Supplementary Materials

Comparison of different metal-doping effect on Co₃O₄ catalysts for

the total oxidation of toluene and propane

Weidong Zhang¹, Paola Anguita¹, Javier Díez-Ramírez², Claude Descorme¹, Jose Luis Valverde², Anne Giroir-Fendler^{1,*}

¹ Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 2 avenue Albert Einstein, Villeurbanne 69622, France

² Department of Chemical Engineering, Faculty of Chemical Science and Technology, University of Castilla-La Mancha, Avenida Camilo José Cela 12, Ciudad Real 13005, Spain

*Correspondence: E-mail: anne.giroir-fendler@ircelyon.univ-lyon1.fr; Tel.: +33-472-431-586

Figure S1. Variation of the (a) toluene conversion (b) propane conversion with the reaction temperature during the heating run.

Figure S2. Evolution of (a) CO concentration in toluene oxidation and (b) C_3H_6 concentration in propane oxidation during one heating–cooling catalytic cycle over the Co₃O₄ and M_{0.05}Co catalysts.

Figure S3. Arrhenius plots for (a) toluene oxidation (b) propane oxidation over Co_3O_4 and $M_{0.05}Co$ catalysts. (reaction conditions: toluene/propane concentration = 1000 ppm, O_2 concentration = 21 vol.% and WHSV = 40,000 mL h⁻¹ g⁻¹).

Figure S4. Constable plot of apparent pre-exponential factors as a function of apparent activation energies for toluene and propane oxidation over Co_3O_4 and $M_{0.05}Co$ catalysts.

Figure S5. CO_2 evolution as a function of time on stream in air flow after 24-h

stability test.

Figure S6. Toluene conversion to CO_2 as a function of time on stream over Co_3O_4 catalyst at 230 °C.