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Abstract: Graphdiyne (GDY) is a two-dimensional (2D) electron-rich full-carbon planar material
composed of sp2- and sp-hybridized carbon atoms, which features highly conjugated structures,
uniformly distributed pores, tunable electronic characteristics and high specific surface areas.
The synthesis strategy of GDY by facile coupling reactions under mild conditions provides more
convenience for the functional modification of GDY and offers opportunities for realizing the special
preparation of GDY according to the desired structure and unique properties. These structural
characteristics and excellent physical and chemical properties of GDY have attracted increasing
attention in the field of electrocatalysis. Herein, the research progress in the synthesis of atomic-level
functionalized GDYs and their electrocatalytic applications are summarized. Special attention
was paid to the research progress of metal-atom-anchored and nonmetallic-atom-doped GDYs for
applications in the oxygen reduction reaction (ORR), the oxygen evolution reaction (OER) and the
hydrogen evolution reaction (HER) catalytic processes. In addition, several potential development
prospects and challenges of these 2D highly conjugated electron-rich full-carbon materials in the field
of electrocatalysis are presented.

Keywords: graphdiyne; metal-atom-anchored graphdiyne; nonmetallic-atom-doped graphdiyne;
oxygen reduction reaction; oxygen evolution reaction; hydrogen evolution reaction

1. Introduction

With the over-consumption of global fossil fuels and the increasing environmental pollution,
the development and utilization of sustainable and clean energy as substitutes for conventional
energy is an important way to achieve green sustainable development, but remains challenging [1–4].
Electrochemical catalysis of energy conversion technologies including fuel cells and metal–air batteries
has been extensively and intensively investigated for its key role in building sustainable development
and environment-friendly energy cycles [5]. Different combinations of catalytic reactions have
realized diverse energy storage and conversion systems, such as fuel cells (ORR/HOR), water splitting
(OER/HER), metal–air batteries (ORR/OER) [6]. Unfortunately, owing to the very slow electrochemical
reactions kinetics of the ORR and OER, their practical applications are greatly restricted [7–9]. To date,
the noble-metal-based catalysts such as Pt and RuO2 have demonstrated their high catalytic activity in
electrocatalysis [10,11] and have been therefore regarded as benchmark catalysts [12,13]. However,
the high price and scarcity of these catalysts seriously hamper the development of their commercial
applications. Thus, the development and utilization of electrocatalysts is of vital importance within
its characteristics of efficiently promoting the slow kinetic process of ORR and OER while greatly
improving the energy conversion efficiency. At the same time, it is essential to develop highly
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efficient and stable HER catalysts that can replace Pt catalysts [14,15]. In these regards, the unique
two-dimensional (2D) carbon material that has two value features of a tunable and uniformly exposed
crystal-plane and a unique electronic structure has attracted people’s attention [16,17]. In particular,
its atomic thickness and large surface area contributes to the exposure of a large number of active sites
and the fast transport of carrier [18–21], and its huge advantages of high energy conversion efficiency
and environmental friendliness have promised their applications in the field of electrocatalysis [22–25].

Graphdiyne (GDY) has emerged as the new generation of 2D nanostructured carbon material
containing sp2- and sp-hybridized carbon atoms, with high degrees of π conjugation, natural uniform
porous structure, superior semiconducting properties and excellent chemical and mechanical
stability [26–30]. The sp2- and sp-hybridized acetylene bonds and benzene rings constitute the
single-atomic layer 2D GDY (Figure 1a). Similar to graphene, in the infinite planar extension,
the single-layer 2D planar configuration of GDY will form certain folds in order to maintain the
stability of the configuration (Figure 1b) [31]. Due to its unique conjugated electronic structure [32],
extraordinary conductivity and adjustable electronic characteristics [33,34], GDY with controllable
full-carbon framework of atomic thickness has been applied in the field of electrocatalysis [35–39].
In the structure of GDY, adjacent benzene rings (sp2-hybridized carbon) linked to each other through
butadiyne linkages (sp-hybridized carbon) [40]. Furthermore, in addition to sp2 hybridization, the sp
hybridization makes the arbitrary angle rotation of π/π* perpendicular to the axis, which sorts the
possibility of pointing toward atoms and coordinating with atoms [41]. Another important advantage
that GDY can grow in situ on arbitrary substrate [42,43] provides better basic conditions for its
manufacture of stable catalysts and efficient catalytic effects. Thereby, GDY is rapidly becoming a
valuable member of 2D all-carbon conjugated material system and contributing to the commercial and
industrial development in the field of electrocatalysis.
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Figure 1. Chemical structure of GDY [31]. (a) Schematic diagram of the two-dimensional planar
configuration of the single atomic layer of GDY. (b) Schematic diagram of the folds of the
two-dimensional planar configuration of GDY.

In this review, we summarize the recent progress on the synthesis of atomic-level functionalized
GDY catalysts and their electrocatalysis applications. The atomic-level functionalization of GDY
is divided into two parts, namely the metal-atom-anchored functionalized GDY catalysts and the
nonmetallic-atom-doped functionalized GDY catalysts. Their applications in the field of electrocatalysis
will cover three aspects of ORR, OER and HER catalysis, which are discussed from both theoretical
predictions and experimental investigations. This study briefly looks ahead to the challenges and
opportunities in the future of attempting to fully and efficiently utilize the full advantages of GDY to
construct the electrocatalysts with commercial application value.

2. Synthesis of Atomic-Level Functionalized GDY Catalysts

In addition to the copper foil method to synthesize GDY (Figure 2a), the chemical vapor deposition
(CVD) (Figure 2b–c) [44], the gas/liquid interface method (Figure 2d) and liquid/liquid interface method
(Figure 2e) [27] have also been demonstrated to be feasible for the synthesis of GDY. Large-scale and
various forms of (nanofilms [27], ultrathin nanosheets [19,45], nanowalls [46], nanotubes [47] and
nanochains [48]) of high quality GDY can be feasibly prepared in the required form. These GDY
samples with various morphologies are prerequisites for achieving high-performance nonmetallic
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catalyst or metal catalyst support. Simultaneously, on account of the closed environment formed in the
interface method contributing to the excellent continuity and superior 2D features of the as-prepared
GDY [49,50], this high-quality 2D structure is the most necessary condition for the realization of
GDY-based materials as electrocatalysts. More important, GDY has been predicted to be the most stable
carbon network containing diacetylenic bonds, and the existence of acetylenic bonds offer innovative
methods for structural flexibility along with property modification, making it favorable for wider
applications compared with conventional 2D materials [51,52]. Overall, GDY is highly controlled
in synthesis in terms of its structure and physicochemical properties together with the uniformly
distributed cavities, which promises the possibility to achieve the desired physical and chemical
properties through the functionalization at atomic-level [53].
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Figure 2. Syntheses of GDY. (a) Synthetic route of GDY film by copper foil method (reproduced
with permission from [26]. Copyright The Royal Society of Chemistry, 2010); (b) experimental setup
of the chemical vapor deposition (CVD) system for the growth of GDY on silver surface using
hexaethynylbenzene (HEB) as precursor; (c) schematic view of the surface growth process by CVD
method (reproduced with permission from [44]. Copyright Wiley-VCH, 2017); (d) schematic illustration
of the gas/liquid interfacial synthesis and transfer process. A very small amount of HEB (20 nmol)
in a mixture of dichloromethane and toluene (220 µL, 1:10 v/v) was gently placed on the surface
of an aqueous solution containing the copper catalyst at room temperature under Ar atmosphere.
Catalytic polymerization proceeded at the gas/water interface for 24 h, producing a GDY nanosheets
that floated on the interface. The GDY nanosheets can be transferred onto various flat substrates
via a horizontal approach known as the Langmuir–Schafer method; (e) schematic illustration and
a photograph of the liquid–liquid interfacial synthetic procedure. Under Ar atmosphere at room
temperature, the successive catalytic coupling reaction for 24 h led to the growth of the 2D covalent
network, generating a multilayer GDY film at the liquid/liquid interface (reproduced with permission
from [27]. Copyright American Chemical Society, 2017).

