SEC trace of $\mathbf{P 1}$ S2
IR spectrum of $\mathbf{P 1}$ S3
${ }^{1} H$ NMR spectrum of $\mathbf{P 2 C}$ S4
SEC trace of P2C. S4
IR spectrum of $\mathbf{P 2 C}$ S5
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 3}$ S6
SEC trace of P3 S6
IR spectrum of $\mathbf{P 3}$ S7
${ }^{1} \mathrm{H}$ NMR spectrum of 4 S8
${ }^{13} \mathrm{C}$ NMR spectrum of 4 S8
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 4}$ S9
IR spectrum of $\mathbf{P 4}$ S9
HPLC chromatogram of 7: Table 2, entry 2 S10
HPLC chromatogram of 7: Table 2, entry 3 S10
HPLC chromatogram of 7: Table 2, entry 4 S11
HPLC chromatogram of 7: Table 2, entry 5 S11
HPLC chromatogram of 7: Table 2, entry 6 S12
HPLC chromatogram of 7: Table 2, entry 7 S12
HPLC chromatogram of 7: Table 2, entry 8 S13
HPLC chromatogram of 7: Table 2, entry 9 S13
HPLC chromatogram of 7: Table 2, entry 10 S14
HPLC chromatogram of 7: Table 2, entry 11 S14
HPLC chromatogram of 7: Table 2, entry 12 S15
HPLC chromatogram of 7: Table 3, entry 1 S15
HPLC chromatogram of 7: Table 3, entry 2 S16
HPLC chromatogram of 7: Table 3, entry 3 S16
HPLC chromatogram of 7: Table 4, cycle 1 S17
HPLC chromatogram of 7: Table 4, cycle 2 S17
HPLC chromatogram of 7: Table 4, cycle 3 S18
HPLC chromatogram of 7: Table 4, cycle 4 S18
HPLC chromatogram of 7: Table 4, cycle 5 S19
HPLC chromatogram of 8: Scheme 3. S19
HPLC chromatogram of 9: Scheme 3 S20
HPLC chromatogram of $\mathbf{1 0}$: Scheme 3 S20
HPLC chromatogram of 11: Scheme 3 S21
HPLC chromatogram of 12: Scheme 3 S21
HPLC chromatogram of 13: Scheme 3 S22

Polymer P1

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectrum of polymer $\mathrm{P}^{2} \mathrm{Q}$ in DMSO-d ${ }_{6}$

Figure S2: SEC trace of P1 $M_{\mathrm{n}}: \mathbf{4 7 0 0 0}, M_{\mathrm{w}}: \mathbf{4 9 0 0 0}, M_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}: \mathbf{1 . 0 4}$

［ピーク検出結果］										
No．	位苗	強度	No．	位䈯	強度					
1	3379.64	43.1594	2	3236.93	36.695					
3	2936.09	33.9734	4	2865.7	70.7693					
5	1794.44	49.6407	6	1674.87	23.6632					
7	1337.39	68.7085	8	1240	65.5555					
9	1078.98	58.2615	10	1053.91	68.5649					
11	974.84	58.219	12	849.49	50.9021					
13	827.312	69.0001	14	812.849	70.3912					
15	792.6	70.1161	16	766.566	24.7736					
17	621.931	62.6525								

Figure S3：IR spectrum of polymer P1

Polymer P2C

Squaramide 2C（ $133.0 \mathrm{mg}, 0.200 \mathrm{mmol}), \mathbf{H G}_{2} \mathbf{A}(6.26 \mathrm{mg}, 0.010 \mathrm{mmol})$ ，and toluene $(0.5 \mathrm{~mL})$ were collected in a dried Schlenk tube，after which they were set in an oil bath with a condenser．The Schlenk tube was connected to continuous N_{2} gas flow．After setting the desired reaction temperature $\left(100{ }^{\circ} \mathrm{C}\right)$ ，the reaction mixture was stirred for 9 h ．Thereafter the reaction mixture was cooled to room temperature and poured into diethyl ether $(50 \mathrm{~mL})$ ．Next，the solid polymer product was purified by reprecipitation in diethyl ether（70－80 mL ）three times．The precipitate was filtered out and vacuum－dried at $40{ }^{\circ} \mathrm{C}$ for 3 h to afford the desired polymer（ $\mathbf{P 2 C}$ with 93% yield as a brownish solid），which is an ADMET polymeric organocatalyst．$[\alpha]^{25}{ }_{\mathrm{D}}=$ $-109.30\left(c 0.175 \mathrm{~g} / \mathrm{dL}\right.$ in DMF at $\left.26.1^{\circ} \mathrm{C}\right)$ ．

