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Abstract: A high-efficiency method to deal with pollutants must be found because environmental
problems are becoming more serious. Photocatalytic oxidation technology as the environmentally-
friendly treatment method can completely oxidate organic pollutants into pollution-free
small-molecule inorganic substances without causing secondary pollution. As a widely used
photocatalyst, titanium dioxide (TiO2) can greatly improve the degradation efficiency of pollutants,
but several problems are noted in its practical application. TiO2 modified by different materials
has received extensive attention in the field of photocatalysis because of its excellent physical and
chemical properties compared with pure TiO2. In this review, we discuss the use of different materials
for TiO2 modification, highlighting recent developments in the synthesis and application of TiO2

composites using different materials. Materials discussed in the article can be divided into nonmetallic
and metallic. Mechanisms of how to improve catalytic performance of TiO2 after modification are
discussed, and the future development of modified TiO2 is prospected.
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1. Introduction

In recent years, photocatalytic technology has attracted extensive attention because it is
environmentally friendly, low-cost, and has efficient characteristics. In 1972, Fujishima et al. [1]
reported that TiO2 was used as a photoelectrocatalyst to split water into hydrogen. Since then,
increasing research has focused on TiO2. In 1976, Carey et al. [2] used photocatalytic technology to
treat polychlorinated biphenyls, an organic pollution that is difficult to degrade, and experimental
results found that the dechlorination rate of polychlorinated biphenyls was close to 100%. In 1977,
Frank et al. [3] found that TiO2 could effectively degrade cyanide (CN−), which was the beginning of
photocatalytic technology applied to pollution control. The degradation of photocatalytic technology
can be summarized into four stages: photoexcitation, carrier capture, formation of radicals, and
oxidation reaction. Compared with traditional catalytic technologies, photocatalytic technology
has many advantages. First, reaction conditions such as sunlight, room temperature, and normal
atmospheric pressure are common and easy to obtain. Second, the degradation processes and products
of catalytic decomposition are pollution free, which are in line with the requirements of low-carbon
environmental protection. Third, the characteristics of non-toxic, stable, low cost, and recyclable
further promote development [4]. The core of photocatalytic technology is the photocatalyst, and many
materials can act as a photocatalyst [5]. Table 1 shows the published data of different photocatalysts,
including TiO2 [6–8], SrTiO3 [9–11], ZnO [12–14], WO3 [15–17], ZrO2 [18–20], and g-C3N4 [21–23], and
their performance. Among these photocatalysts, TiO2 occupies an important position due to its stable
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physical and chemical properties, strong oxidation capacity, high photocatalytic activity, and excellent
biocompatibility [24–26].

The TiO2 can be synthesized by many methods and mainly include precipitation method,
solvothermal method, sol-gel method, microemulsion method, spray pyrolysis method and
electrochemical synthesis method. Zhang et al. [27] prepared the TiO2/BC catalyst material by
the sol-gel method and the degradation rates of reactive brilliant blue KN-R in the dyeing wastewater
can reach 97%. However, there are still has some problems of pure TiO2 in application. The rapid
recombination of photo-generated electron-hole pairs is the biggest obstacle that affect the practical
application of TiO2 [28], because recombination of photogenerated charge carriers can reduce the
overall quantum efficiency [29]. The poor photosensitivity of TiO2 under visible/solar irradiation is
also a problem [30,31]. Generally, the conventional TiO2 has broad intrinsic band gaps wide band gap
(3.2 eV for anatase and 3.0 eV for rutile) which makes the TiO2 only absorb UV radiation (wavelength
< 400 nm), which accounts for only ∼5% of the sunlight [32,33]. What is more, nano-TiO2 is easy to
agglomerate, which extremely limits the application. Therefore, in order to solve these problems and
improve the catalytic activity of TiO2 photocatalysts, composites have become mainstream. In addition
to the improvement of photocatalysis, composites can yield other benefits. For example, composites
can tune the surface properties, i.e., ability to adsorb pollutants. Composites are also beneficial toward
the stabilization of nanoparticles against phenomena such as sintering or aggregation [34].

Table 1. The published data of different photocatalysts and their performance.

Type Photocatalysts Light Source Target Pollutant Degradation Rate Ref.

TiO2

MoS2/MoO3/TiO2 300 W Xe lamp rhodamine B 95% [6]

Yb, Er, Ce-codoped
TiO2

Xe lamp 4-chlorophenol 95% [7]

TiO2@SiO2 composites 500 W mercury
lamp methyl orange 99% [8]

SrTiO3

La- SrTiO3 500 W Xe lamp Cr6+ 84% [9]

Ag3PO4/PANI/Cr:
SrTiO3 300 W Xe lamp phenol 99% [10]

Ag, Cr-SrTiO3 500 W Xe lamp methyl orange 98% [11]

ZnO
Cu-ZnO blue light lamp Orange II 70% [12]

ZnO sunlight methylene blue 90% [13]

Sr-ZnO black light methylene blue 99% [14]

WO3

WO3
1500 W Xe

lamp
N, N-diethyl-meta-

toluamide 60% [15]

WO3@Cu@PDI 300 W Xe lamp tetracycline
hydrochloride 85% [16]

NiO-WO3
150 W tungsten

lamp eosin yellow 95% [17]

ZrO2

Ce, Er-codoped ZrO2 halogen lamp rhodamine B 92% [18]

Co3O4-ZrO2 visible light cyanide 100% [19]

Cu- ZrO2 Visible light methyl orange 98% [20]

g-C3N4

Ag-P-codoped g-C3N4
8 W visible

lamps sulfamethoxazole 99% [21]

AgI/LaFeO3/g-C3N4 500 W Xe lamp norfloxacin 95% [22]

CdS/g-C3N42 500 W Xe lamp rhodamine B 96% [23]
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The modification of TiO2 to overcome the problems in the use of pure TiO2 is one of the widely
studied topics in the field of photocatalysis. Modified TiO2 can improve its photocatalytic activity from
different mechanisms, including the reduction of the band gap of TiO2-based materials, the decrease
of the probability of recombination between electron and hole. In recent years, different aspects are
applied to improve the photocatalytic efficiency of TiO2. One of the methods is ion-doped TiO2 or
coupled with other semiconductor composites to reduce the forbidden band width of TiO2 and increase
its absorption wavelength [35–37]. Another way is to deposit precious metals or metal oxides on the
surface of TiO2 and add electron capture agents or use photo-catalysis to prevent TiO2 photo-generated
electron-hole pair recombination thus improve the photocatalytic efficiency of TiO2 [38–40]. In addition,
dye photosensitization and providing a suitable carrier for TiO2 would be the efficient methods to
modify TiO2 [41].

In recent years, many reviews have been conducted on the modification of TiO2. Serpone [42]
reviewed the different mechanisms of anion- and cation-doping TiO2. He reported that TiO2

photocatalysts doped with either anions or cations have recently been shown to have their absorption
edge red-shifted to lower energies (longer wavelengths), thus enhancing photonic efficiencies of
photoassisted surface redox reactions, and author argued that the red-shift of the absorption edge
is due to the formation of color centers. Devi and Kavitha [43] reviewed the photocatalytic activity
of non-metal doped TiO2 for a wide variety of pollutant degradation under UV/visible light, with
special emphasis on nitrogen-doped TiO2. They also discussed the mechanisms of photocatalytic
reactions according to the charge carrier generation–separation–transfer–recombination dynamics
together with pollutant adsorption and their reactions with reactive oxygenated species in liquid or
gaseous regime. Asahi et al. [44] reviewed previous studies on nonmetal-doped TiO2 for visible-light
sensitization. Among the enormous number of studies and references on this topic, they focused on
N-doped TiO2. The present review will concentrate on the application of modified TiO2 in different
media. First, this review summarizes the principles and types of different materials for modifying
TiO2. Then, it discusses the application and progress of modified TiO2 in treating different pollutants.
Finally, it assesses the critical application challenges and potential future research directions.

