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Abstract: An efficient synthetic method of tetracyclic 3,4-fused indoles and dihydroindoles via
rhodium-catalyzed (3+2) cycloaddition of N-tosyl-4-(2-phenoxyphenyl)-1,2,3-triazole was described.
The aromatized xanthene derivatives can be achieved in a one-pot synthesis starting from
1-ethynyl-2-phenoxybenzene. The xanthene-based fused heterocycles were considered as the
valuable fluorophore.
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1. Introduction

Xanthene-based fluorescent dyes largely containing fluorescein and rhodamine have attracted
continuous attention from researchers because of their good photophysical properties such as high
absorption coefficient, high photostability, and high fluorescence quantum yield [1–8]. However,
absorption and emission wavelengths of many xanthene derivatives are in the ultraviolet-visible
light range below 600 nm, which makes them unsuitable for bioimaging in living systems [9].
An important modification to the dyes is the introduction of a fused aryl ring into the xanthene skeleton.
This modification brings a remarkable bathochromic shift in excitation and emission wavelengths [10].
The classic examples are Rho 101, naphthoxanthene, and SNARF-1, which exhibit much longer
wavelengths than those of rhodamine and fluorescein under basic conditions (Figure 1) [11–13].

Rhodium-stabilized donor/acceptor carbenes as reactive intermediates have been widely applied
in modern organic synthesis [14–26]. Among them, N-sulfonyl-1,2,3-triazole as an alternative
source of carbene precursor has been used to achieve the transannulation reaction for the direct
synthesis of heterocycles [27–41]. Murakami’s group described a rhodium-catalyzed (3+2) annulation
reaction of tricyclic 3,4-fused dihydroindoles via the corresponding 1,2,3-triazoles [42–45]. Recently,
Davies et al. described a series of rhodium(II)-catalyzed intramolecular annulations of indolyl- and
pyrrolyl-tethered N-sulfonyl-1,2,3-triazoles, including tetrahydropyrrolopyridine, tetrahydrocarboline,
tetrahydro pyrrolo-[2,3-d]azepine, and azepino [4,5-b]indoles [46,47]. Based on these findings,
we wondered if an analogous α-imino carbene can be used to construct a tetracyclic aryl-fused
structure from simple materials in the presence of rhodium(II) catalysts. Thus, we here described a
rhodium-catalyzed intramolecular (3+2) annulation to synthesize tetracyclic compounds. In addition,
the reaction constituted a simple synthesis of aromatizing pyrrole-fused xanthene starting from
1-ethynyl-2-phenoxybenzene in one pot (Figure 1).
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Figure 1. The fluorophores based on xanthene moiety. 

2. Results and Discussion 

Firstly, the substituted phenylboronic acids were coupled with 2-iodophenol in the presence of 
Cu(OAc)2 to provide 1-iodo-2-phenoxybenzene 1. Iodine was converted to a trimethylsilylacetylene 
(TMSA) functional group using PdCl2(PPh3)2 and CuI as the catalysts, and then trimethylsilyl was 
removed in CH2Cl2 solution containing K2CO3 to give 1-ethynyl-2-phenoxybenzene 3 [48]. 
Subsequently, the key intermediate N-tosyl-4-(2-phenoxyphenyl)-1,2,3-triazole 4 was obtained via (3 
+ 2) cycloaddition of 3 with tosyl azide in the presence of CuTc. When the triazole 4 reacted with 
rhodium(II) octanoate dimer in toluene at 80 °C for 4 h, the desired tetracyclic compound 5 was 
obtained after chromatography purification. The results delineated the scope of the (3+2) annulation 
reaction as shown in Scheme 1. Substrates possessing the electron-withdrawing groups smoothly 
reacted, and the corresponding products 5c–5f were isolated in yields ranging from 84% to 92%. The 
unsubstituted and electron-donating group substituted substrates also successfully involved in the 
transformation with yields of 72% and 70%, respectively (5a and 5b). The stereochemistry of the 
tetracyclic products was analyzed by 1H NMR data of 5a–5f. H atoms on the methenyl group 
showed relatively large coupling constants (J = 14.0–15.8 Hz). Narasaka K. et al. reported a series of 
cis- and trans-fused (4,5,6,7-η)-3a,7a-dihydro-3H-indoles, in which the J of the cis-fused isomer was 
much larger than the trans- one [49]. Similarly, the coupling constants of cis-fused indole derivatives 
in Murakami’s report were also up to 14 Hz [42]. Thus, the compounds 5a–5f were considered as 
cis-fused isomers. 
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2. Results and Discussion