2.1. Synthesis of Metal-Atom-Anchored GDY Catalysts

The metal-atom catalysts have aroused great interest owing to the characteristics of exposing
the maximum number of active sites, maximizing the utilization of metal atoms and having high
efficiency and stable catalytic performance, consisting of single metal atoms anchored on the supporting
material [54–56]. Isolated metal atoms with high surface energy make them easy to agglomerate into
metal nanoparticles and their thermodynamic instability also challenges the controllable preparation of
stable metal-atom catalysts. Thus, it is vital to develop suitable synthetic methods to prepare metal-atom
catalysts with highly dispersed metal atoms and stable performance. The three key points for preparing
highly efficient, stable and durable metal-atom catalysts are as follows: (a) High physical and chemical
stability and high surface area to stably and effectively anchor as many metal atoms as possible; (b) The
effective distribution of metal atoms on the surface of the support to exert its maximum catalytic
activity; (c) The strong interaction between the metal-atom and the support to ensure the overall
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performance of the catalyst. Due to its advantages of high conjugated structure, large specific surface
area and high adsorption energy for metal atoms, GDY is considered to be the excellent support for
efficiently and stably anchoring metal atoms [57–60]. The formation of strong covalent bonds between
metal atoms and carbon atoms in the GDY structure is a guarantee of their excellent electrocatalytic
performance. Thus, far, the two main methods developed for preparing metal-atom catalysts supported
by GDY are the wet chemical method and the electrochemical deposition method, respectively.

2.1.1. Wet Chemical Method

The wet chemical method for preparing metal-atom catalysts involves the addition of the support
and metal precursor in the same solution and the distribution of the metal precursor on the support by
wet impregnation, co-precipitation or deposition-precipitation. The metal is changed from oxidation
state to zero or low valence state by reducing agent and finally a catalyst in which metal atoms are
anchored on a support is obtained. Maintaining the suitable metal loading on the support surface
is critical for the synthesis of metal-atom catalysts. High metal loadings may cause the aggregation
of metal atoms together to form metal clusters or metal nanoparticles [61]. The primary principle of
preparing the stable metal-atom catalysts is to enhance the interaction between metal atoms and the
support while maintaining an appropriate metal loading on the support. Yin et al. [62] used K2PtCl4 as
the metal precursor and successfully anchored Pt single atom on the surface of GDY by in situ wet
chemistry. No obvious Pt clusters or nanoparticles are formed. The white bright spots as shown in
Figure 3a have diameters of about 1.9–2.3 Å, close to the theoretical atomic diameter of the Pt single
atom. Notably, the sp-hybrid alkynyl carbon atom in the 18C-hexagonal holes in GDY framework
is the ideal anchoring site for Pt atoms. It is confirmed that the Pt atoms are anchored by forming a
coordinated interaction with C atoms on the alkynyl group, which further confirms that Pt is anchored
on the surface of GDY in the form of isolated atoms.
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Figure 3. Structural characterizations of metal-atom-anchored GDY. (a) Atomic-resolution high-angle
annular dark-field scanning transmission electron microscopy (HAADF-STEM) image for Pt-GDY
(reproduced with permission from [62]. Copyright Wiley-VCH, 2018); (b–d) different configurations
of the individual Mo-atoms anchored on the GDY structure (reproduced with permission
from [63]. Copyright American Chemical Society, 2018); (e) scanning electron microscopy (SEM),
(f) High-resolution transmission electron microscopy (HRTEM) and (g) HAADF images of Ru/GDY;
(h) Experimental and fitted EXAFS spectra of Ru/GDY and Ru foil (reproduced with permission
from [64]. Copyright Elsevier, 2020).

Using Na2MoO4 as the metal precursor, Hui et al. [63] successfully anchored the Mo atom on the
surface of GDY (Mo/GDY) through the solvothermal reduction wet chemistry method, with the average
loading of metal Mo atoms of 7.5 wt%. The isolated and uniform bright points in the Figure 3b–d
confirm the successful anchoring of Mo atoms and also display the local coordination environment
of Mo atoms in the sample, providing evidences for possible anchor configurations of Mo metal
atoms. By a facile and effective in-situ wet-chemical reduction strategy, ruthenium (Ru) atom was
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easily anchored on the GDY grown on a 3D carbon fiber network, and the self-supporting 3D flexible
GDY-supported Ru atom catalyst (Ru/GDY) with the 1.0 wt% loading of Ru atom was prepared [64].
The Ru/GDY sample has a well-defined 3D layered structure (Figure 3e) and the presence of Ru atoms
can be observed (Figure 3f,g). It is worth noting that the stripe spacing of Ru/GDY (0.321 nm) is smaller
than that of the original GDY (0.365 nm), indicating the existence of the interactions between the
Ru atoms and the GDY. The extended X-ray absorption fine structure (EXAFS) spectrum of Ru/GDY
(Figure 3h) features a predominant peak at 1.54 nm, which is smaller than that of the Ru–Ru contribution
(at ~2.41 nm) in Ru foil. It is also noted that the adsorption edge of Ru/GDY shifts to higher energy
position corresponding to RuO2 [65,66] compared to Ru foil, reflecting the only presence of isolated Ru
atoms in Ru/GDY with a valence of about +4.

2.1.2. Electrochemical-Deposition Method

The preparation of metal-atom-anchored GDY catalysts by electrochemical-deposition method
uses the GDY support as the cathode of the electrolytic cell and the metal salt solution with an
appropriate ion concentration as the electrolyte. By applying a suitable voltage, the metal ions in
the solution obtain electrons at the cathode and are reduced to be deposited on the GDY support.
The simple and feasible electrochemical-deposition method is widely used owing to its unique
advantages. The quality and the size of the deposited metal can be precisely controlled by controlling
parameters such as the concentration of the plating precursor and the plating time. At the same time,
electroplating can maximize the use of metal because it mainly deposits metal atoms on the outermost
surface of the support. Xue et al. [67] successfully prepared Ni/Fe metal-atom-anchored GDY catalysts
by electrochemical-deposition method using NiSO4/FeCl3 as the electrolyte at a current density of
10 mA cm−2 (Figure 4a). The metal-atom loadings of Ni/GDY and Fe/GDY prepared by this method
were 0.278 wt% and 0.680 wt%, respectively and the metal exists in the form of atoms while forming a
covalent bond with C atom in the GDY framework (Figure 4b,c. Similarly, the Pd-metal atom anchored
GDY catalyst (Pd-GDY) was prepared by electrochemical-deposition (current density: 2 mA cm−2,
deposition time: 10 s) using the sulfuric acid solution of PdCl2 as the electrolyte [68]. The EXAFS
spectrum of Pd-GDY (Figure 4d) features a major peak near 1.5 Å, corresponding to Pd–C contribution
without the appearance of the Pd–Pd contribution (2.5 Å), demonstrating the only presence of isolated
metal Pd atoms. Furthermore, the first derivative of X-ray absorption near-edge structure (XANES)
is used as the basis for energy calibration and determination of the valence state of the samples [69].
The main peaks of Pd/GDY and Pd foils located at the same energy position (Figure 4e), which is the
evidence that Pd atoms are anchored on the surface of GDY in a zero-valence state.Catalysts 2020, 10, x FOR PEER REVIEW 6 of 29 
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Figure 4. Synthesis and structural characterizations of metal-atom-anchored GDYs. (a) Schematic
diagram of the synthetic route of Ni/GDY and Fe/GDY; (b) EXAFS spectra of Ni/GDY and Ni foil at the
Ni K-edge; (c) EXAFS spectra of Fe/GDY and Fe foil at the Fe K-edge (reproduced with permission
from [67]. Copyright Springer Nature, 2018); (d) EXAFS spectra of Pd0/GDY and Pd foil at the Pd
K-edge; (e) normalized Pd K-edge XANES spectra and first-derivative curves (the inset) of Pd0/GDY
and Pd foil (reproduced with permission from [68]. Copyright Elsevier, 2018).
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2.2. Synthesis of Nonmetallic-Atom-Doped GDY Catalysts