2. Non-Metallic Materials Modified TiO2

2.1. Non-Metallic Materials Supported TiO2

Loading TiO2 on the carrier can effectively overcome the problems mentioned above [45].
At present, the non-metallic materials commonly used in loading TiO2 can be divided into non-metallic
porous minerals, glasses, carbon materials, and polymer materials.

The treatment of polluted water by porous mineral composites has aroused attention because of
the advantages of high specific surface area, strong adsorption characteristics, and the ability of targeted
enrichment of pollutants with the development of non-metallic porous minerals. [46]. As shown in
Figure 1, TiO2 loads into the pores or surfaces of mineral materials and then forms the non-metallic
porous minerals/nano-TiO2 composite system, which can solve the problem of the agglomeration of
nano-TiO2 particles. Pollutants can be adsorbed to the surface of nano-TiO2 through the ion exchange
and increase the contact probability of catalysts with pollutants to improve the degradation rate.
Hence, porous mineral/nano-TiO2 composite systems can improve the photodegradation efficiency of
nano-TiO2. Liang et al. [47] used montmorillonite as the matrix to prepare a TiO2/montmorillonite
composite photocatalyst. The results showed that the montmorillonite matrix improved the capacity of
optical absorption capacity from 70% to 87% because the visible light absorption ability (390–780 nm)
of the composites was enhanced compared with pure TiO2. Moreover, the ultraviolet light absorption
ability of montmorillonite-supported nano-TiO2 composites was improved. Therefore, adding
montmorillonite carrier enhances the absorbance of visible light and ultraviolet light. Zhu et al. [48]
prepared Mn-TiO2/sepiolite photocatalytic material using the sol-gel method at different calcining
temperatures. They found that the degradation rate of emerald dye could reach 98% when the
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calcining temperature was 400 ◦C because sepiolite and Mn broaden the spectral response range of
TiO2. Saqib et al. [49] prepared a nano-TiO2 supported on zeolite using the liquid impregnation method.
The experimental results showed that the degradation rate of methylene blue (MB) dye by the loaded
material was four times that of pure TiO2 because zeolite has a UV-visible radiation transparency,
which allowed the excitation of light to penetrate into opaque solid powder and reach the substrate
molecules present in intraparticles spaces. Zeolite might have substantially enhanced the proximity of
organic molecules to the available active sites where the degradation reaction needs to take place.
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Glass has good light transmission properties and is easy to make into photoreactors with
different shapes. Therefore, glass-based carriers have also received widespread attention. The form
of glass carrier includes glass sheet, glass tube, glass spring, hollow glass bead, and glass fiber.
Malakootian et al. [50] fixed nano-TiO2 on a glass plate and the removal rate of ciprofloxacin by the
composite material reached 93%. Espino-Estévez et al. [51] attached the self-made high-activity TiO2

to the inner wall of the glass tube reactor by the dipping-lifting method. These results showed that the
material had good photocatalytic effect and recycling performance under the ultraviolet light for the
degradation of phenol, diclofenac and isoproturon. The degradation rates reached 81% for phenol,
68% for diclofenac and 57% for isoproturon. This was because the decrease of the size of the TiO2

aggregates The SEM images showed that coatings prepared after milling the TiO2 suspension were
more homogeneous without surface aggregates, which increased the contact area with pollutants.
However, the glass surface is relatively smooth, which makes TiO2 have poor adhesion on it and causes
uneven loading of TiO2.

Combining carbon materials with TiO2 can substantially improve the photocatalytic activity of
TiO2 mainly because C in the carbon material can effectively promote the separation of photogenerated
electrons and holes as an electron trap [52]. Carbon materials include carbon fiber (CF), carbon
nitride, activated carbon, carbon nanotubes, and graphene. Chu et al. [53] used the microwave
hydrothermal method to load nano-TiO2 on CF. The experimental results showed that TiO2/CF has
a good photocatalytic activity. The degradation rate of rhodamine B after 1 h of ultraviolet light
irradiation reached 95%. When the catalyst was used for 10 cycles, the degradation rate of the dye still
reached 88%. They also reported that compared with pure TiO2 particles, TiO2/CF was easily recycled
when used as a photocatalyst. Nitric acid oxidation treatment of CF generated polar functional groups,
which improved the bonding properties between TiO2 and CF. Hu et al. [54] prepared 3D flower-like
g-C3N4/TiO2 composite spherical materials (FCTCMs) using a simple solvothermal method and studied
their photocatalytic performance. The results showed that the photocatalytic performance of FCTCMs
under visible light was twice that of FTMs (3D flower-like structure of TiO2 microspheres) because
g-C3N4 can broaden the photoresponse range and reduce the recombination rate of photogenerated
electron–hole pairs. Cunha et al. [55] prepared TiO2/activated carbon composites (TiO2/AC), and the
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degradation rate of benzodiazapine drugs reached 98% mainly due to the sorption capacity of activated
carbons. Thus, pollutants tend to be adsorbed more efficiently on the surface of the composite close to
the TiO2 catalyst. Moreover, TiO2/AC composites enhance the generation of superoxide radicals and
hydroxyl radicals.

Titanate nanomaterials (especially titanate nanotubes, TNTs) as the carriers of TiO2 and the
adsorbents for heavy metals have attracted great attention from researchers [56]. Because their high
specific area, great ion-exchange properties, easy solid–liquid separation and abundant functional
groups [57,58]. As the carriers of TiO2, titanate nanomaterials can provide lots of nano-scale reactive
sites when reacting with contaminants and improve the separation between catalysts and pollutants
for the good sedimentation property of titanate nanomaterials [31]. Liu et al. [59] synthesized the
TiO2/titanate nanosheet composite material (TNS) and used of Cr(VI) and 4-cholophenol (4-CP)
as the target pollutants to tested its performance. The resulted showed that the Cr(VI) removal
efficiency attained 99.7% within 120 min and the removal efficiency of 4-CP was 98% within 60 min.
They reported that the excellent performance was mainly because the synergetic photocatalysis and
autosynchronous doping. The efficiency of the separation between electron-hole pairs was enhanced
due to the combination of photo-reduction of Cr(VI) by electrons and photo-degradation of 4-CP by
holes. In addition, the adsorption of the reduced Cr(III) by TNS can narrowed energy band gap and
enhanced photocatalytic activity of the materials. Zhao et al. [60] constructed the TiO2 decorated
titanate nanotubes composite (TiO2/TNTs) and used for photocatalytic degradation of bisphenol A
(BPA). They compared the performance of the TiO2, TNTs, and TiO2/TNTs. The experiment result
showed that in the first cycle, the degradation rate of BPA using TiO2, TNTs, and TiO2/TNTs was
100%, 5.8%, and 94% under UV light. Although the removal efficiency of BPA by TiO2 is slightly
higher than that of TiO2/TNTs in the first cycle, reusability of TiO2/TNTs was proved in the next
cycles. After five reuse cycles, the degradation rate of BPA still reached 91% by using TiO2/TNTs and
95.8% of the material could be separated after 6 h gravity-settling, while the 1.8% BPA was removed
and 93% of TiO2 will lose after gravity settling and cannot be reused in pure TiO2 group. Besides,
Li et al. [61], Cheng et al. [62], and Ji et al. [63] also used titanate materials modified TiO2 to treated the
4-chlorophenol, phenanthrene, and sulfamethazine, respectively.