Firstly, the substituted phenylboronic acids were coupled with 2-iodophenol in the presence of
Cu(OAc)2 to provide 1-iodo-2-phenoxybenzene 1. Iodine was converted to a trimethylsilylacetylene
(TMSA) functional group using PdCl2(PPh3)2 and CuI as the catalysts, and then trimethylsilyl
was removed in CH2Cl2 solution containing K2CO3 to give 1-ethynyl-2-phenoxybenzene 3 [48].
Subsequently, the key intermediate N-tosyl-4-(2-phenoxyphenyl)-1,2,3-triazole 4 was obtained via (3+2)
cycloaddition of 3 with tosyl azide in the presence of CuTc. When the triazole 4 reacted with rhodium(II)
octanoate dimer in toluene at 80 ◦C for 4 h, the desired tetracyclic compound 5 was obtained after
chromatography purification. The results delineated the scope of the (3+2) annulation reaction as
shown in Scheme 1. Substrates possessing the electron-withdrawing groups smoothly reacted, and the
corresponding products 5c–5f were isolated in yields ranging from 84% to 92%. The unsubstituted
and electron-donating group substituted substrates also successfully involved in the transformation
with yields of 72% and 70%, respectively (5a and 5b). The stereochemistry of the tetracyclic products
was analyzed by 1H NMR data of 5a–5f. H atoms on the methenyl group showed relatively large
coupling constants (J = 14.0–15.8 Hz). Narasaka K. et al. reported a series of cis- and trans-fused
(4,5,6,7-η)-3a,7a-dihydro-3H-indoles, in which the J of the cis-fused isomer was much larger than the
trans- one [49]. Similarly, the coupling constants of cis-fused indole derivatives in Murakami’s report
were also up to 14 Hz [42]. Thus, the compounds 5a–5f were considered as cis-fused isomers.
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(1.2 equiv), CH2Cl2, r.t., 6 h. (ii) 1 (1.0 equiv), TMSA (1.1 equiv), PdCl2(PPh3)2 (0.02 equiv), 
CuI (0.04 equiv), Et3N, r.t., 4 h. (iii) 2 (1.0 equiv), K2CO3 (0.5 equiv), CH2Cl2:CH3OH = 1:1, r.t., 
2 h. (iv) 3 (1.0 equiv), TsN3 (1.0 equiv), TcCu (0.05 equiv), toluene, r.t., N2(g), 12 h. (v) 4 (1.0 
equiv), Rh2(oct)4 (0.02 equiv), toluene, 80 °C, N2(g), 4 h. 

We next speculated the possible mechanism for the production of the tetracyclic 
3,4-fused dihydroindole 5 (Scheme 2). An α-diazo imino A was formed by reversible 
tautomerization from the corresponding triazole 4. The intermediate α-imino rhodium 
carbene B was obtained with the release of N2 (g) when A rapidly reacted with rhodium (II). 
Subsequently, the intramolecular electrophilic reaction of B occurred to form the 
zwitterionic intermediate C. The anionic rhodium released bonding electrons, completing 
the second cyclization [42]. The intermediate A acts as a 1,3-dipole equivalent due to the 
nucleophilic character of the imino nitrogen. According to Davies report [47], alternatively, 
α-diazoimine A undergoes thermal decomposition to generate free carbene D, which could 
cyclopropanate an arene to give norcaradiene E. The intermediate E does not have the 
correct geometry to undergo a  

(3,5)-sigmatropic rearrangement to give 5. 
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It is noted that it was a bit hard to isolate compound 5 after the reaction because we found 
these tetracyclic structures were easily oxidized in air, giving the corresponding aromatized 
pyrrole-fused xanthene derivative 6. According to Murakami’s report, a special oxidant (such as 
MnO2) was needed to complete further oxidative aromatization [42]. However, in our case, thorough 
aromatization can be achieved by stirring in air for some hours. Thus, we subsequently tried to 
directly synthesize aromatized xanthene derivatives. 

Scheme 1. Tetracycles synthesis by Rh(II) catalyst a. a Reaction conditions: (i) 2-iodophenol (1.0 equiv),
substituted arylboronic acids (1.5 equiv), Et3N (5.0 equiv), anhydrous Cu(OAc)2 (1.2 equiv), CH2Cl2,
r.t., 6 h. (ii) 1 (1.0 equiv), TMSA (1.1 equiv), PdCl2(PPh3)2 (0.02 equiv), CuI (0.04 equiv), Et3N, r.t., 4 h.
(iii) 2 (1.0 equiv), K2CO3 (0.5 equiv), CH2Cl2:CH3OH = 1:1, r.t., 2 h. (iv) 3 (1.0 equiv), TsN3 (1.0 equiv),
TcCu (0.05 equiv), toluene, r.t., N2(g), 12 h. (v) 4 (1.0 equiv), Rh2(oct)4 (0.02 equiv), toluene, 80 ◦C, N2(g),
4 h.