Nonmetallic-atom doping is regarded as one of the important ways to adjust the properties
of materials [70,71]. For example, some synthesis methods have been applied to directly prepare
nitrogen-doped graphene, such as chemical vapor deposition (CVD) [72], segregation growth [73],
solvothermal [74] and arc-discharge approaches [75]. Until now, the exploration of the synthesis method
of nonmetallic-atom-doped GDY catalysts is not so comprehensive. The high-temperature annealing
method, a traditional method for the heteroatom doping on carbon materials [76], has been used as
the main synthesis method. By means of reasonable planning and utilization of high-temperature,
the nonmetallic-atoms doped, or multi-atom co-doped GDY catalysts were also successfully synthesized.
Yang et al. prepared a sulfur (S) atom-doped GDY (S-GDY) catalyst by a simple thermal synthesis
procedure (Figure 5a) using short S radicals, generated through the homolysis of benzyl disulfide
(as the S source) that can be bonded to the acetylenic bonds [77]. In another exploration, Zhao et al.
used melamine and dibenzyl sulfide as continuous doping sources and successfully prepared N and S
atom co-doped few-layer GDY catalyst by an improved pyrolysis method [78]. Likewise, GDY was
calcined with thiourea, boron oxide and ammonium fluoride at 700 ◦C under Ar atmosphere to obtain
single atom-doped GDY (SGDY, BGDY and FGDY), calcined under NH3 atmosphere to obtain GDY
co-doped with multiple-atoms (NSGDY, NBGDY and NFGDY) (Figure 5b) [79].Catalysts 2020, 10, x FOR PEER REVIEW 7 of 29 
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Figure 5. Syntheses of nonmetallic-atom-doped GDY. (a) Schematic illustration of the preparation of
S-GDY (reproduced with permission from [77]. Copyright Wiley-VCH, 2019); (b) schematic drawing
for the fabrication of multielement-doped-GDY-based materials (reproduced with permission from [79].
Copyright The Royal Society of Chemistry, 2016); (c) schematic illustrate of the preparation process
of Cl–GDY (reproduced with permission from [80]. Copyright American Chemical Society, 2019);
(d) Schematic illustration of the synthetic route of PyN–GDY (reproduced with permission from [81].
Copyright Elsevier, 2019).

Except the high-temperature annealing method, other direct and effective methods have been also
developed for the synthesis of nonmetallic-atom-doped GDY catalysts. Firstly, a corrosion engineering
strategy was applied to prepare ultrathin Cl-doped GDY (Cl–GDY) [80]. The pristine GDY prepared
by the Glaser–Hay coupling reaction with hexaethynylbenzene (HEB) as the monomer in pyridine
solution was put into a home-built tube furnace system for annealing with Ar as a carrier gas and Cl2
gas as the chlorine source and etching gas to prepare Cl-doped GDY catalyst (Figure 5c). Secondly,
by using the bottom-up synthesis strategy as the guiding ideology, the GDY catalyst with a specific
configuration of nitrogen selective doping was prepared by using a Glaser–Hay coupling reaction
with pentaethynylpyridine as the monomer, in which one carbon atom in every benzene ring of
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GDY is substituted by pyridine N (PyN–GDY) (Figure 5d) [81]. Third, in order to precisely adjust
the ratio of doping atoms and the doping sites to control the variables in the experimental study,
Zhao et al. introduced a new form of N-doping moieties (sp-N atoms) in the 2D layered GDY through
the pericyclic reaction and successfully prepared sp-N-doped few-layer GDY catalysts [82].

With the high-temperature annealing method, the preparation of nitrogen (N) atom-doped GDY
catalyst was achieved by heating GDY in a mixed atmosphere of high purity ammonia and argon [83].
The doping of N atoms changes the sample powder from the original relatively regular laminar
morphology (Figure 6a) to the three-dimensional aggregation morphology of spherical particles
(Figure 6b), but still maintains the amorphous structure (Figure 6c,d). Meanwhile, compared with
GDY composed of C and physically adsorbed O from air, the appearance of both N 1s peak and
C=N– in-N-doped GDY (N–GDY) indicates the successful doping of N atoms into the GDY network
(Figure 6e,g. The N atoms have two bonding characters in the GDY network, corresponding to the
imine N (N substitution of the sp-hybridized carbon atoms) and the pyridinic N (Figure 6h).
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(e) X-ray photoelectron spectrometry (XPS) spectra (survey) of GDY and N–GDY. XPS C 1s spectra of
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3. Theoretical Predictions

2D full-carbon materials such as graphene [88–90] have been widely applied in electrochemical
energy conversion devices such as fuel cells and metal–air batteries for their extraordinary catalytic
properties towards the ORR, OER and HER processes and their low cost, easy synthesis and well-defined
2D planarity. In particular, the 2D electron-rich full-carbon framework material GDY with adjustable
electronic structure and uniformly distributed porous structure has developed rapidly in the field
of electrocatalysis in recent years. The functionalization methods of the GDY include metal-atom
anchoring and nonmetallic-atom doping, which create ideal conditions for its better electrocatalysis
performances. On one hand, single-atom (metal atom) catalysts have the greatest utilization efficiency
of metal atoms and high-efficiency catalytic ability. Meanwhile, the variability of both the metal
atoms and the supports provides a choice for its cost control. Therefore, this kind of catalyst with
isolated metal atoms anchored on the support as the catalytic active centers [91] has attracted extensive
attention and received in-depth research. The large triangular holes periodically arranged in the
structure contribute to a relatively large specific surface area and the uneven charge distribution
of the GDY are conducive to the anchoring of the single metal atom [33,92]. On the other hand,
the introduction of nonmetallic-atom into the structure of GDY contributes to the modulation of the
electronic structure and the control of performance, further providing the required properties for many
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electrocatalytic processes with application significance. Below, the theoretical research progresses of
metal-atom-anchored GDY catalysts and nonmetallic-atom-doped GDY catalysts for electrocatalytic
applications will be discussed.

3.1. ORR

3.1.1. Metal-Atom-Anchored GDY Electrocatalysts

GDY is a unique platform for synthesizing well-ordered and uniformly distributed metal-atom
catalysts with high catalytic activity toward ORR electrocatalysis. With the theoretical studies based on
the dispersion-corrected density functional calculation (DFT-D), Lu et al. [93] systematically studied
the anchoring of noble-metal (NM) atom (Pd, Pt, Rh and Ir) on the surface of GDY, including the
analysis of the geometric adsorption structure and embedded adsorption energy, electronic structure
and frontier molecular orbitals. The NM atom is embedded in the 18C hexagon of GDY and has the
largest adsorption energy at the large ring angle position of GDY. The adsorption energies of the four
NM atoms of Pd, Pt, Rh and Ir are −3.12 eV, −4.20 eV, −4.41 eV and −5.27 eV, respectively and the
mobility barrier energy increases with the embedded adsorption energy. The GDY anchored by Rh
and Ir atoms, considered as the catalytic active centers, have potential catalytic application prospects.
Moreover, the GDY anchored by the Rh atom has the strong electron-donating ability and the stable
oxidation state of Rh, showing its great potential for ORR electrocatalysis [94].