In addition, many types of polymer materials have been chosen as catalyst carriers, such as
polyethylene (PE), polyvinylidene chloride (PVDF), and polyaniline (PANI) Tu et al. [64] incorporated
rectorite (REC) into a porous polycaprolactone (PCL)/TiO2 nanofiber and tested its photocatalytic
performance. The results showed that the degradation rate of PCL/TiO2/REC to rhodamine B was
98%. Because the porous PCL mats could provide large contact area for TiO2. Besides, the addition
of rectorite (REC) could reduce the diameters of fibers and enlarge the specific surface area, which
might improve the photocatalytic efficiency. Ni et al. [65] fixed nano-TiO2 nanometers in a polyvinyl
alcohol–ethylene–ethylene nanofiber scaffold and tested its photocatalytic performance by using
methylene blue (MB) as a target pollutant. The experimental results showed that the degradation rate
of MB was 97% in 150 min. Mohsenzadeh et al. [66] synthesized the PANI-TiO2 nanocomposite using
the n-situ deposition oxidative polymerization method. The results showed that the material had good
photocatalytic degradation performance for 1,2-dichloroethane wastewater because of the large contact
area for TiO2.

Although non-metallic materials loaded TiO2 can improve the photocatalytic activity, there are
still many problems. High-quality carriers and immobilization methods to complete the photocatalyst
loading is necessary. Furthermore, the interaction between carriers and photocatalyst and its effect on
catalytic efficiency need to be investigated.

2.2. Non-Metal Element Doping Modification

The doping of non-metal elements has always been a hot spot in the field of photocatalytic
modification. Doping non-metal atoms can broaden the photoresponse range of TiO2. Non-metal
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ion doping reconstructs TiO2 valence band and moves it upward, which can shorten the gap width
(Figure 2).
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The lifetime of photogenerated electron-hole pairs and the region of light response to visible light
are vital for TiO2 to increase the value in pollutant treatment [67]. In recent years, it has been found
that doping non-metallic elements such as S, N, C, B, I, and F to TiO2 successfully extended the optical
response range of nano-TiO2 to the visible light region. Non-metal element doping means that oxygen
or partial oxygen in the TiO2 was replaced by non-metals. The new energy band was reconstructed
and the width of the forbidden band was shortened during doping the non-metal element [68–70].
As a result, the light response range was expanded. Doping non-metallic elements could increase the
impurity level in the forbidden band of TiO2 and help the band energy level keep higher than the
reduction level, where the energy level of TiO2 are overlap [71–73]. Asahi et al. [74] first replaced a
small amount of lattice oxygen in TiO2 with non-metallic element N doping, and successfully achieved
visible light catalytic activity of TiO2. The preparation method of non-metal element doped TiO2

photocatalyst can be divided into post-treatment and process treatment. Process treatment means
that non-metal elements was doped during the formation of TiO2, and post-treatment means that
non-metal elements was doped after TiO2 formation.

Li et al. [75] prepared N-doped TiO2 using the sol-gel method, and the degradation results of
dye methylene orange (MO) showed that the degradation rate of pure TiO2 was less than 5% after
180 min under visible light, whereas that using N-doped TiO2 as the catalyst was over 95% after 90 min.
N doping substantially enhanced the ability of TiO2 to degrade MO under visible light because N
impurity and Ti3+ acted cooperatively to narrow the band gap of N-doped TiO2. Jyothi et al. [76]
prepared N and F co-doped TiO2 using the hydrothermal method to remove bromoethane in the
solution. The doping element inhibited the photogenerated electron–hole recombination to generate
the hydroxyl radical (•OH). The synergistic effect increased the removal rate of bromoethane for 90 min
from 54% of pure TiO2 to 94%. Rahbar et al. [77] prepared S and N co-doped carbon quantum dots
(CQDs)/TiO2 composites using the hydrothermal method. The degradation rate of acidic AR88 (azo
dyes) under visible light irradiation was 54%, which was higher than that of pure TiO2. They also
reported that CQDs allowed the separation of charges due to the electron transport characteristics.
In addition, the surface functional group enhanced the photocatalytic activity by providing a higher
adsorption capacity on the photocatalyst surface, and pollutant molecules were adsorbed on the
photocatalyst surface to promote the photocatalytic reaction. Liu et al. [78] used I-doped TiO2 (I-TiO2)
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material as the electrode of the photoelectrocatalytic method. The experimental results showed that
the removal efficiency of diclofenac through modified photoelectrode reached 60%, whereas only 10%
was removed using the TiO2 photoelectrode after 2 h (1.4 V) of visible light. Photoexcited electrons in
the conduction band (CB) of TiO2 can be accepted by the carbon structure due to the high electron
storage capacity of carbon materials such as carbon nanotubes. Therefore, the doping of non-metal
element not only extends the photocatalytic reaction to visible light, but also improves the photon
efficiency of TiO2 by promoting the separation of charge carriers.

Although doping non-metallic elements improves the visible light response of TiO2, the band gap
width reduces. As a result, the oxidizing ability of the TiO2 nanocrystalline phase is directly reduced,
and the adsorbed substances cannot be completely degraded. Therefore, the development of non-metal
doping remains a hot and difficult issue in the field of photocatalysis.

3. Metal Materials Modified TiO2

Metal materials such as stainless steel, nickel mesh and nickel foam can be used as carriers for
TiO2 to solve the pollutant problems. However, metals are generally expensive and damage the crystal
lattice in some respects. Therefore, metals are hardly used as carriers. Since the surface of metal is
similar to that of glass, it generally has poor adhesion and is difficult to load. Hence, precious metal
deposition and metal ion doping are mostly used to modify TiO2. At present, the metal materials
which are used to modify TiO2 include transition metals (Cr, Fe, and Cu) [79–81], precious metals (Ag,
Au, and Pt) [82–84], and rare earth metals (Ce, La, and Nd) [85–87].

3.1. Precious Metal Materials Deposition

Precious metal materials with a large radius are easy to deposit on the surface of TiO2 particles
and can be used as an effective trap for electrons when a certain amount of precious metals is
deposited [88–90]. As shown in Figure 3, electrons can transfer from the surface of TiO2 with a higher
Fermi level to the surface of the precious metal with a lower Fermi level. When the Fermi levels of
the two surfaces are the same, the electrons will stop transferring and form a Schottky barrier, which
can effectively separate photogenerated electron–hole pairs and improve the photocatalytic activity of
TiO2 [70,91,92]. Moreover, depositing an appropriate amount of precious metals on the surface of TiO2