Figure S4: ${ }^{1} \mathrm{H}$ NMR spectrum of polymer P2C in DMSO-d \mathbf{d}_{6}

Figure S5: SEC trace of P2C $M_{\mathrm{n}}: 54000, M_{\mathrm{w}}: 55000, M_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}: 1.02$

Figure S6: IR spectrum of polymer P2C

Polymer P3
Squaramide 3 ($72.0 \mathrm{mg}, 0.075 \mathrm{mmol}$), $\mathbf{H G}_{2} \mathbf{A}(2.50 \mathrm{mg}, 0.004 \mathrm{mmol})$, and toluene $(0.5 \mathrm{~mL})$ were collected in a dried Schlenk tube, after which they were set in an oil bath with a condenser. The Schlenk tube was connected to continuous N_{2} gas flow. After setting the desired reaction temperature $\left(100{ }^{\circ} \mathrm{C}\right)$, the reaction mixture was stirred for 9 h . Thereafter the reaction mixture was cooled to room temperature and poured into diethyl ether (50 mL). Next, the solid polymer product was purified by reprecipitation in diethyl ether (50 $\mathrm{mL})$ three times. The precipitate was filtered out and vacuum-dried at $40^{\circ} \mathrm{C}$ for 3 h to afford the desired polymer ($\mathbf{P 3}$ with 86% yield as a brownish solid), which is an ADMET polymeric organocatalyst. $[\alpha]^{25}{ }_{\mathrm{D}}=-$ 77.81 (c $0.075 \mathrm{~g} / \mathrm{dL}$ in DMF at $26.8^{\circ} \mathrm{C}$).

Figure S7: ${ }^{1}$ H NMR spectrum of polymer P3 in DMSO-d $\mathbf{d}_{\mathbf{6}}$

Figure S8: SEC trace of P3 $M_{\mathrm{n}}: \mathbf{7 4 0 0 0}, M_{\mathrm{w}}: \mathbf{7 5 0 0 0}, M_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}: 1.01$

Figure S9: IR spectrum of polymer P3

Triallyl ether 4

50 mL round bottom flask fitted with reflux condenser is charged with 2.5 mmol tris(4-hydroxy phenyl)methane 14, 7.8 mmol of allyl bromide $\mathbf{1 5}, 8 \mathrm{mmol}$ of dry KOH and 5 mL of acetone. Reaction mixture was refluxed for 8 hrs . After cooling, distill water was added and mixture was extracted with ether. Extract was washed with $10 \% \mathrm{NaOH}$ solution to remove unreacted phenol, with a little amount of distill water and dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$. Ether is removed by evaporation and crude product is purified by column chromatography. Yellow oil, 900 mg (87%); $\mathrm{R}_{\mathrm{f}}: 0.49$ (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=5: / 5$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.00(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 6 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 6 \mathrm{H}), 5.99-6.10(\mathrm{~m}$, $3 \mathrm{H}), 5.41(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 4 \mathrm{H}), 5.27(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.50(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 157.09$, 137.06, 133.55, 130.34, 117.74, 114.55, 69.94, 54.50. HRMS (ESI) m / z for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}^{+} \mathrm{Na}^{+}\right]$calcd. 435.1936, found 435.1931.

Figure S10: ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of compound 4 in CDCl_{3}

Figure S11: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4 in CDCl_{3}

Polymer P4

Squaramide 2C ($133.0 \mathrm{mg}, 0.20 \mathrm{mmol}$), tris 4-allyloxy phenyl methane $\mathbf{4}(82.05 \mathrm{mg}, 0.20 \mathrm{mmol}), \mathbf{H G}_{2} \mathbf{A}(6.26 \mathrm{mg}$, 0.010 mmol) were taken in a dried Schlenk tube, after which they were set in an oil bath with a condenser. The Schlenk tube was connected to continuous N_{2} gas flow. After setting the desired reaction temperature $\left(100^{\circ} \mathrm{C}\right)$, the reaction mixture was stirred for 24 h . Thereafter the reaction mixture was cooled to room temperature and poured into diethyl ether $(50 \mathrm{~mL})$. Next, the solid polymer product was purified by reprecipitation in diethyl ether $(70 \mathrm{~mL})$ three times. The precipitate was filtered out and vacuum-dried at $40^{\circ} \mathrm{C}$ for 3 h to afford the desired polymer ($\mathbf{P 4}$ with 70% yield as a brownish solid), which is an ADMET polymeric organocatalyst.