In addition to the above-mentioned NM atoms, theoretical simulations have been also carried
out on other transition metal atoms anchored on the surface of GDY for ORR catalytic activities.
Feng et al. [95] used DFT as the theoretical guide to study the principle, process and activity of ORR
catalysis of isolated transition metal (TM) atom supported by GDY (TM@GDY) in alkaline media.
The ORR free energy diagrams (Figure 7a–c) of Ni atom anchored GDY (Ni@GDY), Pd atom anchored
GDY (Pd@GDY) and Pt atom anchored GDY (Pt@GDY) show their four-electron ORR pathways.
When the electrode potential reaches a certain value, the ORR process could occur spontaneously.
The rate limiting step of the Ni@GDY is the last step (*OH → OH−), while the rate limiting step
of Pt@GDY is the first step (O2 → *OOH). The ORR overpotential of Ni@GDY and Pt@GDY are
equal to 0.44 V which is less than that of Pt (0.45 V) [96], demonstrating its remarkable ORR catalytic
performance. Pd@GDY has a relatively high overpotential of 0.75 V, showing its relatively poor ORR
catalytic performance. Meanwhile, the TM atoms are reactive sites because *OOH, *O and *OH are
adsorbed on Ni, Pd and Pt atoms (Figure 7d–f), and the adsorption free energy of *O species is generally
larger than that of *OOH and *OH [96,97].
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The ORR is the central reaction of the fuel cell [98] but its inherent slow response limits the 
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3.1.2. Nonmetallic-Atom-Doped GDY Electrocatalysts

The ORR is the central reaction of the fuel cell [98] but its inherent slow response limits the
overall performance [99,100]. To date, N-doped graphite carbon material including activated carbon,
carbon nanotubes and graphene [72,101–103] have demonstrated to be the effective ORR catalysts.
In this respect, the ORR process of N-atom-doped GDY on the cathode of a fuel cell was also discussed
in many studies [104–111]. The ORR mechanism of N-doped GDY was investigated by using the first
principles calculations. The kinetically most favorable and efficient four-electron reaction pathway
(O2 → OOH → O + H2O → OH → H2O) was adopted [104]. The site-specific N doping of GDY
including grap-N, sp-N (I) and sp-N (II)-doped GDY (Figure 8a) was systematically investigated as ORR
electrocatalysts via DFT [108]. The adjacent sp-C atoms are activated as centers of ORR electrocatalytic
process because the charge redistribution is caused by the doping of N atoms. Through the analysis of
both dissociation (Figure 8b) and association mechanisms (Figure 8c) of O2 on pure GDY and three
types of N-doped GDY catalysts, it is found that the doping of N atom has significant contributions to
the amelioration of onset electrode potential of ORR electrocatalytic. For sp-N (I) GDY, the dissociation
mechanism of O2 plays a leading role with its negligible dissociation barrier (0.04 eV) and relatively
higher onset potential (0.51 V). Among the three types of N doping, in addition to sp-N (I) GDY,
the onset potential of ORR in the association mechanism is higher than that in the dissociation
mechanism. Of particular interest, the sp-N (II) doping provides the most significant ORR performance
improvement by increasing the onset potential to 0.76 V, which is even comparable to that of noble
metal Pt (1 1 1) catalyst (0.78 V) [96].
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(a) Three types of N-atom-doped GDY; (b) ORR-dissociation mechanism diagram; (c) ORR-association
mechanism diagram (reproduced with permission from [108]. Copyright Science China Press, 2019).

In another study [105], special attention was paid to the ORR catalytic performances of three
co-doped GDY, which were BbN1(2)-, BbN1(B)- and BbN2(1)-doped GDY, respectively (Figure 9a–c).
All of the reaction steps are exothermic at the electrode potential of 0.00 V and when the electrode
potential is higher than 0.66 V, some reaction steps become endothermic. The BbN1(2)-doped GDY
catalyst exhibits the best catalytic ability because its ORR overpotential (0.57 V) is lower than that of
BbN1(B)-doped GDY (0.61 V) and BbN2(1)-doped GDY (0.64 V) (Figure 9d–f). Meanwhile, the GDY
catalyst doped with BbN1 has two active sites with almost the same catalytic activity, one of which
is the B atom and the other is the C2 atom that has the closest positive charge to the N atom. *OOH,
*O and *OH are adsorbed on the B and C2 atoms and the adsorption energy values on the B and
C2 atoms are approximately the same. While the C1 atoms act as active sites on BbN2-doped GDY
because the *OOH, *O and *OH occupy the top site of the C1 atoms that are directly bonded to the
N and B atoms (Figure 9g–i). In general, the ORR performance of the ideal nonmetallic-atom-doped
GDY catalyst is comparable to that of Pt-based materials. These results provide useful theoretical and
research directions for the design of efficient and stable nonmetallic-atom-doped GDY catalysts for
ORR electrocatalysis in the future.
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GDY. Geometric structures of (a) single-heteroatom-doped GDYs, (b) BbNy-doped GDY and (c)
BzN1-doped GDY monolayers. Free energy diagrams for (d) BbN1(2)-, (e) BbN1(B)- and (f) BbN2(1)-doped
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adsorption energy on (g) BbN1(2)-, (h) BbN1(B)- and (i) BbN2(1)-doped GDY monolayers. Gray, pink,
blue, red and white balls represent C, B, N, O and H atoms, respectively (reproduced with permission
from [105]. Copyright The Royal Society of Chemistry, 2019).

3.2. HER

Metal-Atom-Anchored GDY Electrocatalysts

The ORR is of pivotal significance for fuel cells and metal–air batteries. Similarly, the HER through
electrocatalytic water splitting is considered as a promising approach to the production of clean
hydrogen [112–114]. Recently, several research groups have studied the metal-atom-anchored GDY
catalysts for HER electrocatalysis applications with the support of theoretical calculations. The bonding
and anti-bonding orbitals near the Fermi level (EF) of zero-valence molybdenum-atom anchored GDY
(Mo0/GDY) indicate that Mo is the active site and the Mo site as the electron-rich center can transfers
charge and modifies the charge distribution from the C site to achieve effective electron transfer and
stable adsorption of HER. In another study [62], the Pt atoms are anchored on GDY through the
coordination interaction with the alkynyl C atoms in GDY, forming a five-coordinated C1–Pt–Cl4 species
in Pt-GDY1 and a four-coordinated C2–Pt–Cl2 species in Pt–GDY2. The interaction of Pt 5d orbital
with the 1s orbital of H atom is favorable for transferring electrons to H atom, and the total unoccupied
density of states of Pt 5d orbital is closely related to the formation of hydride [115]. Compared to
Pt-GDY1, the relatively higher total unoccupied density of states of Pt 5d of Pt–GDY2 within the
four-coordinated environment gives it a unique electronic structure that is conducive to its remarkable
HER activity. As well-known, the Gibbs free energy (∆GH) is an important evaluation criterion for
HER catalytic activity. When the Gibbs adsorption free energy of the reaction intermediate is closer
to zero on the catalyst surface, the higher the HER electrocatalytic activity can be obtained [116,117].
Therefore, it is feasible to estimate the HER electrocatalytic activity of the catalyst by analyzing the
∆GH of the adsorption of H. For Pt-GDY1, a rather negative value of ∆GH* (−0.653 eV) indicates that
the H atoms are too strongly adsorbed on the Pt active sites, which is also detrimental to the HER
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process. However, the ∆GH* of Pt–GDY2 is 0.092 eV, which is closest to the ∆GH* of Pt metal surface
(−0.09 eV [118]), indicating its outstanding HER catalytic activity.