We next speculated the possible mechanism for the production of the tetracyclic 3,4-fused
dihydroindole 5 (Scheme 2). An α-diazo imino A was formed by reversible tautomerization from
the corresponding triazole 4. The intermediate α-imino rhodium carbene B was obtained with
the release of N2 (g) when A rapidly reacted with rhodium (II). Subsequently, the intramolecular
electrophilic reaction of B occurred to form the zwitterionic intermediate C. The anionic rhodium
released bonding electrons, completing the second cyclization [42]. The intermediate A acts as a
1,3-dipole equivalent due to the nucleophilic character of the imino nitrogen. According to Davies
report [47], alternatively, α-diazoimine A undergoes thermal decomposition to generate free carbene
D, which could cyclopropanate an arene to give norcaradiene E. The intermediate E does not have the
correct geometry to undergo a (3,5)-sigmatropic rearrangement to give 5.
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Scheme 2. Proposed mechanistic pathways.

It is noted that it was a bit hard to isolate compound 5 after the reaction because we found these
tetracyclic structures were easily oxidized in air, giving the corresponding aromatized pyrrole-fused
xanthene derivative 6. According to Murakami’s report, a special oxidant (such as MnO2) was needed
to complete further oxidative aromatization [42]. However, in our case, thorough aromatization can
be achieved by stirring in air for some hours. Thus, we subsequently tried to directly synthesize
aromatized xanthene derivatives.

The construction of these pyrrole-fused xanthene compounds was successfully integrated into a
one-pot synthesis directly from 1-ethynyl-2-phenoxybenzene 3 (Scheme 3). For example, 3g (1.0 equiv),
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tosyl azide (1.0 equiv), CuTc (0.05 equiv), Rh2(oct)4 (0.02 equiv), and toluene were mixed together
in a flask. The above mixture was stirred at 25 ◦C for 12 h, during which 3g was converted to the
corresponding triazole 4g. The mixture was then stirred at 80 ◦C for additional 4 h. After being cooled
to room temperature, the mixture was further stirred for 4 h in air. Finally, preparative thin-layer
chromatography was used to afford 6g in 73% yield based on 3g. The all-in-one-pot procedure showed
that the catalysts and reagents requisite in each step barely interfered with each other.
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The present reaction was also used to synthesize xanthone 7 from triazole diaryl ether 4, as shown
in Scheme 4. When N,N-diethyl substituted 4k in toluene and was catalyzed by Rh2(oct)4 at 80 ◦C,
no pyrrole-fused xanthene skeleton was obtained. Instead, the corresponding xanthone 7k was
obtained in 75% isolated yield. After the first cycloaddition to form intermediate C, the strong
electron-donating substituent N(C2H5)2 weakened the electropositivity of the allyl position, which was
unfavorable for the second cyclization with the imino nitrogen. The tosyl amide was further oxidized
to a carbonyl group in air, affording a stable xanthone derivative. Similarly, the substrate 4l’ with an
intense electron-donor group diethyl amine also underwent a single cycloaddition reaction to give
xanthone 7l’ in 80% yield. Shen et al. reported a similar process for the synthesis of N-methyl acridone
derivatives [50]. The triazole intermediate was converted to acridone by rhodium catalysis via a
single cycloaddition.Catalysts 2020, 10, x FOR PEER REVIEW 5 of 9 
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In addition, a special case of the rhodium catalysis process was obtained for the O-methoxy
substrate. The (3+2) annulation reaction of N-tosyl-4-(2-phenoxyphenyl)-1,2,3-triazole 4m took place
by Rh2(oct)4 in toluene under the same conditions. However, oxidative aromatization directly occurred
during the process of annulation, and also the O-methoxy group was simultaneously removed, affording
the aromatized pyrrole-fused xanthene 8 with 78% yield (Scheme 5). Due to the rotatable C-O bond in
diaryl ether, the carbenoid carbon of B is electrophilic to react with methoxyl site. When intramolecular
attack of the phenyl ring in the methoxyl site occurs to furnish the zwitterionic intermediate, methoxyl
as a good leaving group could be removed. In the tested substrates, only O-methoxy-substituted
triazole could be aromatized, retaining a tosyl group in the oxidation process.
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Encouraged by the straightforward synthetic pathway described above, we tried to investigate
the fluorescent properties of the pyrrole-fused xanthene skeleton. The excitation (λex) and emission
(λem) wavelengths of the typical structures were tested as shown in Table 1. The unaromatized 5a
showed spectral characteristics that were comparable to rhodamine with λem = 443 nm and Φ = 0.31.
The entirely aromatized structures via oxidation, such as 6g–6j, exhibited longer emission wavelengths
at 471, 480, and 552 nm, respectively. When the substituent was an electron-withdrawing NO2 group,
the fluorescent properties including emission wavelength and quantum yield remarkably increased.
Two xanthone-based products, 7k and 7l’, were also analyzed, giving λem = 426 nm and λem = 457 nm
with acceptable quantum yields, respectively. These results indicated that the pyrrole-fused xanthene or
imino-modified derivatives in pyrrole were used as a potential fluorophore to develop new applications.