can broaden the response range of TiO2 to sunlight and improve the utilization of solar energy, that is,
the mechanism of depositing precious metals on the surface of TiO2 to improve the photocatalytic
efficiency changes the surface properties of TiO2. As a result, the number of electrons on the surface
of TiO2 is reduced, the separation of photogenerated electron–hole pair is promoted, [93–95] and the
photoelectric conversion efficiency is improved. Precious metal deposition can improve photocatalytic
performance, but the deposition amount on the metal surface must be controlled within a suitable
range. If the deposition amount is very large, the metal may become the center of recombination of
electrons and holes, which improves the probability of the electron–hole recombination. Therefore, it
is not conducive to photocatalytic degradation [96,97]. Precious metal deposition modification has a
high selectivity for photocatalytic degradation of organics [98].
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In the 1980s, Sato et al. [99] reported that Pt deposited on the surface of TiO2 enhanced the
photocatalytic efficiency of water conversion to H2 and O2. Later, Kennedy et al. [100] reported that
the incorporation of thermally oxidizable Pt into TiO2 increased the photocatalytic activity of TiO2.
The oxidation activity of Pt/TiO2 was higher than the sum of the oxidizing properties of pure Pt and
pure TiO2. The improvement was due to the accumulation of holes at the Pt/TiO2 interface, which led
to a decrease in electron-hole recombination in TiO2. What is more, the desorption of photo-oxidized
intermediated on the surface of TiO2 and re-adsorption on the surface of Pt with associated thermal
oxidation. Ji et al. [101] prepared the Ag-Carbon-TiO2 composite by using polystyrene/AgNO3

composite fibers as a sacrifice template. They found that the degradation rate of Rhodamine B reached
90%, when the reaction ran 6 h. Shan et al. [102] synthesized biochar-coupled Ag and TiO2 composites
by mixing, calcination, and photodeposition method. They tested the photocatalytic performance of
the material by using methyl orange (MO) as target pollutants. The result shows that TiO2 modified
with Ag showed better photocatalytic degradation performance (the highest decolorization efficiency
and mineralization efficiency were 97.48% and 85.38%, respectively) than pure TiO2. They attributed
the increase in catalytic efficiency to the promotion of the separation of photogenerated electron
hole pairs. Jaafar et al. [103] used in-situ electrochemical method to deposit Ag nanoparticles on the
surface of TiO2 and degraded chlorophenol to measure its photocatalytic activity. The study found
that Ag-TiO2 catalyst degraded chlorophenol to 94% after 6 h, for the electron–hole separation had
been enhanced.

The precious metal deposition on the surface of TiO2 achieves a relatively obvious modification
effect that significantly increases the degradation rate of some organic compounds. However, the cost of
the precious metal deposition method is very expensive and precious metal deposition modified TiO2

has a high selectivity for photocatalytic degradation of organics, which further limit the application of
these materials in pollution treatment.

3.2. Metal Ion Doping TiO2

Doping different metal ions in TiO2 photocatalyst is an effective method to improve its catalytic
activity [80,104,105]. Metal ions doped with TiO2 can change the corresponding energy level structure
of TiO2 because metals are more active, and electrons are more easily excited, resulting in a wider range
of the absorption in a TiO2 system [81,106,107]. As shown in Figure 4, metals can capture the electrons
generated by TiO2 excitation, and the electrons inside TiO2 are not easy to return to the original state.
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After metal doping, metal ions can act as a carrier-trapping center, where metal ions higher than
tetravalent are more likely to acquire electrons than titanium ions and metal ions lower than tetravalent
trap holes. Ion doping can then stop the recombination of electron–hole pairs, which enables TiO2 to
generate more electrons and holes. Thus, the photocatalytic efficiency of TiO2 is improved [108,109].
For metals with many valence states, electrons in the d orbitals can transition and enter the TiO2 lattice,
which can reduce the band gap and the energy required for the electron transitions [110,111]. This
is vital to improve the activity of TiO2 photocatalyst [112]. The transition group metal ions doped
with TiO2 can change the crystalline morphology and energy level structure of nano-sized TiO2 to
form impurity energy levels [68]. Photons with lower energy can also undergo transitions, thereby
expanding their absorption wavelength range and improving the utilization of visible light [113].
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As early as 1994, Choi et al. [114] began studying the doping of metal ions with TiO2. In the
experiment, 19 kinds of transition metal ions were doped into nano-TiO2 and showed a better catalytic
activity with the dope of Fe3+, Mo5+, Os3+, and Rh3+ due to the match of doped ionic potential and
radius with TiO2. Du et al. [115] used Ge4+-doped TiO2 to prepare Ge/TiO2 photocatalytic materials
and degraded ciprofloxacin. The radius of Ge4+ was 0.054 nm, which was smaller than that of Ti4+

(0.068 nm). Ge entered the TiO2 lattice and replaced the position of Ti, causing lattice defects and
delaying the recombination of electrons and holes. Therefore, the formation of •OH on the surface of
TiO2 and the photocatalytic efficiency increased. Degradation rate reached 97% when the calcination
temperature was 571 ◦C and the doping amount was 0.26%. Crisan et al. [116] prepared Fe-doped
nano-TiO2 using the sol-gel method, and the absorption spectrum was extended to 546 nm. Moreover,
the corresponding band width at the wavelength of 410 nm was 3.03 eV when the Fe content (w) was 2%.
Compared with pure TiO2, the degradation rate of nitrobenzene with 0.5% Fe nano-TiO2 was increased
from 70% to 88%. Gnanasekaran et al. [117] found that the spectral absorption range of Co-doped TiO2

was extended from 382 to 411 nm when the band gap width was reduced to 3.01 eV. The degradation
rate of MO after visible light catalytic treatment for 240 min reached 53%, which was beneficial to
its photocatalytic performance. Huang et al. [118] used the sol-gel method to prepare Mo-doped
nano-TiO2 powders, and the degradation rate of MB reached 98% under outdoor sunlight with the
amount of 2% Mo6+(w). This result was mainly due to the reduction of the forbidden band from 3.05 to
2.73 eV with the doping of Mo6+ and the wider excitation absorption wavelength. Bhatia and Dhir [112]
made Ni-TiO2 and Bi-TiO2 using the sol-gel method and found that the maximum degradation rate of
ibuprofen by Bi-TiO2 and Ni-TiO2 reached 89% and 78%, respectively. This finding may be attributed
to the increase in specific surface area and the decrease in the crystallite size. Wang et al. [119] prepared
an Fe3+-doped TiO2 nanotube array catalyst using a simple hydrothermal method, which increased
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the degradation rate of MB by about 20%. The study also found that Fe3+ doping provided traps in the
TiO2 lattice, which greatly improved the separation effect of electron–hole pairs.

4. Composite Materials Modified TiO2

4.1. The Construction the Heterojunction

The heterojunction is a contact interface, formed as a result of hybridization between two
semiconductors [120,121]. The semiconductors used for the heterojunction need to satisfy the condition
that they should exhibit different band gaps and the narrow band gap must lie in the visible region [122].
Combining TiO2 with other semiconductors to construct heterojunction can efficiently improve the
photocatalytic performance of TiO2 [123,124]. This method can not only improve the effective utilization
rate of the electrons by promoting the photo-generated electrons and holes to transfer in the opposite
direction but also expand the spectral response range of the composite to visible light and even near
infrared region [125–127]. Generally, the most widely researched types of the TiO2-based heterojunction
can be categorized into two different types depending on the charge carrier separation mechanism,
which are conventional type and direct Z-scheme [128–130].