Not only DFT theory is used to study the HER electrocatalytic performance of the catalysts,
the machine-learning (ML) [119] strategy is also used to provide the theoretical understanding and
guidance for constructing metal-atom-anchored GDY catalysts for HER. Sun et al. comprehensively
analyzed all TM and lanthanide (Ln) metals using DFT and ML strategies and found that C2 on the GDY
chain is the most active electrically active site, showing both stable adsorption of H and desorption of
H2 (Figure 10a,b). Simultaneously, the mapping of the chemisorption energy shows limited regulation
with the number of d electrons, while the increase of chemisorption from 3d to 5d indicates that H
coverage preference is decreasing (Figure 10c). Pt shows the greatest potential for electrocatalytic
application to HER owing to its nearly zero-energy variation. Sm and Eu can adsorb the second H atom
because they only require a small energy cost of less than 0.2 eV, and Eu-4f and Sm-4f orbitals have
high electrical active for reduction based on electron depletion, making them effective electrocatalyst
with excellent HER catalytic performance. For 3d metals, the continuous H adsorption and final
desorption of H2 are both thermodynamically spontaneous. The formation cost of H2 follows the order
of Fe > Co > Ni. It is worth noting that the very subtle energy changes displayed by Ni-atom anchored
GDY catalyst during the HER process is evidence of its highly efficient HER activity (Figure 10d).
Meanwhile, according to the energy cost of (2H*→ *H2) is the main potential determination criterion
for the 4d element, it can be concluded that Pd, Ag and Cd are energetically favorable candidates
(Figure 10e). Only Pt and Hg show the spontaneous reaction trend of (2H*→ *H2) and the higher
energy cost of the remaining 5d is needed to form H2, which represents poor HER performance
(Figure 10f). In addition, compared to 3d metals, the energy variation of most 4d and 5d metals is
larger than 0.4 eV, indicating the slightly lower HER efficiency, and its electroactivity follows the order
of 3d > 4d > 5d. The electrical activity demonstrated by DFT and ML have similarly trend, proving the
capability of ML in predicting of electroactivity of novel catalysts (Figure 11). The application of new
technology helps to discover more potential HER electrocatalysts with ideal performance and opens
new opportunities for future design and synthesis of efficient metal-atom-anchored catalyst as well.
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Figure 10. Density functional calculation (DFT-D) mapping of active site and reaction energy for
metal-atom-anchored GDY catalysts. (a) Mapping of the preferable initial adsorption site for H* in
hydrogen evolution reaction (HER); (b) mapping of the final desorption site for H2 in HER; (c) mapping
of the chemisorption energy for TM atom anchored GDY catalysts. Mapping of the reaction energy
of HER for (d) 3d, (e) 4d and (f) 5d TM atom anchored GDY catalysts (reproduced with permission
from [119]. Copyright Wiley-VCH, 2020).
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3.3. OER

Metal-Atom-Anchored GDY Electrocatalysts

As a semiconductor material [120,121], GDY has a natural and direct band gap of 0.52 eV
(Figure 12a) [28,122]. This band gap can be reduced to 0.26 eV (Figure 12b) by the anchoring of Ni
atoms on the surface of GDY [123], which effectively improves the conductivity and further accelerates
the electrocatalytic reaction. The three possible adsorption sites of TM atoms (Sc to Zn and Pt) anchored
on the surface of GDY were simulated [123], namely S1, S2 and S3 (Figure 12c). It is found that the TM
atoms located at S1 automatically move to S2 after optimization, which indicates that the most stable
and energetic adsorption site is S2. The high migration energy barrier (3.35 eV) of the NM atoms on the
surface of GDY makes it extremely difficult for the anchored TM atoms to diffuse from its stable site to
another site. As can be seen from Figure 13, the calculated overpotentials (η) of Mn@GDY, Fe@GDY,
Sc@GDY, Co@GDY, Cr@GDY,Ti@GDY and Cu@GDY are 1.81, 1.66, 1.68, 0.84, 1.80, 1.92 and 0.92 V,
all of them need too much energy input to catalyze the OER processes. Meanwhile, the strong binding
character will also poison the catalysts. Thus, these catalysts are not the ideal candidates for OER.
Interestingly, only Ni@GDY and Pt@GDY that have more positive values of ∆GOH* possess favorable
values of 0.29 and 0.46 V for OER. This shows that Ni@GDY and Pt@GDY have promising potential in
OER electrocatalysis.
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Figure 12. Band structures of the pristine and the TM-atom anchored GDY and different possible
adsorption sites for the single TM-atoms supported on GDY. Electronic properties of band structures
and density of states of (a) GDY monolayer and (b) Ni@GDY composite. The Fermi level is set to zero;
(c) different possible adsorption sites for the single TM atoms supported on GDY: at the center of the
holes (S1), at the corner of the holes (S2) and at the center of hexatomic ring (S3). (reproduced with
permission from [123]. Copyright Wiley-VCH, 2019).
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4. Experimental Investigations

In fuel cells and metal–air batteries, the ORR, OER and HER processes require high-quality
catalysts to obtain rapid reaction kinetics in order to play a role in practical electrocatalytic applications.
Pt and Pt-supported alloy materials have long been regarded as the most effective electrocatalysts for
their remarkable catalytic performance [124–126], but their high cost and poor durability have become
the main development bottlenecks for their commercialization [127,128]. Under this circumstance,
single-atom (metal atom) catalysts stand out and are regarded as highly effective catalysts that are
expected to replace Pt-based catalysts. Among them, to increase the exposed active sites of the catalyst
and obtain the maximum utilization efficiency of metal atoms and at the same time find an appropriate
catalyst support to stably disperse and effectively anchor the metal atoms, are the strategy to obtain
the metal-atom catalysts with stable and efficient catalytic capabilities [129–132]. Under the guidance
of this strategy, GDY has been proposed as a suitable support for metal-atom catalysts for its rich C≡C
bonds in the structure with higher degree of conjugation and chemical stability [28].

Moreover, low-cost nonmetallic electrocatalysts have been devoted to the development of
various catalytic processes involving either oxidation or reduction reactions [133]. In particular,
the carbon-based materials GDY, are ideal candidates for being the support for catalysts owing to
their wide availability, corrosion resistance and unique surface and bulk properties. Simultaneously,
the adjustability of the structure of GDY is a guarantee for the doping of nonmetallic-atom and the
introduction of heteroatoms can enable the modulation of the electronic structure of GDY, and thus the
electrocatalytic activity can be further improved [83]. The functionalization of GDY by nonmetallic-atom
doping is expected to further promote the application of this multifunctional GDY material in the
field of electrocatalysis. At the same time, these excellent catalysts contribute to the richness of
electrocatalyst materials and further promote the development of the field of electrocatalysis. In the
following, the experimental research progresses of metal atom anchored GDY catalyst and nonmetal
atom-doped GDY catalyst for electrocatalytic applications will be discussed.