Figure S12：${ }^{1} \mathrm{H}$ NMR spectrum of polymer P4 in DMSO－d \mathbf{d}_{6}

［ビーク検出結果 ］

No．	位置	強庶
1	3646.73	78.3493
3	3389.28	268702
5	3083.48	70.6882
7	2864.74	38.8914
9	1794.44	58.8437
11	163438	88.4704
13	1509.39	149855
15	1427.07	478016
17	13615	78.6328
19	1300.75	78.1702
21	1172.51	74.9787
23	1089.58	87.6091
25	1032.69	85.069

No．	位置	強度
2	3626.48	73.5595
4	3062.41	72.2231
6	2938.98	21.7034
8	1942.93	63.3326
10	1673.91	14.2573
12	1529.27	21.4433
14	1455.03	20.0687
16	1393.32	76.946
18	1344.14	75.4704
20	1240	42.7814
22	1126.22	79.4481
24	1043.3	84.1553
26	973876	73.8557

No．	位置
27	955555
28	918.914
29	847561
30	821.527
31	791.636
32	766.566
33	667.25
34	620002
35	586.254
36	575.647
37	525.507

強度
88.0065
62.1959
568252
71.0372
77.0064
17.1404
80.3676
63.948
81.6914
81.7267
84.4844

Figure S13：IR spectrum of polymer P4
[HPLC data of the products obtained from enantioselective Michael addition of methyl
2-oxocyclopentanecarboxylate (5) to trans- β-nitrostyrene (6)]

Figure S14: HPLC chromatogram of 7
Table 2, entry 2
$\mathbf{8 7 \%}$ ее

Figure S15: HPLC chromatogram of 7
Table 2, entry 3
$\mathbf{9 7 \%}$ ee

Figure S16: HPLC chromatogram of 7
Table 2, entry 4
99% ee

Figure S17: HPLC chromatogram of 7
Table 2, entry 5
92\% ee

Figure S18: HPLC chromatogram of 7
Table 2, entry 6
97% ee

Figure S19: HPLC chromatogram of 7
Table 2, entry 7
90% ee

Figure S20: HPLC chromatogram of 7
Table 2, entry 8
96% ee

Figure S21: HPLC chromatogram of 7
Table 2, entry 9
95\% ее

Figure S22: HPLC chromatogram of 7
Table 2, entry 10
96\% ее

Figure S23: HPLC chromatogram of 7
Table 2, entry 11
99\% ee

Figure S24: HPLC chromatogram of 7
Table 2, entry 12
95\% ее

Figure S25: HPLC chromatogram of 7
Table 2, entry 14
91\% ee

Figure S26: HPLC chromatogram of 7
Table 2, entry 17
97% ee

Figure S27: HPLC chromatogram of 7
Table 2, entry 18
99\% ee

Figure S28: HPLC chromatogram of 7
Table 3, cycle 1
97% ee

Figure S29: HPLC chromatogram of 7
Table 3, cycle 2
97% ee

Figure S30: HPLC chromatogram of 7

Table 3, cycle 3

94\% ee

Figure S31: HPLC chromatogram of 7
Table 3, cycle 4
93% ee

Figure S32: HPLC chromatogram of 7
Table 3, cycle 5
95\% ee

Figure S33: HPLC chromatogram of 8
Scheme 3
94\% ee

Figure S34: HPLC chromatogram of 9
Scheme 3
45% ee

Figure S35: HPLC chromatogram of 10
Scheme 3
12% ee

Figure S36: HPLC chromatogram of 11

Scheme 3

93% ee

Figure S37: HPLC chromatogram of 12
Scheme 3
91% ee

Figure S38: HPLC chromatogram of 13
Scheme 3
96\% ee