Based on the different band and electronic structures, the conventional type can be divided
in to three, namely, type-I (straddling gap), type-II (staggered gap), and type-III (broken gap)
heterojunctions [131,132]. For type-I heterojunctions, the level of the CB of semiconductor-I is higher
than that of semiconductor-II, while the valence band (VB) of semiconductor-I is lower than that
of semiconductor- II. However, due to the difference between the band gaps, the photoinduced
charges accumulate on smaller band gap semiconductor, which may cause recombination. In type-II
heterojunctions (Figure 5b), the level of CB and the VB of semiconductor-II are higher than those of
semiconductor-I [133]. In addition, the migration of charge carriers to the opposite directions can be
promoted because the difference between the chemical potentials causes a phenomenon called band
bending. The band structure of the type-III heterojunctions (Figure 5c) is similar to that of type-II
except that the staggered gap becomes so wide that the bandgaps do not overlap [134]. Among these
conventional heterojunctions, type-II heterojunction attracts the attention of more researchers [135–137].
Ganguly et al. [138] synthesized type-II heterojunctions of the AgBiS2-TiO2 composite and used
doxycycline as the target pollutant to test photocatalytic performance. The results showed that the
degradation rate reached 100% in 180 min under a 500 W Xe lamp. The enhanced photocatalytic activity
was attributed to the decreased rate of recombination of the photogenerated excitons. Liu et al. [139]
used other semiconductors such as Bi2MoO6 and TiO2 to fabricate type-II heterojunctions and tested the
photocatalytic performance of Bi2MoO6/TiO2. They reported that the degradation rate of ciprofloxacin,
tetracycline, and oxytetracyline reached 88%, 78%, and 78%, within 150 min, respectively, when the 350
W Xe lamp with a 420 nm cutoff filter was used as the light. The CB of TiO2 can serve as the electron
transfer platform, which can improve the efficiency of the separation of photocarriers at Bi2MoO6/TiO2

heterojunction interface.
In 2013, the concept of the direct Z-scheme photocatalyst was first proposed [140]. Figure 5d is

the band arrangement and electron migration mechanism of Z-scheme heterojunctions. The Z-scheme
heterojunctions have the same band arrangement as the type-II heterojunctions, but the electron transfer
path between semiconductors is different [141]. The electron transfer path between semiconductors
is like the English letter “Z” [142]. In the process of photocatalytic reaction, the photogenerated
electrons with lower reduction ability in semiconductor-II recombine with the photogenerated holes
in semiconductor-I with lower oxidation ability. Therefore, the photogenerated electrons with high
reduction ability in semiconductor-I and the photogenerated holes with high oxidation ability in
semiconductor-B can be maintained [143]. In addition, the electrostatic attraction between the
photogenerated electron on the CB of the semiconductor-II and the photogenerated holes on the
VB of the semiconductor-I will promote the migration of the photogenerated electron from the
semiconductor-II to the semiconductor-I, while in the type-II heterojunction, the electrostatic repulsion
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between the photogenerated electron of the semiconductor-I and the semiconductor-II will inhibit the
transfer of electrons from semiconductor-I to the semiconductor-II [144,145]. So far, many photocatalytic
composites that have the Z-scheme heterojunctions have been manufactured to degrade the pollutants.
Wang et al. [146] fabricated the N-doped carbon quantum dot (NCDs)/TiO2 nanosheet with higher
surface energy faceted (NCDs/TNS-001) composites and used diclofenac (DCF) as the target pollutants.
The photocatalytic efficiency of the composites reached 92% in 60 min under the 350 W Xe lamp.
In contrast, only 15.4% of the DCF was degraded in the presence of TNS-001 after 60 min. They
reported that the excellent photocatalytic performance might be attributed to the synergistic effects of
the highly active facets, up-converted fluorescent properties of NCDs, and efficient charge separation
induced by fabricated Z-scheme heterostructures. Hao et al. [147] used the TiO2@g-C3N4 core-shell
photocatalysts with the Z-scheme heterojunctions to remove the Rhodamine B from water. The removal
efficiency under the 100 Xe lamp was about 96% within 180 min, while the Rhodamine B (RhB) dye
shows almost no degradation in the blank test. They attributed the improvement of photocatalytic
performance to the formation of the Z-scheme system, which effectively separated photogenerated
electrons and holes. Liao et al. [148] prepared a photocatalytic material g-C3N4–Ti3+/TiO2 nanotube
arrays and tested its performance of degrading the phenol. At a reaction period of 7 h, the degradation
was only 23.4% using TiO2 nanotube arrays, while the degradation rate increased to 74% using the
g-C3N4–Ti3+/TiO2 nanotube arrays. This was mainly because that the self-doping of Ti3+ promoted
the visible light absorption behavior of the composite and the Z-scheme heterojunctions with efficient
space separation of the photo-generated electron–hole.
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Semiconductor heterojunction powders have exhibited the enhanced photocatalytic activities,
but their practical applications have been limited due to their poor recycling performance from
flowing wastewater.
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4.2. Different Elements Co-Doping TiO2

The emphasis of single element doping on the modification of TiO2 is different. In order to improve
the migration range of absorption edge, photocatalytic performance and thermal stability of TiO2 at
the same time, the co-doping of multiple elements is an ideal solution [149]. Co-doped nanoparticles
exhibit higher visible light absorption than single doped TiO2 due to a synergistic effect between the
two dopants, which can efficiently increase the photocatalytic performance [150]. Co-doping can be
divided into different metal elements co-doping [151–153], metal elements and non-metal elements
doping [154–156] and different non-metal elements doping [157–159]. As shown in Table 2, many
researchers have used co-doping method to modify TiO2 and tested the photocatalytic performance of
the materials.

Table 2. The photocatalytic performance of the co-doped TiO2 in treating pollutants.

Doping
Elements

Crystal Phases
of TiO2

Light Source and
Reaction Time Target Pollutant Degradation

Rate Ref.

Ni, Cr anatase Sunlight 90 min methylene blue 96% [153]

Cu, Co anatase LED 300 min acetaldehyde 99% [160]

Ag, V - 40 W white light
bulbs 180 min

hexane gas butyl
acetate gas 94% 96% [161]

N, Cu anatase 200 W Xe lamp
60 min sulfamethoxazole 99% [162]

Fe, I anatase visible light 60 min gaseous benzene 59% [80]

Mn, N anatase, rutile,
wurtzite LED 40 min Quinalphos

2-chlorophenol 92% 88% [163]

N, Ag anatase LED 360 min methylene blue 99% [164]

Ag, Pd, N anatase mercury vapor lamp
120 min

malachite green
methylene blue

mongo red
75% 92% 62% [165]

C, N anatase simulated sunlight
420 min 4-nitrophenol 87% [166]

N, F anatase 500 W Xe lamp
150 min methylene blue 89% [167]

Si, N anatase 500 W Xe lamp
180 min Rhodamine B 86% [168]

C, N anatase and
rutile

300 W Xe lamp
150 min phenol 92% [169]

At present, the physical and chemical properties and the doping mechanism of co-doped TiO2