Table 1. Fluorescent properties of the typical structures a.

Comp. Solvent λex (nm) λem (nm) Quantum Yield (Φ)

5a CH2Cl2 388 443 0.31
6g CH3CN 370 471 0.45
6h CH2Cl2 327 480 0.38
6j DMSO 436 552 0.52
7k DMSO 355 426 0.41
7l’ DMSO 355 457 0.35

a See SI Figure S1 for details of emission (λem) wavelength and quantum yield (Φ) for the typical compounds.

3. Materials and Methods

3.1. Materials

Unless specifically mentioned, all chemicals were purchased from Beijing Ouhe Technology Co.
Ltd., Beijing, China, or J&K Scientific Ltd., Beijing, China, and used without further purification.

3.2. Typical Procedure for the Synthesis of Triazole 4

A mixture of 3a (1.32 g, 6.80 mmol) and copper(I) thiophene-2-carboxylate (64.79 mg, 0.34 mmol)
was dissolved in dry toluene (30 mL). TsN3 (1.38 mL, 6.80 mmol) was added via syringe, and the
solution was stirred at room temperature for 12 h under a nitrogen atmosphere. The crude product was
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further recrystallized from hexane/CH2Cl2 (15:1) to yield the final pure 4a as a white solid (77% yield).
Compounds 4b–f were synthesized using a similar route according to 4a.

3.3. Tetracycle 5 Synthesis by Rh(II) Catalyst

Compound 4a (0.65 g, 1.66 mmol) and Rh2(oct)4 (25.86 mg, 0.03 mmol) were dissolved in dry
toluene (10 mL) in a Schlenk tube. The solution was heated for 4 h at 80 ◦C. Then, the mixture
was evaporated under vacuum to give the crude product, which was purified by silica gel column
chromatography hexane/ethyl acetate (20:1) to give 5a (72% yield). Compounds 5b–f were synthesized
using a similar route according to 5a.

3.4. One-Pot Synthesis of 6 Starting from 1-ethynyl-2-phenoxybenzene

Compound 3g (0.8 g, 3.84 mmol), TsN3 (0.76 g, 3.84 mmol), CuTc (36.62 mg, 0.19 mmol),
and Rh2(oct)4 (59.82 mg, 76.83 µmol) were dissolved in dry toluene (10 mL) in a Schlenk tube.
The solution was stirred at room temperature for 12 h and then heated to 80 ◦C for 4 h. After being
cooled to room temperature, the solution was further stirred at room temperature for 4 h in air. Then,
the mixture was evaporated under vacuum to give the crude product, which was purified by silica gel
column chromatography hexane/ethyl acetate (20:1) to give 6g (60% yield). Compounds 6h–j were
synthesized using a similar route according to 6g.

3.5. Synthesis of 9H-xanthen-9-one and Special Oxidative Aromatization Reaction of
4-(2-phenoxyphenyl)-1,2,3-triazole

Compounds 7k, 7l’, and 8 were synthesized using a similar route according to 5a.

3.6. Calculation of the Fluorescence Quantum Yield

The quantum yield of the fluorophore was calculated according to Equation (1):

ϕU = ϕS(
FU

FS
)(

AS
AU

)(
η2

U

η2
S

) (1)

where ϕs is the quantum yield of the standard, F is the area under the emission spectra, A is the
absorbance at the excitation wavelength, and η is the refractive index of the solvent used. U subscript
denotes unknown, and S means standard. Rhodamine B was chosen as the standard.

4. Conclusions

In conclusion, we have described the intramolecular (3+2) annulation of α-imino rhodium
carbene complexes to construct tetracyclic 3,4-fused indoles and dihydroindoles. Of note is that the
reaction is illustrated by its successful integration into a one-pot synthesis directly from 1-ethynyl-
2-phenoxybenzene, giving a series of xanthene derivatives. Xanthenes are important in fluorescent
dye and medicinal chemistry, and we think that the current approach is an appealing choice for the
construction of molecular libraries for diversity-oriented synthesis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/8/920/s1.
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