4.1. ORR

4.1.1. Metal-Atom-Anchored GDY Electrocatalysts

In view of the brilliant electrocatalytic properties of metal-atom-anchored GDY catalysts supported
by theoretical calculations; several experimental studies have been carried out to explore its value in
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the field of electrocatalysis. Iron (Fe) atoms are anchored on the surface of GDY by forming a covalent
bond with the C atoms in the GDY framework, and the formed catalyst has high catalytic activity for
ORR process comparable to the precious metal benchmark (commercial 20 wt% Pt/C catalyst [134]) in
alkaline electrolytes [135]. The cyclic voltammetry (CV) results indicate that both the cathodic peak
for O2 reduction and peak current of Fe/GDY are close to that of 20 wt% Pt/C catalyst (Figure 14a),
which shows that Fe/GDY catalyst has high ORR activity in alkaline solution. The value of onset
potential (Eonset) of Fe/GDY catalyst is approximately 0.21 eV (vs. RHE), which is close to that of Pt/C
catalyst (0.20 eV (vs. RHE)) (Figure 14b). Moreover, the Fe/GDY catalyst has a Tafel slope (Figure 14c)
value of about 63 mV dec−1 in the high potential region, which is almost identical to that of commercial
Pt/C catalysts (62 mV dec−1 [136]). The stability test results show that the Eonset of the Fe/GDY catalyst
has almost no change, the half-wave potential (E1/2) has only a slight negative shift while the Eonset and
the E1/2 of Pt/C catalyst have undergone relatively large changes, indicating the superior stability of
the Fe/GDY catalysts (Figure 14d) (Table 1). The better and beneficial stability of Fe/GDY catalyst may
be also derived from the fact that the active sites in the catalyst are not easy to be oxidized or reduced,
and the Fe atoms form coordination bonds with C atoms. It is worth knowing that the Fe/GDY catalyst
with the high catalytic activity and stability facilitates 4e− ORR process while limiting the 2e− transfer
reaction, and the high 4e− selectivity to ORR process is more conducive to the improvement of its
electrocatalytic activity.
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Figure 14. Electrochemical characterizations of Fe/GDY. (a) CV responses of the Fe/GDY catalyst and
the commercial Pt/C catalyst in N2- and O2-saturated 0.1-M KOH solution at ambient temperature.
The scanning rate was 50 mV/s. The loading of the Fe/GDY catalyst was 0.49 mg/cm2, and the loading
of the Pt/C catalyst was 20 µgPt/cm2; (b) RDE measurements in O2-saturated 0.1-M KOH solution for
the Fe/GDY catalyst and the commercial 20 wt% Pt/C catalyst. The measurements were performed
at a rotating speed of 1600 rpm and a scanning rate of 5 mV/s; (c) Tafel ORR plots obtained at the
Fe/GDY and commercial 20-wt% Pt/C catalyst; (d) stability of the Fe/GDY catalyst to the ORR. The RDE
responses were recorded in O2–saturated 0.1-M KOH solution at a rotating speed of 1600 rpm and a
scanning rate of 5 mV/s before and after ADTs (reproduced with permission from [135]. Copyright
American Chemical Society, 2018).

Table 1. Oxygen reduction reaction (ORR) performance of metal-atom-anchored GDY and
nonmetallic-atom-doped GDY.

Catalysts 1 Synthesis Method Eonset
(V vs. RHE)

E1/2
(V vs. RHE)

Id
(mA cm−2)

Tafel Slope
(mV dec−1)

Ref.

Fe/GDY chemical reduction 0.21 0.1 6.7 (0.1 V) 63 [135]
NGDY high-temperature annealing N/A 0.87 38.0 (0.75 V) 60 [82]

NFGDY high-temperature annealing 1.0 0.74 4.5 (0 V) N/A [79]
1 electrolyte: 0.1-M KOH.
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4.1.2. Nonmetallic-Atom-Doped GDY Electrocatalysts

The excellent ORR catalytic activity, high stability and high methanol tolerance of
nonmetallic-atom-doped GDY catalysts were also experimentally confirmed. For example,
sp-N atom-doped few-layer GDY (NGDY) catalysts with outstanding ORR performance were
successfully prepared [82]. The cathode current density provided by NGDY is most consistent
with Pt/C and the optimal sp-N-doped GDY exhibits comparable catalytic activity to Pt/C, with E1/2 of
0.87 V and Jk of 38.0 mA cm−2 at 0.75 V in the alkaline solution. The site-specific sp-N atom doping
is most favorable for O2 adsorption and electron transfer on the catalyst surface compared to other
N-doped forms. With the increase of the concentration of sp-N atom in alkaline and acidic solutions,
the current density increases monotonically, confirming that the sp-N atom is the most important active
N-doping form for the ORR electrocatalysis.

In addition to the single N-atom doping form, the N atom and fluorine (F) atom co-doped GDY
catalyst also exhibits enhanced ORR catalytic activity, and it shows a much better stability with
a higher tolerance to methanol crossover and CO poisoning effects than the commercial Pt/C [79].
The NFGDY exhibited an Eonset of 1.0 V vs. RHE and a disk current (Id) of 4.5 mA cm−2 at 0 V vs.
RHE (Figure 15a), which are comparable to those of Pt/C (Eonset = 1.0 V, Id = 4.3 mA cm−2 at 0 V vs.
RHE). The average electron transfer number of NFGDY during the reaction is 4.2 for a wide potential
range from 0 V to 0.8 V (vs. RHE), suggesting complete selectivity toward total oxygen reduction
(Figure 15b). The NFGDY modified electrode shows a 20 mV negative shift in E1/2, but no negative
shift in Eonset and decline in the limiting current density are observed (Figure 15c). The NFGDY has no
response specific to methanol, but the catalytic activity of Pt/C drops severely (Figure 15d). These data
indicated that NFGDY has a promising long-term operational stability. Notably, in terms of its onset
potential and limiting current density, the as-prepared NFGDY exhibits comparable performance to
commercial Pt/C both in half-cell Zn–air battery. The remarkable synergistic effect produced by the
co-doping of N and F atoms endows this new type of nonmetallic-atom-doped GDY electrocatalyst an
efficient and stable ORR catalytic performance.Catalysts 2020, 10, x FOR PEER REVIEW 17 of 29 
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Figure 15. ORR electrochemical characterizations of polyatomic co-doped GDY. (a) LSV curves of
GDY, NSGDY, NBGDY and NFGDY obtained from RDE measurements at 1600 rpm at a scan rate
of 10 mV s−1 in O2-saturated 0.1-M KOH; (b) Koutecky–Levich (K–L) plots of NFGDY calculated at
different potentials; (c) stability tests of NFGDY at 1600 rpm before and after 6000 continuous CV cycles
from −0.05 to 1.15 V (vs. RHE) at a scan rate of 200 mV s−1; (d) methanol-tolerance evaluation of
NFGDY tested by the current–time chronoamperometric responses (20% Pt/C is used for comparison)
(reproduced with permission from [79]. Copyright The Royal Society of Chemistry, 2016).
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4.2. HER

Metal-Atom-Anchored GDY Electrocatalysts

The unique and precise chemical and electronic structure of the GDY support allows for the
anchoring of dispersed metal atoms and can maximizes the use of metal atoms while increasing as
many active sites as possible. The strong p-d coupling between the metal atoms and the C atoms
in GDY activates the effective proton electronic exchange between the active site and the support,
suppressing the free energy of HER close to zero. Taking advantage of this, the isolated and dispersed
Ni and Fe atoms anchored GDY catalysts were developed [67] and these catalysts exhibited excellent
HER performance (Table 2) among all reported nonprecious HER single-atom catalysts and most of
the state-of-the-art bulk catalysts. Clearly, the Fe atom anchored GDY (Fe/GDY) catalyst exhibits the
best HER activity with the smallest onset overpotential of 9 mV and an overpotential of 66 mV at
10 mA cm−2, which is smaller than that of Ni atom anchored GDY (Ni/GDY) (88 mV), GD foam (GDF)
(578 mV) and carbon cloth (CC) (642 mV) (Figure 16a). The Fe/GDY and Ni/GDY catalysts show very
small Tafel slopes of 37.8 and 45.8 mV dec−1 (Figure 16b), respectively, which are comparable to that of
Pt/C (33.9 mV dec−1). According to the values of the Tafel slope, the Volmer-Heyrovsky mechanism is
operative during the HER process. (If the value of Tafel slope is 120 mV dec−1, the Volmer reaction is
the rate-determining step. If the Tafel slope is 40 mV dec−1 or 30 mV dec−1, the speed-determining
steps are Heyrovsky and Tafel reactions, respectively). TOF is the best parameter to compare the
intrinsic activity of different catalysts [137]. The TOF of Ni/GDY and Fe/GDY are 1.59 and 4.15 s−1