with two different metals have not been thoroughly investigated. Singh et al. [170] synthesized the
mesoporous La-Na co-doped TiO2 nanoparticles (NPs). The removal efficiency of MB was almost 100%
by using the Na and La doped TiO2, while 35% MB was degraded by using pure TiO2 mainly because
of the substitution of large-sized Na+1 and La+3 at Ti+4 sites which was confirmed by the results of
XRD and TEM. The doping of these low-valent metal ions led to the formation of O vacancies, which
promoted the adsorption of hydroxyl groups on the surface of NPs. The adsorbed hydroxyl group
reduced the pHIEP, which was beneficial to the adsorption of cationic MB dyes. Metal components
prefer to substitute for the Ti site in the TiO2 lattice to create the dopant level near the CB. Non-metal
components can form new levels closest to the VB that reduce the band gap and cause visible light
absorption. Therefore, metal and non-metal ion co-doping enhance photocatalytic activity [163,171].
Garg et al. [172] tested the photocatalytic performance of prepared N and Co-co-doped TiO2 on the
removal of Bisphenol-A under visible light. The results showed that the maximum degradation rate
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(95%) was observed when using 1.5% Co and 0.5% N co-doping TiO2. This result was almost twice that
of the group using pure TiO2. TiO2 was enhanced because Co and N disturbed the physical properties
of the nano particles, producing alterations in crystal structure and energy band gap as well as elemental
composition. N could easily substitute O in the TiO2 lattice owing to its atomic size comparable with
that of O, and N had small ionization energy and high stability. In addition, the doping of a range
of Co could shift the optical absorption edge from UV to visible light range, and Co could behave as
recombination centers for the photoinduced charge carriers, thereby decreasing quantum efficiency.
Non-metal co-doped TiO2 have been studied extensively [173–175]. Zeng et al. [176] prepared B/N
co-doped TiO2 photocatalysts and compared their photocatalytic performance with pure TiO2 under
simulated sunlight by using flumequine (FLU) as the target compound. The results showed that the
degradation rate of FLU by B/N co-doped TiO2 was nearly 100%, whereas that of pure TiO2 was only
about 10%. The photocatalytic performance of TiO2 catalyst was evidently enhanced by B/N co-doping.
The relative content of rutile in B/N co-doped TiO2 catalysts increased with the increase of the B content,
which produced a synergistic effect between anatase and rutile. This synergistic effect can be explained
by the formation of a semiconductor junction between the anatase phase and the rutile phase, which
promoted the separation of photogenerated electrons and holes, thus improving photocatalytic activity.

The method of co-doping can effectively improve the removal efficiency of pollutants by TiO2.
But some of the elements are not suitable for practical use, so it is necessary to find suitable doping
materials. And it is essential to find an optimum amount of dopant to increase the separation of charge
carriers and prevent the formation of a recombination center.

4.3. Dye Photosensitization

Dye photosensitization means that the photosensitizer (dyes) binds to TiO2 surface by chemical or
physical adsorption, so that the absorption wavelength of visible light shifts to the long wavelength,
thus expanding the excitation wavelength response range of TiO2 and greatly improving the utilization
of sunlight [177–179]. The molecule (dyes) absorbing the photon is called as a photosensitizer and
the altered material (TiO2) is the acceptor or substrate [180]. As shown in Figure 6, the mechanism
of photosensitization is that once the dyes achieve their excited state by the absorption of photons in
the visible range of the solar spectrum, electrons from the dyes’ highest occupied molecular orbital
(HOMO) are transferred to their lowest unoccupied molecular orbital (LUMO) and subsequently to
the conduction band (CB) of TiO2 [181–183]. In addition, the dyes in solution can be excited to a
triplet state under visible light and transfer their excess energy to the O2. Thus, the electrons in the
LUMO react with dissolved oxygen and produce the superoxide anion radical [184]. Dyes used for
photosensitization must meet the following characteristics: strong absorption of visible light even the
part of the near infrared (NIR) region, photo stability (unless the self-sensitized degradation is required),
the existence of some anchoring groups (-SO3H, -COOH, -H2PO3, etc.) and the higher excited state
energy than the conduction band (CB) edge of TiO2 [185,186]. According to the composition, dyes can
be divided into two categories: organometallic dyes and organic dyes. Organometallic dyes contain a
transition metal in the structure and the organic dyes are composed of organic chromophores [187].
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Ahmad and Kan [188] used a phthalocyanine-based reactive dye, C.I. reactive blue 25 (RB-25),
as a dye photosensitizer for anatase (TiO2) and tested photocatalytic performance by degradation
of Rhodamine B (RhB). The result showed that RhB was relatively stable under visible light in the
presence of only TiO2. Degradation rate reached more than 90% when the RB-25 dye was adsorbed
on the TiO2 mainly because the electrons from the dye increased the electron density in the CB of the
TiO2, which enhanced photocatalytic activity under visible light. Mucria et al. [189] modified TiO2 by
dye sensitization. The photosensitizers applied were quinizarin and zinc protoporphyrin. The result
showed that the removal efficiency of both exceeded 80%. The improvement of their activity could be
ascribed to the presence of sensitizing molecules within the nanotubes, whose electronic properties were
promoted by the electron confinement effect in semiconductors. Moreover, electron–hole recombination
rate for this material in comparison to the higher surface materials because the electrons can initially
reach the dye before the CB. Sensitized materials can also be used for desulphurization. Guo et al. [190]
loaded TiO2 onto SBA-15 molecular sieves and sensitized with organic dyes (2,9dichloroquinacridone,
DCQ) to extend its spectral response range from ultraviolet light to visible light. The material was then
applied for the photocatalytic oxidation desulfurization of gasoline. Experimental results showed that
DCQ-TiO2@SBA-15 performed better than unsensitized TiO2@SBA-15, and desulfurization rate can
reach 96.1% in a reaction time of 90 min.

The modification method of photosensitization can greatly improve the photocatalytic performance
of titanium dioxide. However, there are still some problems need to be solved. For example, the organic
dye molecule will gradually degrade due to the photocatalytic. So, it is necessary to replace the catalyst
continuously. Additionally, the absorption of most photosensitizers is weak in the near-infrared region
and there is adsorption competition with pollutants, which limits the development of photosensitization.
Therefore, further research is needed to solve these problems.

5. Application of Modified TiO2 Composite Photocatalytic Materials

Photocatalytic treatment technology is the most representative advanced oxidation technology for
environmental pollution treatment. It uses the hydroxyl radical (•OH) as a strong oxidant to deeply
oxidize and decompose organic pollutants into non-toxic inorganic small molecules [191]. At the same
time, the photocatalytic reduction reaction can effectively remove heavy metal ions. Table 3 is the
performance of the modified TiO2 in treating pollutants.
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Table 3. The performance of the modified TiO2 in treating pollutants.

Photocatalysts Crystal Phases
of TiO2

Light Source and
Reaction Time Target Pollutant Degradation

Rate Ref.

TiO2/biochar anatase 500 W mercury lamp
150 min methyl orange 97% [192]

Fe3+-TiO2 nanoparticles anatase 150 W Xe lamp
240 min

4-chlorophenol
ethyl orange 65% 95% [193]

TiO2-Fe-porphyrin-
conjugated microporous

polymers
anatase Xe lamp 90 min methyl orange 96% [194]

Gd-TiO2 anatase visible light 93 min methylene blue 28% [195]

polypyrrole@TiO2
anatase and

rutile
250 W mercury lamp

60 min methylene blue 25% [196]

W, F-TiO2 anatase 500 W halogen lamp
180 min methylene blue 96% [197]

sodium borosilicate glass
SiO2-B2O3-Na2O- ZnO

with CdS and TiO2

anatase Sunlight 300 min indigo carmine
dye 92% [198]

TiO2-ZrTiO4-SiO2 anatase 300 W Xe lamp
90 min rhodamine B 95% [199]

TiO2-W18O49 anatase visible light 60 min rhodamine B 82% [200]
C/Fe-TiO2 coated on

activated carbon anatase 36 W compact light
140 min rhoda mine B 99% [201]

terephthalic acid
functionalized

g-C3N4/TiO2/Fe3O4@SiO2

anatase
8 W compact

fluorescent lamps
120 min

ibuprofen 97% [202]

Cu-TiO2 anatase 500 W Xe lamp
140 min formaldehyde 100% [203]

MIL-101(Fe)/TiO2 anatase Sunlight 30 min tetracycline 93% [204]

WO3/TiO2 anatase 500 W Xe lamp
60 min paracetamol 100% [205]

MoS2/TiO2/Carbon Fiber rutile visible light 60 min tetracycline 93% [206]

Bi2S3/TiO2/Montmorillonite anatase mercury vapor lamp
120 min ketoprofen 90% [207]

TiO2-reduced graphene
oxide (TiO2-rGO) anatase simulated sunlight

90 min formalin 98% [208]

TiO2/glass anatase Sunlight 30 min 2,5-dichlorophenol 95% [209]
Bi, B-TiO2 anatase Xe lamp 90 min 5-fluorouracil 100% [210]

Ce, Mn- TiO2 anatase 30 W ultraviolet
lamp 240 min diclofenac 94% [211]

Fe-TiO2
anatase and

rutile visible light 1050 min acetaldehyde 65% [212]

N, F-TiO2 anatase mercury vapor lamp
180 min ethylbenzene 33% [213]

activated carbon-TiO2
anatase and

rutile UV light 20 min toluene 99% [214]

Eosin Y- TiO2 anatase visible light 180 min acetaminophen
diclofenac 71% 83% [185]

Cu-TiO2 combine with
activated carbon fiber

anatase and
rutile

fluorescent lamp
180 min Benzene toluene 81% 98% [215]

5.1. The Application in Water Pollution

Wastewater treatment plants can remove a large majority of the pollution. However, several trace
organic compounds or refractory compounds cannot be degraded by the conventional treatment [216].
These pollutants mostly result from domestic and industrial use of pharmaceutical preparations,
printing and hygiene products, and pesticides. In recent years, photocatalytic technology has
broadened its application in the treatment of organic wastewater. Under the conditions of sufficient O
and light, TiO2 uses the photogenerated electrons and holes to degrade almost all organic pollutants
in water and convert them into CO2, H2O, and other inorganic substances. Saif et al. [217] prepared
lanthanide (Nd3+, Sm3+, Eu3+, Gd3+, Dy3+, and Er3+)-doped TiO2 using the sol-gel method and
evaluated their photocatalytic activity in the treatment of actual sewage. In the actual sewage treatment
plant application, the mineralization efficiency of Gd3+-TiO2 and Eu3+ TiO2 on chemical oxygen
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demand (COD) reached 67% and 50%, respectively, after 6 h of light. Lima et al. [218] used Ag/TiO2

photocatalytic material to degrade the hormones which would exist in the sewage treatment plant.
The results showed that the degradation rate of the hormone by Ag/TiO2 reached 95% after 3.5 h. In
addition to organic pollutants, photocatalytic technology can achieve better treatment of inorganic
substances in water. Peng et al. [219] prepared TiO2-CuO/HSC composites. Degradation rates of
ammonia nitrogen in water reached 61% and 100% when experiments were operated under ordinary
light and ultraviolet light, respectively.

Dyeing wastewater discharged from printing and dyeing factories contains a large number of
dye molecules. These dye molecules usually contain a mine groups, aromatic rings, azo groups, etc.
Therefore, the chromaticity of dye wastewater is difficult to meet standards for discharge. Traditional
biological and physical treatment methods for removing organic pollutants, which include precipitation,
adsorption, flocculation, reverse osmosis, and ultrafiltration, are inefficient and unsuitable for industrial
applications. So, people choose photocatalytic degradation as an alternative technology to solve the
pollutants [220–222]. TiO2 can not only effectively remove the color of wastewater, but also decomposes
the pollutants into small molecules such as CO2 and H2O. Xu et al. [223] successfully prepared Ag/TiO2

layered structure and reported the degradation rate of the dye under the sunlight reached 99%, while
the degradation rate of pure TiO2 was 43%. Ji et al. [224] used C/TiO2 microsphere to degrade the
rhoda mine B. The results showed the degradation rate of rhoda mine B reached 96% within 140 min,
and the degradation rate still maintained above 80% after the material was used for three times.
Fu et al. [225] use graphene oxide/TiO2 (GO/TiO2) composites to degrade the dyes and reported the
degradation rate of the dyes reached 96% within 2.5 h.

Tannery wastewater is also a major problem in industrial wastewater because of the containing of
large amounts of poorly biodegradable organic chemicals. The general biological treatment method
can make the effluent reach the standard, but it still needs multiple treatments to remove most of the
COD, color and some organic recalcitrant compounds. So, the photocatalytic treatment using TiO2

become a new method to treat tannery wastewater. He et al. [226] used Mn-doped TiO2 material
to degrade the tannery wastewater. The degradation rate of organic pollutants under sunlight was
nearly 90%. Bordes et al. [227] deposited the fine-structured photocatalytic TiO2 coatings on austenitic
stainless steel coupons by atmospheric plasma spraying (APS) and the total organic carbon (TOC)
removal reached 49%, while the decolorization rate reached 75%. Therefore, they reported that the
decreased TOC and color removal of the resulting effluent evidenced the effectiveness of the developed
coatings for photocatalytic treatment of industrial tannery wastewater.

The large-scale use of pesticides such as herbicides and insecticides have a significant impact
on aquatic environment. The harmful effects of these compounds are due to their toxicity and
high mobility and persistence in aqueous media [228]. In fact, only a small part of the applied
pesticides can protect agricultural products, while most pesticides are lost to the environment through
volatilization, hydrolysis, photolysis, or degradation by microbial action [229]. The characteristics of
pesticide wastewater lead to ineffective treatment by physical and biological methods, so photocatalytic
oxidation is used to treat this type of wastewater, for example organophosphorus pesticides can
be mineralized and decomposed by TiO2 and converted into non-toxic CO2, H2O, and PO4−.
Abdennouri et al. [230] prepared a nano-TiO2 supported on pillared clay and found that the material
can efficiently degrade 2,4-dichlorophenoxyacetic acid, 2,4-dichlorophenoxypropionic acid, and other
pesticides in the environment. Both of the degradation reached about 80%.

As an important component of energy, petroleum plays a decisive role in the sustained and
rapid development of the national economy. Due to river convergence and marine accidents, a large
amount of low-density and water-insoluble oil flows into the ocean every year, causing marine oil
pollution and threating to marine life. Traditional processing is performed by mechanical methods,
and biological processes are often used as auxiliary processing steps, followed by advanced processes
such as adsorption, membrane filtration, and reverse osmosis. However, due to the presence of high
concentrations of toxic aromatic and aliphatic hydrocarbons in addition to the presence of phenols and
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refractory compounds, the biological processes cannot meet the standard of reuse [231,232]. Studies
have shown that TiO2 photocatalysts can float on the water surface and are efficient in the degradation
of toxic and recalcitrant pollutants [233]. Shivaraju et al. [234] prepared N-doped TiO2. They reported
the degradation rate of oil and grease and other organic pollutants in wastewater can reach about 90%.

The pollution of pharmaceuticals in industrial wastewater is serious problem. Traditional
wastewater treatment removes most of the pollutants through sedimentation, filtration, adsorption, or
biological processes, however, bio-toxic and non-degradable organics usually remain in the water at
concentrations above the ppb discharge or reuse limit [235]. Using TiO2 for photocatalytic reaction
would be a good method to solve this problem. Solís-Casados et al. [236] used Sn-doped TiO2 to treat
diclofenac, paracetamol, and ibuprofen under visible light. The results showed the maximum removal
rate of diclofenac was 25%, the maximum removal rate of paracetamol was 25%, and the removal rate of
ibuprofen was 18%. All of the three drugs were effectively reduced. Malakootian et al. [237] used Fe3+

doped TiO2 materials to degrade pharmaceutical wastewater and antibiotic-added synthetic solutions.
The results showed that the degradation rates of antibiotics can reach 70% and 97%, respectively.
Besides, Lcerda et al. [238] and Hou et al. [239] also used the TiO2 to degrade the pharmaceutical
wastewater and obtained satisfied result.