(Figure 16c) at 100 mV, which are much higher than those of the other recently reported electrocatalysts
such as CoP (0.046 s−1) [115] and Ni2P (0.015 s−1) [138]. In addition, the mass activity is an important
evaluation standard for characterizing catalytic performance in practical applications [115]. The mass
activity of Fe/GDY and Ni/GDY on HER are significantly better than that of commercial Pt when
normalized with respect to their respective loads (Figure 16d). Remarkably, after 5000 potential cycling
tests, the polarization curves of Ni/GDY (Figure 16e), Fe/GDY (Figure 16f) remain unchanged in
current density, which are superior to commercial Pt/C in terms of stability. The loss of geometric
exchange current density of Ni/GDY and Fe/GDY are negligible even at 116 h and 60 h of constant
electrolysis. Using the unique chemical structure and strong p–d coupling of the GDY, the uniform
porosity of GDY also contributes to the excellent HER performance of the metal-atom anchor catalyst.
The novel zero valence palladium atom anchored GDY (Pd0/GDY) ultrathin nanosheet prepared by
electrochemical-deposition method results in a highly active and stable HER catalytic process when
used as a three-dimensional flexible hydrogen-evolving cathode [68]. The porosity of Pd0/GDY catalyst
facilitates rapid mass transfer and gas escape, ensuring sufficient contact between the electrolyte,
which is the guarantee of its outstanding performance as HER catalysts.

Table 2. HER performance of metal-atom-anchored GDY.

Catalysts Synthesis Method
η

At 10 mA
cm−2 (mV)

Eonset
(V vs. RHE)

j0
(mA cm−2)

Tafel Slope
(mV dec−1) TOF (s−1) Mass

(A mgmetal
−1)

Ref.

Ni/GDY 1 electrochemical-deposition 86 23 0.25 (0 V) 45.8 1.59 (0.1 V) 16.6 (0.2 V) [67]
Fe/GDY 1 electrochemical-deposition 66 9 0.29 (0 V) 37.8 4.15 (0.1 V) 80.0 (0.2 V) [67]

Pd0/GDY 1 electrochemical-deposition 55 11 0.28 (0 V) 47 16.7 (0.1 V) 61.5 (0.2 V) [68]
Ru/GDY 1 in situ reduction 44 N/A 0.70 (0 V) 30 8.45 (−0.1 V) 15.88 (0.15 V) [64]

Cu@GDY-Co 2 absorption–reduction 63 N/A N/A 41.7 N/A N/A [139]

1 electrolyte: 0.5-M H2SO4. 2 electrolyte: 1.0-M KOH.
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of Fe/GDY (blue dot) and Ni/GDY (red dot) together with several state-of-the-art HER electrocatalysts;
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4.3. OER

4.3.1. Metal-Atom-Anchored GDY Electrocatalysts

To date, the development of dual-function electrocatalysts capable of driving both HER and OER
processes with a small applied voltage can better meet the requirements in practical applications but
remains challenges. Inspired by the fact that ruthenium (Ru) supported oxides are generally considered
to be effective electrocatalysts for acidic OER and the fact that GDY can be applied as an efficient and
stable catalyst support for anchoring metal atoms, Ru atom anchored GDY (Ru/GDY) catalyst has been
prepared by the in-situ reduction method and shows outstanding catalytic activity and stability in
both OER and HER processes in acid solution [64]. The Ru/GDY shows the excellent OER activity with
the low overpotential of 531 mV to reach 10 mA cm−2 and the small Tafel slope of 100 mV dec−1 and
the big jmass of 9.03 A mgmetal

−1 (at the 2.0 V), which is 451 times larger than RuO2 (0.02 A mgmetal
−1).

The Ru/GDY shows the excellent HER activity with the overpotential of 44 mV at 10 mA cm−2 and the
fastest reaction rate with the smallest Tafel slope of 30 mV dec−1. The mass activity polarization curves
further confirmed the superior catalytic activity of Ru/GDY, for example, At the overpotential of 150 mV,
Ru/GDY shows the mass activity of 15.88 A mgmetal

−1, which is 15.88-times larger than 20 wt% Pt/C
(1.00 A mgmetal

−1) (Table 3). Remarkably, the strong p-d coupling between Ru atoms and neighboring
C atoms produces an intrinsic electron compensation reservoir that generates an abnormally high
oxidation of anchored Ru atoms, making Ru atom to be a unique electron-mediating-vehicle (EMV) with
a dynamic self-modification for fast reversible redox-switching. Despite of the excellent performance
of Ru/GDY catalyst for OER and HER, the Ru/GDY is also used as both anode and cathode for overall
water decomposition in acidic media. The electrode only needs 1.81 V of the cell voltage to deliver
10 mA cm−2, which confirms its excellent electrocatalytic activity. In another recent study, Shi et al.
described a new strategy that utilizes strong electronic perturbation effect to stabilize ultrasmall Co
clusters, which adopt GDY nanoarray as support material (Cu@GDY-Co) [139]. As a self-standing
bifunctional electrocatalysts for overall water splitting, the Cu@GDY-Co electrocatalyst displays
superior activities for both OER (with the overpotential of 234 mV at 10 mA cm−2 and the Tafel slope
value of 51.7 mV dec−1) and HER (with the overpotential of 63 mV at 10 mA cm−2 and the Tafel slope
value of 41.7 mV dec−1). Given the high HER and OER performances, the Cu@GDY-Co catalyst was
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directly used as both the cathode and anode to assemble a two-electrode alkaline electrolyzer for
overall water splitting (Figure 17a). As shown in Figure 17b,c, this device delivers current densities
of 10 mA cm−2 and 100 mA cm−2 with a cell voltage of 1.53 V and 1.70 V, respectively, which are
even higher than that of IrO2(+)//Pt(−) electrode. Meanwhile, the electrolyzer maintains a stable cell
voltage at different current densities ranging from 10 to 100 mA cm−2, indicating the good stability of
Cu@GDY-Co electrode. Benefiting from the unique electronic property and acetylenic bond structure
in GDY, ultrasmall Co clusters can be effectively stabilized on the surface of GDY, ensuring the efficient
expose of catalytic activity sites. At the same time, the intimate electronic interaction between GDY
and ultrasmall Co clusters significantly reduces the free energy of intermediates in the electrolysis
of water, resulting in the improvement of intrinsic catalytic activity. This dual-function catalyst with
extraordinary OER and HER catalytic activity guarantees the potential for commercial application
and is conducive to the further development of metal-atom-anchored GDY catalysts in the field of
dual-function electrocatalysis.

Table 3. OER performance of metal-atom-anchored GDY and nonmetallic-atom-doped GDY.

Catalysts 1 Synthesis Method
η

At 10 mA
cm−2 (mV)

j0
(mA cm−2)

Tafel Slope
(mV dec−1)

TOF
(s−1)

Mass
(A mgmetal

−1)
Ref.