5.2. The Application in Air Pollution

Cars provide convenience for people’s travel, but the automobile exhaust gas seriously affects air
quality and endangers people’s health. NOx in automobile exhaust not only stimulates the human
respiratory system, but also causes problems such as acid rain and photochemical smog. So, the
removal of NOx has attracted people’s attention. However, the traditional technologies of NOx removal,
including physical adsorption and selective catalytic reduction, cannot remove the NOx effectively at
ppb levels [240,241]. TiO2 photocatalyst provides an effective way to solve these problems by mixing
in paint, concrete and brick or fixing on the surface of roads and walls. Under sunlight, the TiO2

photocatalyst can oxidize NOx to form nitric acid through a series of reactions. Then the nitric acid
reacts with the components fixed the photocatalyst to obtain nitrate. Under the action of rainwater,
nitrate ions are formed and washed away. Zhang et al. [242] found that nano-TiO2/diatomite composites
efficiently degraded formaldehyde in the air, showing a good application prospect. Qin et al. [243]
found that loading nano-TiO2 in concrete during road construction could absorb NO2 in locomotive
exhaust, thereby reducing air pollution.

Besides, most volatile organic compounds (VOCs) in air (aldehydes, ketones and alcohols) are
oxidizable, it is feasible to remove them by oxidation method. Most of the heterogeneous catalytic
oxidation methods commonly used to remove pollutants in the air at high temperatures, which
limits the application. Therefore, the photocatalysis method has become a potential method to
remove air pollutants by using water vapor and O2 in air at room temperature with low energy
consumption [244,245]. Lai et al. [246] prepared Bi-TiO2 to degraded toluene and the degradation rate
increased by 77% in terms of CO2 production, as compared to the pure TiO2. Rao et al. [247] used Er3+

doped TiO2 and reported the modified TiO2 exhibited higher photoactivity in comparison with the
pure TiO2. The highest removal efficiency of acetaldehyde and o-xylene within 100 min was 99% and
85%, respectively, and ethylene degradation efficiency reached 22% within 180 min.

5.3. The Application in Soil Pollution

There are many types of soil pollutants, which are characterized by the coexistence of emerging
and old pollutants. These pollutants include heavy metals, pesticides, antibiotics, and persistent organic
compounds, which makes it difficult to get an efficient repair result in soil. Heavy metal pollution and
organic pollution are regarded as the main types of soil pollution because of the large amount among
the pollutants [248]. The surface of the contaminated soil with a high concentration of pollutants
can easily enter the atmosphere or water under the action of wind and water, respectively, leading
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to other secondary environmental problems such as air pollution, surface water and groundwater
pollution [249–251]. Therefore, soil remediation is imminent.

The pollutants’ treatments in soil mainly include physical–chemical remediation technology,
biological remediation technology, and phytoremediation technology, but all of these have some
shortcomings. The photocatalytic technology can completely mineralize the organic pollutants and
remove the heavy metals in the soil. This technology also has the advantages of fast decomposition rate,
no secondary pollution, and easy operation [252–254]. In recent years, photocatalysis has been widely
used in organic soil remediation studies, including organic pesticides, aromatic organics, petroleum
hydrocarbons, and heavy metals [255,256].

TiO2 is the most widely used catalyst in photocatalyst technology, and it also acts as a key role on
pollutants in soil. Kuang et al. [257] reported that the Cd(II) removal efficiency of biological soil crusts
increased by 27% than that of pure biological soil crusts after the addition of nano-TiO2. They reported
that in the first 30 min, the adsorption rate of BSC + TiO2 composite was faster than that of pure TiO2,
which may be due to the high adsorption rate of nano-TiO2. Petroleum-contaminated soil is highly toxic,
and photocatalytic degradation using TiO2 can also get the ideal results. Yang et al. [258] pretreated the
soil with ultraviolet radiation C (UVC) activated TiO2 under varying moisture conditions to enhance
biodegradation of heavy hydrocarbons (HCCs). They reported that total petroleum hydrocarbon (TPH)
removal after 24 h exposure to UVC was about 20% in slurries with 300% water holding capacity. In a
10 d bioremediation test, TPH removal in treated soil increased to 27%, compared to 15% for controls
without photocatalytic pre-treatment. The improvement mainly because the recalcitrant hydrocarbons
were transformed into more bioavailable and biodegradable products so that the pollutants were more
readily consumed by soil microorganisms.

Soil remediation of modified TiO2 has achieved some effects in heavy metal pollution and organic
pollution, but there are still some problems, including the insufficient light penetration and difficulty
in recycling. Therefore, it is necessary to find TiO2 composite materials that can make fuller use of
sunlight in the soil or improve the recycling rate.

6. Conclusions and Perspective

Despite the substantial progress in TiO2, considerable opportunities and challenges remain. The
synthesis and improvement of TiO2 has become a hot topic to improve the efficiency of environmental
treatment. This review comprehensively discusses several synthesis and doping technologies of TiO2,
and the effect of each improvement method. Moreover, it elaborates and prospects the application of
TiO2-modified materials in the environmental field, especially for water, air, and soil pollution.

Developing a pollutant treatment with visible light-responsive photocatalysts is very urgent and
necessary. The photocatalytic performance of TiO2 can be greatly improved through the modification
of TiO2. However, many problems in application remain to be solved: (i) in many studies, the system
has only one kind of pollutant, which does not match the complex multiple components of the actual
pollutants. Gaps exist between material research and application studies for practical application.
Whether modified TiO2 can perform well is unknown. Although modified TiO2 shows potential in
the treatment of pollutants, most of the works considered in the scope of this review were carried out
on a laboratory scale. (ii) The recycling or natural degradation of the modified materials remains an
issue. Few studies were devoted to separation, recovery, and reuse of photocatalytic materials for the
treatment of the real pollutants. (iii) Introduction of other materials into TiO2 will cause the preparation
complexity and cost to increase. Materials used for modification may pollute the environment, such as
in modification with heavy metal ions or harmful organic.

Future research should focus on the following aspects to improve the applicability and feasibility
of the modified TiO2: (i) more pilot experiments using modified TiO2 should be performed for
photocatalytic degradation of real pollutants in water, air, and soil. An understanding of inherent
charge transfer dynamics and photocatalytic mechanisms at the nanometer and atomic level will
be highly useful in designing effective approaches for enhancing the photocatalytic performance of
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TiO2. Thus, researchers should understand the mechanism of dealing with actual pollutants. (ii) The
efficiency and photostability of the modified TiO2 must be improved. The performance of modified
TiO2 is currently limited by the physicochemical properties of these materials. (iii) Materials used
to modify TiO2 that cause low harm to the environment and can be used in large patterns must be
found or synthesized. Devising an appropriate photocatalyst immobilization strategy to provide a
cost-effective solid–liquid separation can save cost and avoid secondary pollution. (iv) A good reactor
can improve the utilization rate of light and reduce the electricity costs. Thus, a good design of the
reactor is necessary before the experiment. (v) In several cases, toxicity assessment may be even more
sensitive than chemical analysis by using modified TiO2. (vi) Although modified TiO2 can have a good
degradation effect on pollutants in the laboratory, the durability and recyclability of the catalysts must
be considered in actual application.

Facing the problems of complex types of pollutants and tight treatment time, the comprehensive
application of multiple treatments for pollutants is the development direction of the current
environmental field. The combined use of photocatalysis and other technologies will broaden
the application of photocatalysis technology.
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