Ru/GDY 1 in situ reduction 531 0.084 (0 V) 100 7.09 (2.0 V) 9.03 (2.0 V) [64]
Cu@GDY-Co 2 absorption–reduction 234 N/A 51.7 N/A N/A [139]

NSFLGDY-900 2 high-temperature
annealing 299 47.2 (1.6 V) 62 N/A N/A [78]

NSFLGDY-900a 2 high-temperature
annealing 308 35.7 (1.6 V) 66 N/A N/A [78]

NSFLGDY-900b 2 high-temperature
annealing N/A 4.6 (1.6 V) 79 N/A N/A [78]

1 electrolyte: 0.5-M H2SO4. 2 electrolyte: 1.0-M KOH.
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Figure 17. Overall water splitting schematic illustration and electrochemical characterizations of
Cu@GDY-Co. (a) Schematic illustration of the electrolyzer using Cu@GDY-Co as both cathode and
anode; (b) polarization curves for overall water splitting; (c) chronopotentiometric curve of water
electrolysis recorded at the current density of 10, 40 and 100 mA cm−2 (reproduced with permission
from [139]. Copyright Elsevier, 2020).

4.3.2. Nonmetallic-Atom-Doped GDY Electrocatalysts

Carbon-rich nanomaterials [140] can be used as high-quality OER electrocatalyst for their
definable active centers, controllable nanostructures and excellent chemical stability. The application
of nonmetallic-atom-doped GDY catalysts in the OER electrocatalytic process has been also explored.
For instance, the high spin of the active site of the sp-N-doped GDY catalyst contributes to its high
OER catalytic activity, making its catalytic activity comparable to that of RuO2 [107]. With respect
to the individual atom doping, polyatomic co-doped carbon materials have more advantages for
enhancing the OER performance. Zhao et al. [78] used melamine and dibenzyl sulfide as doping
sources to prepare few-layer GDY catalyst with single nonmetallic-atom doping and co-doping of N
atom and S atoms at a high temperature of 900 ◦C (NSFLGDY-900 (1.0 g of melamine and 2.0 g of
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dibenzyl sulfide)) through several simple experimental steps. Meanwhile, the NSFLGDY-900a (1.0 g
of melamine and 1.0 g of dibenzyl sulfide) and the NSFLGDY-900b (0.5 g of melamine and 2.0 g of
dibenzyl sulfide) catalyst had been also prepared for cross-referenced catalysts. In this way, the OER
performances of the N and S atom co-doped GDY catalysts and the respective contributions of the
N atom and S atom in synergistically and positively affecting the OER catalytic performance had
been investigated. The co-doped NSFLGDY-900 catalyst exhibits outstanding OER performance with
the overpotential of 299 mV at 10 mA cm−2, which is smaller than that of RuO2 (305 mV) catalyst
and the highest current density of 47.2 mA cm−2 at a potential of 1.6 V (vs RHE), which surpasses
that of RuO2 (33.9 mA cm−2) catalyst (Figure 18a,b. Meanwhile, the NSFLGDY-900 has a lower Tafel
slope than RuO2 catalyst, further indicating its faster OER kinetic process (Figure 18c). Figure 18d–f
demonstrates that the introduction of sp-N atom significantly reduces the overpotential of the catalyst
and the subsequent introduction of S atom contributes to the improvement of the OER current density.
This multi-atom synergistic effect has a significant contribution in regulating the activity of the catalyst,
opening a new way for the further design and guidance of new carbon-based catalysts for efficient
electrocatalytic process.Catalysts 2020, 10, x FOR PEER REVIEW 21 of 29 
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Figure 18. OER electrochemical characterizations of polyatomic co-doped GDY. (a) Polarization
curves of FLGDY-900, NSFLGDY-900 and RuO2 catalysts; (b) corresponding overpotential and current
density of NSFLGDY-900 and RuO2 catalysts; (c) Tafel plots of NSFLGDY-900 and RuO2 catalysts;
(d) polarization curves of SFLGDY-900, NSFLGDY-900 and NSFLGDY-900b catalysts; (e) polarization
curves of NFLGDY-900, NSFLGDY-900 and NSFLGDY-900a catalysts; (f) current density of catalysts at
1.6 V (vs. RHE) (reproduced with permission from [78]. Copyright American Chemical Society, 2019).

5. Conclusions and Perspectives

In conclusion, with the continuous expansion of the demand of sustainable clean energy,
electrocatalysis has increasingly become a research focus in the field of catalysis and the desire
for electrocatalysts that can be easily prepared with long-term stability and excellent catalytic activity
is also increasing gradually. Under such circumstances, the highly conjugated, uniformly porous,
electron-rich 2D full-carbon material GDY, with high structural adjustability [141] and high modifiability,
becomes one of the best choices for constructing efficient and stable electrocatalyst with commercial
application prospects.

In brief, this review presents an overview of the recent achievements in the synthesis methods and
applications of GDY as the core material to construct catalysts anchored by metal atoms and doped
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with nonmetallic atoms in the field of electrocatalysis. For the preparation of metal-atom-anchored
GDY catalysts, the electrochemical deposition method, which is easy to operate and environmentally
safe, is widely used because it can precisely control the deposition thickness and deposition speed by
controlling the process conditions (current, concentration and deposition time) and can be uniformly
deposited on a complex substrate. However, it is difficult to prepare materials with complex composition
and the doping position and amount of heteroatoms cannot be controlled accurately. The wet chemical
method is increasing frequently used because of its low raw material cost, simple process and
easy industrialization, but the low purity and large particle size of the prepared materials are
major limitations. In the synthesis of nonmetallic atom-anchored GDY catalysts, the traditional
high-temperature annealing synthesis method can better control the doping source and temperature
to obtain materials with different structures and doping amounts, but this method usually forms
multiple doping sites on the GDY network structure. The preparation method using the Glaser–Hay
coupling chemical reaction can controllably synthesize high-purity materials and can precisely control
the bonding environment and doping sites, but its operation is difficult and the types of materials that
can be synthesized are limited.

In spite of the significant progress has been made, there are still challenges in theory and practice.
The effect of the type of metal atom to the overall catalytic performance and the change of the
geometric structure of the active site during the electrocatalytic process require further research efforts.
It is indispensable to systematically expand the simple-to-operate and easy-to-implement synthesis
method for nonmetallic-atom-doped GDY and to develop other types of nonmetallic-atom-doped
GDY catalysts with high-quality catalytic activity. Both the development of nonmetallic-atom-doping
or other chemical modification of GDY as the support for metal-atom-anchored catalysts, and the
development of a variety of metal-atom-anchored catalysts supported by the functionalized GDY
may provide new ideas and open up new fields for the precise design and performance control of
multifunctional electrocatalysts in the future.

Additionally, the development of catalysts with ORR and HER catalytic performance comparable
to Pt-based catalysts is the current research focus. In addition, the controllable preparation and stability
of the catalysts are also issues that require special attention. To date, the OER catalytic performance of
many catalysts under alkaline conditions has surpassed that of noble metal catalysts, but catalysts with
efficient and stable OER catalysis under acidic conditions still need to be developed. Simultaneously,
the development of dual-functional catalysts with stable and high-efficiency HER and OER catalysis and
excellent overall water splitting performance is essential to green and renewable energy technologies
and has great commercial application prospects. In pursuit of this, more investigations will be needed
to deeply explore and understand the chemical and electrochemical properties of GDY, as well as
the internal mechanism of function between atoms and GDY and the kinetic and thermodynamic
principles of the electrocatalysis process.
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